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Supélec-CNRS-Université Paris,
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Amplitude Independent
Frequency Synchroniser for a
Cubic Planar Polynomial System
The problem of local linearizability of the planar linear center perturbed by cubic non-
linearities in all generalities on the system parameters (14 parameters) is far from being
solved. The synchronization problem (as noted in Pikovsky, A., Rosenblum, M., and
Kurths, J., 2003, Synchronization: A Universal Concept in Nonlinear Sciences, Cam-
bridge Nonlinear Science Series, Cambridge University Press, UK, and Blekhman, I. I.,
1988, Synchronisation in Science and Technology, ASME Press Translations, New York)
consists in bringing appropriate modifications on a given system to obtain a desired
dynamic. The desired phase portrait along this paper contains a compact region around
a singular point at the origin in which lie periodic orbits with the same period (independ-
ently from the chosen initial conditions). In this paper, starting from a five parameters
non isochronous Chouikha cubic system (Chouikha, A. R., 2007, “Isochronous Centers of
Lienard Type Equations and Applications,” J. Math. Anal. Appl., 331, pp. 358–376) we
identify all possible monomial perturbations of degree d [ {2, 3} insuring local lineariz-
ability of the perturbed system. The necessary conditions are obtained by the Normal
Forms method. These conditions are real algebraic equations (multivariate polynomials)
in the parameters of the studied ordinary differential system. The efficient algorithm FGb
(J. C. Faugère, “FGb Salsa Software,” http://fgbrs.lip6.fr) for computing the Gröbner
basis is used. For the family studied in this paper, an exhaustive list of possible parame-
ters values insuring local linearizability is established. All the found cases are already
known in the literature but the contexts are different since our object is the synchronisa-
tion rather than the classification. This paper can be seen as a direct continuation of sev-
eral new works concerned with the hinting of cubic isochronous centers, (in particular
Bardet, M., and Boussaada, I., 2011, “Compexity Reduction of C-algorithm,” App. Math.
Comp., in press; Boussaada, I., Chouikha, A. R., and Strelcyn, J.-M., 2011,
“Isochronicity Conditions for some Planar Polynomial Systems,” Bull. Sci. Math, 135(1),
pp. 89–112; Bardet, M., Boussaada, I., Chouikha, A. R., and Strelcyn, J.-M., 2011,
“Isochronicity Conditions for some Planar Polynomial Systems,” Bull. Sci. Math, 135(2),
pp. 230–249; and furthermore, it can be considered as an adaptation of a qualitative
theory method to a synchronization problem. [DOI: 10.1115/1.4005322]
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1 Introduction

We consider the planar dynamical system,

dx

dt
¼ _x ¼ Xðx; yÞ; dy

dt
¼ _y ¼ Yðx; yÞ (1.1)

where (x, y) belongs to an open connected subset U�R2, X, Y [
Ck(U, R), and k � 1. Due to Poincaré: an isolated singular point
p 2 U of Eq. (1.1) is a center if and only if there exists a punc-
tured neighborhood V � U of p such that every orbit in V is a
cycle surrounding p. A center is said to be isochronous if all the
orbits surrounding it have the same period. An overview of
Chavarriga and Sabatini [1] present the methods and basic results
concerning the problem of the isochronicity, see also Refs. [2–6].

The synchronization problem consists of bringing appropriate
modifications on a given system to obtain a desired dynamic, see
Refs. [7,8]. Along this paper, the desired phase portrait contains a
compact region around a singular point at the origin in which lies
periodic orbits with the same period (independently from the cho-

sen initial conditions which is not always the case). More con-
cretely, in this paper we consider the following problem: starting
from a non-isochronous polynomial planar system, we seek to dis-
cover if there is any polynomial perturbation which insures the
local linearizability of the perturbed system. In this paper, we
adopt the normal forms method often used in qualitative theory
investigations: the center-focus problem, bifurcation problem and
local linearizability problem. The problem of local linearizability
conditions of the planar linear center perturbed by cubic nonli-
nearities (in all generalities on the system parameters 14 parame-
ters) is far from being solved.

In this paper, starting from a five-parameters non-isochronous
Chouikha cubic system [3], we identify all possible monomial pertur-
bations of degree d[{2, 3} insuring local linearizability of the per-
turbed system. Investigations are based on the normal forms Theory.

In the following system as well as in all other considered sys-
tems, all parameters are reals.

Consider the real Liènard Type equation:

€xþ f ðxÞ _x2 þ gðxÞ ¼ 0 (1.2)

or, equivalently, its associated two dimensional (planar) system
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_x ¼ y

_y ¼ �gðxÞ � f ðxÞy2

)
(1.3)

The study of isochronicity of Eq. (1.2) was established first in
Sabatini’s paper [9]. The sufficient conditions of the isochronicity
of the origin O for system (Eq. (1.3)) with f and g of class C1 are
given. In the analytic case, the necessary and sufficient conditions
for isochronicity are given by Chouikha in Ref. [3]. In the same
paper, the author implemented a new algorithmic method for
computing isochronicity conditions for a system (Eq. (1.3)) called
C-algorithm. As an application of this algorithm, the author stud-
ied the following cubic system:

_x ¼ �yþ ~a1;2;1x2y

_y ¼ xþ ~a2;2;0x2 þ ~a2;0;2y2 þ ~a2;3;0x3 þ ~a2;1;2xy2

)
(1.4)

where all the parameters values for which system Eq. (1.4) has an
isochronous center at the origin are established in the following
theorem.

We note that the coefficient ai,j,k denotes the parameter of the
monomial perturbation of the ith equation of the linear isochro-
nous center ( _x¼�y, _y¼ x) of degree j in x and of degree k in y.

Theorem 1.1. According to Chouikha [3], the system repre-
sented in Eq. (1.4) has an isochronous center at 0 if and only if its
parameters satisfy one of the following conditions:

1. ~a2;3;0 ¼ �ð2=3Þ~a1;2;1; ~a2;1;2 ¼ 3~a1;2;1; ~a2;2;0 ¼ ~a2;0;2 ¼ 0
2. ~a2;1;2 ¼ ~a1;2;1; ~a2;2;0 ¼ ~a2;3;0 ¼ ~a2;0;2 ¼ 0
3. ~a2;3;0 ¼ ð1=14Þ~a2

2;0;2; ~a2;1;2 ¼ ð3=7Þ~a2
2;0;2;

~a1;2;1 ¼ ð1=7Þ~a2
2;0;2; ~a2;2;0 ¼ �ð1=2Þ~a2;0;2

4. ~a2;1;2 ¼ ~a2
2;0;2; ~a2;3;0 ¼ 0; ~a1;2;1 ¼ ð1=2Þ~a2

2;0;2;
~a2;2;0 ¼ �ð1=2Þ~a2;0;2

A one-parameter perturbation of the system represented in Eq.
(1.4) is studied in Ref. [10]. Namely, the following system

_x ¼ �yþ a1;1;1xyþ a1;2;1x2y

_y ¼ xþ a2;2;0x2 þ a2;0;2y2 þ a2;3;0x3 þ a2;1;2xy2

)
(1.5)

which is system Eq. (1.4) perturbed by the underlined term. All
the values of the parameters in the above system, Eq. (1.5), have
an isochronous center at the origin that was found.

Note that the above system is still reducible to the Liénard type
equation for which the C-algorithm is applicable, see Ref. [5].

Section 2 is devoted to recall the headlines of the methodology
of the Normal Forms algorithm, called in the sequel NF algorithm,
which will allow us to obtain isochronicity necessary conditions.

The last section is concerned with the main result, which is an
application of the NF method. Indeed, we consider an unknown
one-directional monomial perturbation of degree two or three of
the system Eq. (1.4), namely,

_x ¼ �yþ a1;2;1x2yþW1ðx; yÞ
_y ¼ xþ a2;2;0x2 þ a2;0;2y2 þ a2;3;0x3 þ a2;1;2xy2 þW2ðx; yÞ

)
(1.6)

in which only one of the monomials W1 or W2 is non-zero mono-
mial (W1W2¼ 0) of degree d [ {2, 3}.

The problem turns to studying eight polynomial cubic systems
which are not reducible by the transformations described in
Ref. [5] to the Liénard type equation. For each system, we identify
the values of the parameters for which the singular point at the ori-
gin is an isochronous center. Hence it is done for Eq. (1.6).

2 The Normal Forms Method

The normal form theory, which is due essentially to Poincaré,
presents a basic tool in understanding the qualitative behavior of
orbit structures of a vector field near equilibria [11]. It was used
for the study of center conditions and the nature of bifurcation of
a given vector field. We also recall a pioneer work in this field
established by Pleshkan (see Ref. [12]), in which the author pre-
sented an investigation method of isochronicity in the case of a
linear center perturbed by homogeneous cubic nonlinearity. The
principle of Pleshkan’s algorithm is very close to the one pre-
sented in Algaba et.al’s paper [13], where the normal form theory
is used in the analysis of isochronicity and gave a recursive
method for the isochronicity investigation. In the last cited paper,
the authors studied a cubic Liénard equation and obtained a char-
acterization of the reversible Liénard equation having an isochro-
nous center at the origin.

Let x¼ (x1, x2) [R2 and f(x1, x2) [R[x1, x2]�R[x1, x2] and
consider the general planar system

_x ¼ Lxþ f ðxÞ ¼ Lxþ f2ðxÞ þ f3ðxÞ þ � � � þ fkðxÞ þ � � � (2.1)

where Lx represents the linear part, L the Jacobian matrix associ-
ated to system Eq. (2.1) and fk(x) denotes the kth order vector
homogeneous polynomials of x. We assume that the system
admits an equilibrium at the origin O. The essential idea of the
Normal Form theory is to find a near identity transformation

x ¼ yþ hðyÞ ¼ yþ h2ðyÞ þ h3ðyÞ þ � � � þ hkðyÞ þ � � � (2.2)

by which the resulting system

_y ¼ Lyþ gðxÞ ¼ Lyþ g2ðyÞ þ g3ðyÞ þ � � � þ gkðyÞ þ � � � (2.3)

becomes as simple as possible. In this sense, the terms that are not
essential in the local dynamical behavior are removed from the
analytical expression of the vector field. Let us denote by hk(y)
and gk(y) the kth order vectors homogeneous polynomials of y.
According to Takens normal form theory, we define an operator
as follows:

Lk : Hk ! Hk; Uk 2 Hk 7!LkðUkÞ ¼ Uk;u1

� �
2 Hk (2.4)

where u1¼ Ly is the linear part of the vector field and Hk denotes
a linear vector space containing the kth degree homogeneous vec-
tor polynomials of y¼ (y1, y2). The operator [.,.] is called the Lie
Bracket, defined by

Uk;u1

� �
¼ LUk � DðUkÞu1

where D denotes the frechet derivative.
Next, we define the spaces Rk and Kk as the range of Lk and the

complementary space of Rk respectively. Thus, Hk¼RkþKk and
one can then choose bases for Kk and Rk. The normal form theo-
rem determines how it is possible to reduce the analytic expres-
sion of the vector field (see Gukenheimer-Holmes [11]). The
authors explicitly provide an analysis for the quadratic and the
cubic cases. Consequently, a vector homogeneous polynomial
fk [Hk can be split into two parts, such that one of them can be
spanned in Kk and the remaining part in Rk.

Normal form theory shows that the part belonging to Rk can be
eliminated and the remaining part can be retained in the normal
form. By the Eqs. (2.1), (2.2), and (2.3), we can obtain algebraic
equations one order after another.

Theorem 2.1. According to the work of Yu et al., [14], the re-
cursive formula for computing the normal form coefficients and
the nonlinear transformation are given by:
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gk ¼ fk þ hk; Ly½ � þ
Xk�1

i¼2

ðDfihk�iþ1 � Dhk�iþ1giÞ

þ
Xk=2½ �

i¼2

1

i!

Xk�i

j¼i

Difj

X
l1þl2þ���þli¼k�ðj�iÞ2�l1;l2 ;…;li�kþ2�ðiþjÞ

hl1 hl2…hli

for k¼ 2, 3, …
see also Refs. [15,16].
System Eq. (2.3) can be transformed to the polar coordinate

system with y1¼ rcos(h), y2¼ rsin(h) so that

_r ¼
XN

j¼1

a2jþ1r2jþ1 þ Oðr2Nþ3Þ;

_h ¼ 1þ
XN

j¼1

b2jþ1r2j þ Oðr2Nþ2Þ (2.5)

Recall that a necessary condition to have a center at the origin is
that all the focal values a2j þ1 vanish. By the Hilbert’s basis theo-
rem, the set of focal values has a finite basis in the ring of polyno-
mials in the coefficients of the initial system Eq. (2.1). Since the
non-vanishing of one of the angular component coefficient implies
dependency of an associated period constant, a necessary condi-
tion for which this center is isochronous is that b2j þ1 vanish.

Recall that our study is motivated by the interest of describing a
synchronizer for a desired dynamic but also to underline the key
role that classification of centers and isochronous centers of poly-
nomial systems can have in applications such that synchronization
problems.

3 Main Results: Applications of the NF Algorithm to

Cubic Systems

In our study, we use Maple. To compute the Gröbner basis of
the obtained polynomial equations in the ring of characteristic 0,
we employ the Salsa Software [17]. More precisely, we use the
FGb algorithm which is the most efficient algorithm in computing
Gröbner basis [18], at least for the polynomial systems studied in
this paper. We note also that we have used DRL ordering in all
computations established in this paper.

Since our approach in the investigation of isochronicity condi-
tions is based on an algorithmic method, we can guess that every
simplification is beneficial in the goal of speeding the computa-
tions and reducing the necessary memory size. Solving multivari-
ate algebraic equations (real polynomials) can be a very hard task
if we try to manipulate the polynomial equations without tricks.
Interested readers can find in the website of Salsa Software [17],
more precisely the page of J. C. Faugère, some important rules in
solving polynomial systems and about Gröbner basis.

Let us consider the more general cubic perturbation of linear
center:

_x ¼ yþ a1;2;0x2 þ a1;0;2y2 þ a1;1;1xyþ a1;3;0x3

þa1;2;1x2yþ a1;1;2xy2 þ a1;0;3y3

_y ¼ �xþ a2;2;0x2 þ a2;0;2y2 þ a2;1;1xy
þa2;30x3 þ a2;2;1x2yþ a2;1;2xy2 þ a2;0;3y3

9>>=>>; (3.1)

or, equivalently, the following one:

_x ¼ �yþ ~a1;2;0x2 þ ~a1;0;2y2 þ ~a1;1;1xyþ ~a1;3;0x3

þ~a1;2;1x2yþ ~a1;1;2xy2 þ ~a1;0;3y3

_y ¼ xþ ~a2;2;0x2 þ ~a2;0;2y2 þ ~a2;1;1xy
þ~a2;30x3 þ ~a2;2;1x2yþ ~a2;1;2xy2 þ ~a2;0;3y3

9>>=>>;
Observe that we can easily reconstruct the coefficient ~ai,j,k

from the ones in Eq. (3.1) by the change of coordinates (x, y) 7!
(�x, y).

The classification of all the isochronous centers of the above
system is a very hard task. By any recursive method from those
quoted in Ref. [1], solving the isochronicity problem for system
Eq. (3.1) is very difficult in the sense of solving multivariate poly-
nomials. Here, the variables are the 14 parameters of the polyno-
mial differential system Eq. (3.1). Hence it needs very important
computation supports.

With a realistic point of view, several authors have chosen
some particular cases of the above system for investigation like
the homogeneous cubic perturbations of the linear center [1,12]
and time reversible cubic systems [19,20].

In our case, we focus on an unknown one-directional one-pa-
rameter perturbation of the system Eq. (1.4) which is system
Eq. (1.6). Therefore, we ramify our study to all possible cases.

In the sequel, every subsection will be concerned with a possi-
ble one-parameter perturbation of system Eq. (1.4)

Recall that ai,j,k denotes the parameter of the monomial pertur-
bation of the ith equation in system Eq. (1.4) of degree j in x and
of degree k in y.

3.1 Perturbation a1;1;1. As a continuation of the result of
Ref. [3] on system Eq. (1.4), Chouikha, Romanovski and Chen
[10] investigated a one-parameter perturbation of Eq. (1.4) which
is Eq. (1.5).

Theorem 3.1. According to Chouikha et al. [10], system
Eq. (1.5) has an isochronous center at the origin O if and only if

a1;2;1 ¼
�a1;1;1þa1;1;1a2;2;0�10a2

2;2;0þ5a1;1;1a2;0;2�10a2;0;2a2;0;2�4a2
2;0;2þ9a2;3;0þ3a2;1;2

3

and its parameters satisfy one of the following sets of conditions:

1. 2a2;2;0 þ a2;0;2 � a1;1;1 ¼ 0
a2

2;0;2 � 3a2;0;2a1;1;1 þ 2a2
1;1;1 �6a2;3;0 � 4a2;1;2

3
¼ 0

a2;0;2a2;3;0 � 3a2;3;0a1;1;1 þ a2;1;2a1;1;1

6
� a2;0;2a2;1;2

6
¼ 0

a2
2;3;0a2

1;1;1 � 3a2
2;3;0 þ

a2
1;1;1a2;3;0a2;1;2

6
þ a2

2;3;0a2;1;2

3
þ 5a2

2;1;2a2;3;0

36

� a3
2;1;2

5
¼ 0

a2;1;2a1;1;1a2;0;2 þ 6a2;3;0a2
1;1;1 � a2;1;2a2

1;1;1 � 18a2
2;3;0

�a2;3;0a2;1;2 þ
2a2

2;1;2

3
¼ 0

2. a2;1;2 ¼ 0 and
(a) a2;3;0 ¼ a2;0;2 � 1=4a1;1;1 ¼ a2;2;0 ¼ 0
(b) 4a2;3;0 � 3a1;1;1 ¼ a2;2;0 þ a1;1;1 ¼ a2

1;1;1 � 3a2;3;0 ¼ 0
(c) a2;0;2 � 2a1;1;1 ¼ a2;3;0 � a2

1;1;1 ¼ a2;2;0 þ 2a1;1;1 ¼ 0
(d) a2;0;2 � 1=3a1;1;1 ¼ a2;2;0 þ 2=3a1;1;1 ¼ 9=2a2;3;0

�a2
1;1;1 ¼ 0

3. a2;3;0 ¼ 0 and
(a) a2;2;0 þ 1=2a2;0;2 � 1=2a1;1;1 ¼ a2

2;0;2 � 3a2;0;2a1;1;1

þ 2a2
1;1;1 � a2;1;2 ¼ 0

(b) 2a2;0;2 � a1;1;1 ¼ 2a2;2;0 þa1;1;1 ¼ 0
(c) a2;0;2 � a1;1;1 ¼ a2;2;0 ¼ 0
(d) a2;0;2 ¼ a2

1;1;1 � 9a2;1;2 ¼ a2;2;0 ¼ 0

We contribute by classifying the isochronous centers of all the
remaining one-parameter perturbations of system Eq. (1.4). Eight
systems are studied to do this.

For these perturbations, first, we check if the center (at the ori-
gin O) conditions are satisfied and after we give necessary and
sufficient isochronicity conditions depending only on the six real
parameters.

3.2 Perturbation a1,0,3. We are concerned by the following
system

_x ¼ yþ a1;2;1x2yþ a1;0;3y3

_y ¼ �xþ a2;2;0x2 þ a2;0;2y2 þ a2;3;0x3 þ a2;1;2xy2

)
(3.2)

Lemma 3.2. The investigation of isochronicity criteria of system
Eq. (3.2) reduces to the investigation in the following three cases:

Journal of Computational and Nonlinear Dynamics APRIL 2012, Vol. 7 / 021009-3

Downloaded From: https://computationalnonlinear.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



1. a1;0;3 ¼ 0
2. a1;0;3 ¼ 1
3. a1;0;3 ¼ �1

Proof. For the case a1,0,3= 0, two cases are to be analyzed
First we assume that a1,0,3> 0. We use on Eq. (3.2) the change

of coordinates:

ðx; yÞ 7! a
1=2
1;0;3ðx; yÞ (3.3)

to obtain

_x ¼ yþ a1;2;1

a1;0;3
x2yþ y3

_y ¼ �xþ a2;2;0

a
1=2
1;0;3

x2 þ a2;0;2

a
1=2
1;0;3

y2 þ a2;3;0

a1;0;3
x2 þ a2;1;2

a1;0;3
xy2

9>>=>>; (3.4)

when the solutions of the isochronicity problem of system Eq.
(3.4) are established, we can easily reconstruct those of the origi-
nal system Eq. (3.2) by the transformation:

ðx; yÞ 7! ð1=a
1=2
1;0;3Þðx; yÞ (3.5)

If a1,0,3< 0, then Eq. (3.2) can be written as

_x ¼ yþ a1;2;1x2y� ~a1;0;3y3

_y ¼ �xþ a2;2;0x2 þ a2;0;2y2 þ a2;3;0x3 þ a2;1;2xy2

)

with �a1,0,3¼ ~a1,0,3> 0. Applying the following change of
coordinates

ðx; yÞ 7! ~a
1=2
1;0;3ðx; yÞ (3.6)

yields

_x ¼ yþ a1;2;1

~a1;0;3
x2y� y3

_y ¼ �xþ a2;2;0

~a
1=2
1;0;3

x2 þ a2;0;2

~a
1=2
1;0;3

y2 þ a2;3;0

~a1;0;3
x2 þ a2;1;2

~a1;0;3
xy2

9>>=>>; (3.7)

Furthermore, the reconstruction of the solutions of Eq. (3.2) can
be obtained from those of Eq. (3.7) by the change of coordinates

ðx; yÞ 7! ð1=~a
1=2
1;0;3Þðx; yÞ

h
Remark 3.3: if one is concerned with quadratic perturbations of
system Eq. (1.4) with the parameter ai,j,2�j,

we can consider the two cases namely,

1. ai,j,2�j¼ 0
2. ai,j,2�j¼ 1

Indeed, when ai,j,2�j= 0, the change of coordinates

ðx; yÞ 7! ai;j;2�jðx; yÞ

reduces the problem to the case ai,j,2�j¼ 1.
Lastly, thanks to the transformation,

ðx; yÞ 7! 1=ai;j;2�jðx; yÞ

we can easily reconstruct the solutions of the problem when
ai,j,2�j= 0.

Theorem 3.4. System Eq. (3.2) has an isochronous center at O
if and only if its parameters satisfy one of the following
conditions:

1. a1,0,3¼ 0
(a) a1,2,1¼ a2,1,2, a2,2,0¼ a2,0,2¼ a2,3,0¼ 0
(b) a1,2,1¼�3/2 a2,3,0, a2,1,2¼� 9/2 a2,3,0, a2,2,0¼ a2,0,2¼ 0

(c) a1,2,1¼ a2,2,0¼� 1/2, a2,0,2¼ 1, a2,1,2¼� 1, a2,3,0¼ 0
(d) a1,2,1¼� 1/7, a2,2,0¼� 1/2, a2,0,2¼ 1, a2,3,0¼� 1/14,

a2,1,2¼� 3/7
2. a1,0,3¼ 1

(a) a1,2,1¼� 9/2, a2,1,2¼� 3/2, a2,2,0¼ a2,0,2¼ a2,3,0¼ 0
(b) a2,3,0¼ 1, a1,2,1¼ a2,1,2¼� 3, a2,2,0¼ a2,0,2¼ 0
(c) a2,0,2¼� 3/2, a2,3,0¼ 0, a2,1,2¼ a1,2,1¼ a2,2,0¼ 0
(d) a2,0,2¼ 3/2, a2,3,0¼ 0, a2,1,2¼ a1,2,1¼ a2,2,0¼ 0

(e) a1,2,1¼� 1, a2,2,0¼ a2,0,2¼6
ffiffi
2
p

2
, a2,1,2¼� 2, a2,3,0¼ 0

3. a1,0,3¼� 1

(a) a2,3,0¼� 1, a1,2,1¼ a2,1,2¼ 3, a2,2,0¼ a2,0,2¼ 0
(b) a1,2,1¼ 9/2, a2,1,2¼ 3/2, a2,3,0¼ a2,2,0¼ a2,0,2¼ 0

In this proof, we do not present the algorithm generated polyno-
mials because they are too long.

Proof. we use the strategy given in lemma 3.2. We note also
that we investigate only the real values of the parameters for
which system Eq. (3.2) has an isochronous center at the origin.

1. Assume a1,0,3¼ 0 and then solve the isochronicity problem
for system Eq. (3.2) under this assumption. We use the fol-
lowing change of coordinates (x, y) 7! (� x, y) to obtain
system Eq. (1.4) studied in Ref. [3]. The investigation fol-
lowing the two cases:

(a) a2,0,2¼ 0
(b) a2,0,2¼ 1

which covers (with respect to a linear change of coordinates)
all the values of the parameters for which the center at the
origin of system Eq. (1.4), see Remark 3.3. In Ref. [3], the
author used the C- algorithm which characterizes isochronic-
ity by establishing an associated Urabe function.

2. Consider the case a1,0,3¼ 1. Computations of normal forms
of the initial system in polar form give Eq. (2.5):

_r ¼
XN

j¼1

a2jþ1r2jþ1 þ Oðr2Nþ3Þ;

_h ¼ 1þ
XN

j¼1

b2jþ1r2j þ Oðr2Nþ2Þ

We obtain in the radial component a2j þ1¼ 0 until order
N¼ 6. So that the first six nec essary conditions to have a
center are satisfied. Analyzing isochronicity involves the
angular component. Using FGb for computing the Gröbner
basis of the obtained first six quantities in the angular com-
ponent, we obtain a Gröbner basis of 27 polynomials
denoted G1 such that it is first element is

� a2;3;0a2;2;0 �a2
2;1;2 þ 9a2;3;0

� �
Then we analyze the isochronicity problem in the following
three cases, which are given by the vanishing of one factor
of the above expression.

(a) a2,3,0¼ 0, we substitute this condition into G1 and we
compute again the associated Gröbner basis; we obtain
a basis of 14 polynomials. When we solve it, we obtain
the following four real solutions to the problem:
(i) a1,0,3¼ 1, a2,1,2¼� 3/2, a1,2,1¼� 9/2, a2,3,0

¼ a2,2,0¼ a2,0,2¼ 0
(ii) a1,0,3¼ 1, a2,0,2¼ 3/2, a2,3,0¼ a1,2,1 ¼ a2,2,0

¼ a2,1,2¼ 0
(iii) a1,0,3¼ 1, a2,0,2¼� 3/2, a2,3,0¼ a1,2,1¼ a2,2,0

¼ a2,1,2¼ 0
(iv) a1,0,3¼ 1, a1,2,1¼� 1, a2,2,0¼ a2,0,2 ¼6

ffiffi
2
p

2
,

a2,1,2¼� 2

(b) For a2,2,0¼ 0, substituting this assumption in G1 and
computing it is associated Gröbner basis which contains
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seven polynomials, after solving it we obtain the
solutions:
(i) a1,0,3¼ 1, a2,0,2¼ 3/2, a2,2,0¼ a1,2,1¼ a2,3,0

¼ a2,1,2¼ 0
(ii) a1,0,3¼ 1, a2,0,2¼� 3/2, a2,2,0¼ a1,2,1¼ a2,3,0

¼ a2,1,2¼ 0
(iii) a1,0,3¼ 1, a2,1,2¼� 3/2, a1,2,1¼� 9/2, a2,2,0

¼ a2,3,0¼ a2,0,2¼ 0
(iv) a1,0,3¼ a2,3,0¼ 1, a2,1,2¼ a1,2,1¼� 3, a2,2,0

¼ a2,0,2¼ 0
(c) Similarly for a2,3,0¼ (1/9)a2

2,1,2, we obtain the solutions:
(i) a1,0,3¼ 1, a2,0,2¼� 3/2, a2,2,0¼ a1,2,1¼ a2,3,0

¼ a2,1,2¼ 0
(ii) a1,0,3¼ 1, a2,0,2¼ 3/2, a2,2,0¼ a1,2,1¼ a2,3,0

¼ a2,1,2¼ 0
(iii) a1,0,3¼ a2,3,0¼ 1, a2,1,2¼ a1,2,1¼� 3, a2,2,0

¼ a2,0,2¼ 0

It is easy to see that several solutions are repeated above. For
example, cases (2(a)ii : 2(b)i) and (2(a)iii : 2(b)ii). We claim
that there are only five solutions to the problem when a1,0,3¼ 1
which are given in the theorem.

Analysis of the Theorem Cases with a1,0,3 5 1.

• 2(a) In this case system Eq. (3.2) reduces to

_x ¼ y� 9=2yx2 þ y3

_y ¼ �x� 3=2xy2

)

which is a cubic homogeneous perturbation of a linear center
with an isochronous center at the origin. Indeed, we use the
change of coordinates ðx; yÞ 7!

�
yffiffi
2
p ; xffiffi

2
p
�

and we obtain systemeS*3 given in Refs. [1,12]. A first integral, a linearizing change
of coordinate, and a transversal commuting system are estab-
lished for homogeneous perturbations (see Refs. [1,21]).

• 2(b) System Eq. (3.2) reduces to

_x ¼ y� 3x2yþ y3

_y ¼ �xþ x3 � 3xy2

)
which is an homogeneous perturbation of linear center, by
the change of coordinates (x, y) 7! (y, x) reduces to system
S*1 of [1,12,21].

• For cases 2(c) and 2(d), system Eq. (3.2) reduces to

_x ¼ yþ y3

_y ¼ �x 6 3=2y2

)

We see that by the change of coordinate (x, y) 7! (y, x), we
have a Liénard systems x00 þ f(x)x0 þ g(x)¼ 0 satisfying

gðxÞ ¼ g0ð0Þxþ 1

x3

ðx

0

sf ðsÞds

	 
2

(3.8)

then the origin is an isochronous center. See Refs. [13,22,23,
24] for more details about characterization of isochronicity
for the Liénard equation.

• In 2(e), the case system Eq. (3.2) is a time- reversible system
with an isochronous center at O. Indeed, in polar coordinates
it reduces to

_r ¼ �1=2 sin hð Þr2
ffiffiffi
2
p
þ 1=2r3 sin 2hð Þ

_h ¼ 1þ �1=2 cos 2hð Þ þ 1=2ð Þr2 � 1=2r cos hð Þ
ffiffiffi
2
p
)

which belongs to the family (ii) (with R1¼ r1¼�
ffiffi
2
p

2
if

a2,2,0¼ a2,0,2¼
ffiffi
2
p

2
) and (R1¼ r1¼

ffiffi
2
p

2
if a2,2,0¼ a2,0,2¼�

ffiffi
2
p

2
)

of theorem 8.11 in the Garcia thesis, see also system C R4 of
Ref. [1].

3. a1,0,3¼� 1. When executing the normal form Maple code,
there is no change from the case a1,0,3¼ 1; the coefficients
of radial component of system Eq. (2.5) are such that
a2j þ1¼ 0 until order N¼ 6. The first six necessary condi-
tions to have a center are satisfied. Similarly to the case
a1,0,3¼ 1, for analyzing isochronicity, we are concerned by
the angular component. We compute the Gröbner basis,
denoted G�1, of the obtained first six quantities in the angu-
lar component. We obtain an ideal of 27 polynomials such
that its first element is

a2;2;0a2;3;0 a2
2;1;2 þ 9a2;3;0

� �
Then we analyze the isochronicity problem in the following
three cases, which are the vanishing of each of the factors of
the above expression.

(a) For a2,3,0¼ 0, we substitute this assumption in G�1. We
compute again the Gröbner basis associated to this case.
We obtain a basis of 14 polynomials. When we solve it,
we obtain the unique real solution to the problem:
(i) a1,0,3¼� 1, a1,2,1¼ 9/2, a2,1,2¼ 3/2, a2,3,0¼ a2,2,0

¼ a2,0,2¼ 0
(b) For a2,2,0¼ 0 we do the same as for the last case and

obtain the two real solutions:
(i) a1,0,3¼ a2,3,0¼� 1, a1,2,1¼ a2,1,2¼ 3, a2,2,0

¼ a2,0,2¼ 0
(ii) a1,0,3¼� 1, a1,2,1¼ 9/2, a2,1,2¼ 3/2, a2,3,0

¼ a2,2,0¼ a2,0,2¼ 0
(c) a2,3,0¼� (1/9)a2

2,1,2 in the same way as for the first and
second cases we obtain
(i) a1,0,3¼ a2,3,0¼� 1, a1,2,1¼ a2,1,2¼ 3, a2,2,0

¼ a2,0,2¼ 0

We conclude that in the case a1,0,3¼� 1, we have only two sol-
utions to the isochronicity problem.

Analysis of the Theorem Cases with a1,0,3 52 1. These two
solutions are cubic homogeneous perturbations of the linear cen-
ter, which can be found in Ref. [1].

• 3(a) In this case, system Eq. (3.2) can be written as

_x ¼ yþ 3x2y� y3

_y ¼ �x� x3 þ 3xy2

)
by the change of coordinates (x, y) 7! (� x,� y), it reduces
to system S*1 of Refs. [1,12,21], which have an isochronous
center at the origin.

• 3(b) System Eq. (3.2) can be written as

_x ¼ yþ 9=2yx2 � y3

_y ¼ �xþ 3=2xy2

)
we use the change of coordinates (x, y) 7! ( yffiffi

2
p ; xffiffi

2
p ) we obtain

system S*3 with isochronous center at the origin O given in
Refs. [1,12].

This concludes the proof. h

3.3 Perturbation a1,3,0. Consider the system

_x ¼ yþ a1;2;1x2yþ a1;3;0x3

_y ¼ �xþ a2;2;0x2 þ a2;0;2y2 þ a2;3;0x3 þ a2;1;2xy2

)
(3.9)
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Theorem 3.5. System Eq. (3.9) with a1,3,0= 0 has no center at
the origin. Moreover, system Eq. (3.9) has an isochronous center
at the origin O if and only if it reduces to system Eq. (1.4) and
its parameters satisfy one of isochronicity cases from those of
Theorem (1.1).

Proof. Analogously to lemma 3.2, we have to analyze
a1,3,0¼6 1.

Executing the Maple code, which gives the normal form of
Eq. (3.9); in its polar form Eq. (2.5):

_r ¼
XN

j¼1

a2jþ1r2jþ1 þ Oðr2Nþ3Þ;

_h ¼ 1þ
XN

j¼1

b2jþ1r2j þ Oðr2Nþ2Þ

we obtain in the radial component such that a3¼6 3
8
; in this case,

the singular point cannot be a center. h

3.4 Perturbation a2,0,3. This perturbation represents system
Eq. (1.4) perturbed by the additional monomial with the parameter
a2,0,3:

_x ¼ yþ a1;2;1x2y

_y ¼ �xþ a2;2;0x2 þ a2;0;2y2 þ a2;3;0x3 þ a2;1;2xy2 þ a2;0;3y3

)
(3.10)

Theorem 3.6. System Eq. (3.10) with a2,0,3= 0 has no center
at the origin. Moreover, system Eq. (3.10) has an isochronous
center at O if and only if it reduces to system Eq. (1.4) and its
parameters satisfy one case of isochronicity conditions given in
Theorem (1.1).

Proof. Analogously to lemma 3.2,
consider a2,0,3¼6 1.
Executing the Maple code, which gives the normal form of

Eq. (3.10); in its polar form Eq. (2.5):

_r ¼
XN

j¼1

a2jþ1r2jþ1 þ Oðr2Nþ3Þ; _h ¼ 1þ
XN

j¼1

b2jþ1r2j þ Oðr2Nþ2Þ

we obtain in the radial component such that a3¼6 3
8
; in this case,

the singular point cannot be a center. h

3.5 Perturbation a1,1,2. This case represents system Eq.
(1.4) perturbed by the monomial with the parameter a1,1,2:

_x ¼ yþ a1;2;1x2yþ a1;1;2xy2

_y ¼ �xþ a2;2;0x2 þ a2;0;2y2 þ a2;3;0x3 þ a2;1;2xy2

)
(3.11)

Theorem 3.7. System Eq. (3.11) with a1,1,2= 0 has no center
at the origin. Moreover, system Eq. (3.11) has an isochronous
center at O if and only if it reduces to one case of isochronicity
from those of system Eq. (1.4).

Proof. When a1,1,2= 0, we obtain in the radial component
a3¼6 1

8
; in this case, the singular point at the origin cannot be a

center. h

3.6 Perturbation a2,2,1. This case represents system Eq.
(1.4) perturbed by the monomial with the parameter a2,2,1:

_x ¼ yþ a1;2;1x2y

_y ¼ �xþ a2;2;0x2 þ a2;0;2y2 þ a2;3;0x3 þ a2;1;2xy2 þ a2;2;1x2y

)
(3.12)

Theorem 3.8. System Eq. (3.12) with a2,2,1= 0 has no center
at the origin. Moreover, system Eq. (3.12) has an isochronous
center at O if and only if it reduces to one case of isochronicity
from those of system Eq. (1.4).

Proof. By the same reason from the one of the last case, we sub-
stitute a2,2,1¼61 in the system, then we obtain in the radial com-
ponent a3¼6 1

8
; in this case, the singular point at the origin

cannot be a center. h

3.7 Perturbation a1,0,2. This perturbation represents system
Eq. (1.4) with an additional monomial a1,0,2y2 in the first
equation:

_x ¼ yþ a1;2;1x2yþ a1;0;2y2

_y ¼ �xþ a2;2;0x2 þ a2;0;2y2 þ a2;3;0x3 þ a2;1;2xy2

)
(3.13)

Theorem 3.9. System Eq. (3.13) with a1,0,2= 0 has no isochro-
nous center at the origin. Moreover, system Eq. (3.13) has an
isochronous center at O if and only if a1,0,2¼ 0 and it reduces
(modulo a linear change of coordinates) to system Eq. (1.4)
such as its parameters satisfy one of the four cases given in
Theorem 1.1.

Proof. Since we have a quadratic perturbation of system
Eq. (1.4), thanks to Remark 1 we study the cases a1,0,2 [ {0,1}. If
a1,0,2¼ 0, system Eq. (3.13) admits an isochronous center at the
origin if and only if it reduces to Eq. (1.4) and its parameters sat-
isfy one of the isochronicity conditions given by Theorem 1.1. We
assume a1,0,2¼ 1, and we first compute the radial component of
the normal form in polar coordinates. The first radial component
a3¼�a2,0,2/4, then we substitute the assumption a2,0,2¼ 0 in
the remaining five a2jþ1 and when we compute the associated
Gröbner base, we find a5¼ a2,2,0 (a2,1,2þ a1,2,1). We continue the
analysis in these two cases:

1. a2,2,0¼ 0
2. (a2,1,2þ a1,2,1)¼ 0

Unfortunately, we computed in each case the Gröbner base and
there are no common roots between the multivariate polynomials
b2j þ1 of the angular component. h

3.8 Perturbation a1,2,0. Consider the system:

_x ¼ yþ a1;2;1x2yþ a1;2;0x2

_y ¼ �xþ a2;2;0x2 þ a2;0;2y2 þ a2;3;0x3 þ a2;1;2xy2

)
(3.14)

Theorem 3.10. System Eq. (3.14) with a1,2,0= 0 has an iso-
chronous center at O if and only if, modulo a linear change of
coordinates, its parameters satisfy

a2;3;0 ¼ �4=9; a2;1;2 ¼ 0; a1;2;1 ¼ 0; a2;2;0 ¼ 0;

a2;0;2 ¼ 0; a1;2;0 ¼ 1

Proof. Consider the case a1,2,0¼ 1. We compute first, under this
assumption, the radial component of the normal form of system
Eq. (3.14). We obtain a3¼ a2,2,0/4. Then the first necessary condi-
tion to have a center at the origin is the vanishing of a2,2,0. We
substitute this additional assumption in the remaining coefficients
of the radial component (a5…a13). A common factor appears
which is a2,0,2.

Hence we obtain two cases to analyze center conditions
a2,0,2¼ 0 and a2,0,2= 0.

For the case a2,0,2= 0, we divide all the expressions of the
coefficients of the radial component by a2,0,2. We compute the
associated Gröbner basis which is generated by eight polynomials

021009-6 / Vol. 7, APRIL 2012 Transactions of the ASME

Downloaded From: https://computationalnonlinear.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



and gives three cases for each one and the first six necessary con-
ditions for the center are satisfied. Note the following:

fa2;1;2 ¼ 0; a1;2;1 ¼ 0; a2;2;0 ¼ 0; a2;0;2 ¼ 0;

a1;2;0 ¼ 1; a2;3;0 ¼ �3=4g

fa2;2;0 ¼ 0; a1;2;0 ¼ 1; a2;3;0 ¼ 0; a2;0;2 ¼ �1; a2;1;2 ¼ �a1;2;1g

a2;2;0 ¼ 0; a1;2;0 ¼ 1; a2;3;0 ¼ 0; a2;1;2 ¼ �a1;2;1; a2;0;2 ¼ 1
� �

the first solution is rejected because we have assumed that
a2,0,2= 0.

For the second and the third solution of the center condition
investigation, we substitute each of those into the angular compo-
nent coefficients expressions. We compute the Gröbner bases of
the obtained multivariate polynomial systems. Unfortunately, in
the two cases it gives Gröbner basis : 1 which means that there
are not common roots.

We return to the remaining case a1,2,0¼ 1, a2,2,0¼ a2,0,2¼ 0
which ensures the first six necessary conditions of the singular
point at the origin to be a center. Substituting this assumption in
the angular component coefficients and computing its associated
Gröbner basis which is generated by three polynomials. This gives
the unique solution to the problem of isochronicity

a2;3;0 ¼ �4=9; a1;2;0 ¼ 1; a2;1;2 ¼ a1;2;1 ¼ a2;2;0 ¼ a2;0;2 ¼ 0

Then system Eq. (3.14) reduces to

_x ¼ yþ x2

_y ¼ �x� 4=9x3



Which is a Liénard isochronous system with f (x)¼� 2x,
g(x)¼ xþ 4/9 x3 satisfying

gðxÞ ¼ g0ð0Þxþ 1

x3

ðx

0

sf ðsÞds

	 
2

h
3.9 Perturbation a2,1,1.

_x ¼ yþ a1;2;1x2y

_y ¼ �xþ a2;2;0x2 þ a2;0;2y2 þ a2;1;1xyþ a2;3;0x3 þ a2;1;2xy2

)
(3.15)

Theorem 3.11. System Eq. (3.15) with a2,1,1= 0 has an iso-
chronous center at O if and only if its parameters satisfy one of
the following two cases:

1. a2,1,1¼ 1, a2,3,0¼� 1/9, a2,1,2¼ a1,2,1¼ a2,2,0¼ a2,0,2¼ 0
2. a2,1,1¼ 1, a2,1,2¼� 2/9, a1,2,1¼ 1/9, a2,2,0¼ a2,0,2¼ a2,3,0¼ 0

Proof. Consider that a2,1,1¼ 1;
We compute first, under this assumption, the radial component

of the normal form of sys tem Eq. (3.15). We obtain
a3¼ (a2,0,2þ a2,2,0)/8, then the first necessary condition to have a
center at the origin is the vanishing of a3.

We substitute this additional assumption a2,0,2¼� a2,2,0 in the
following coefficient of the radial component a5¼� 1/48 a2,0,2

(a1,2,1� a2,1,2þ a2,3,0), then it appears as two cases to analyze:
{a2,0,2¼ a2,2,0¼ 0} and {a2,0,2¼� a2,2,0, a1,2,1� a2,1,2þ a2,3,0¼ 0}.

1. a2,0,2¼ a2,2,0¼ 0; we substitute this additional assumption in
the remaining coefficients of the radial component a7, … ,a13

which gives a3¼ a5…a¼ a13¼ 0. Hence, the first six center
necessary conditions are satisfied.
Substituting the assumptions into the angular component
coefficients expressions, com puting associated Gröbner ba-
sis gives the two real solutions. The first one is:

fa2;1;1 ¼ 1; a2;3;0 ¼ �1=9;

a2;1;2 ¼ a2;2;0 ¼ a2;0;2 ¼ a1;2;1 ¼ 0g

under which system Eq. (3.15) reduces to

_x ¼ y
_y ¼ �xþ xy� 1=9x3




in addition, we have an isochronous Liénard systems with

f ðxÞ ¼ �x and gðxÞ ¼ xþ 1=9x3

which satisfies

gðxÞ ¼ g0ð0Þxþ 1

x3

ðx

0

sf ðsÞds

	 
2

The second one is:

fa2;2;0 ¼ 0; a2;0;2 ¼ 0; a2;1;1 ¼ 1; a2;3;0 ¼ 0;

a2;1;2 ¼ �2=9; a1;2;1 ¼ 1=9g

under which system Eq. (3.15) reduces to

_x ¼ yþ 1=9x2y
_y ¼ �xþ xy� 2=9xy2




By the change of coordinates (x, y) 7! (y, x) we obtain

_x ¼ �yþ xy� 2=9x2y
_y ¼ �xþ 1=9xy2



which belongs to the Liénard Type equation, Eq. (1.2), with
f(x)¼� 3 (2x� 3)�1 and g(x)¼ 1/9x (2x� 3) (x� 3). The
isochronicity of this last system is proved since it belongs to
the case 9 of Theorem 3 of Chouikha et al. in Ref. [10].

2. a2,0,2¼� a2,2,0 and a1,2,1� a2,1,2þ a2,3,0¼ 0

Unfortunately, in this case, after computing Gröbner basis, no
real solutions are found. h

Theorem 3.12. System Eq. (1.4) has an amplitude independent
frequency synchronizer at O if and only if its parameters satisfy
one of the cases of Theorem 3 through Theorem 11.

To summarize, for the eight monomial perturbations studied in
this paper, we have identified all possible amplitude independent
frequency synchronizers. Moreover, we claim that all isochronous
cases are known in a fragmented literature; however, our study
insures that for the studied family there are no other (necessary
conditions). Each of them was found in a classification of a spe-
cific family of planar differential systems which are different from
the context of the ones studied in this paper (synchronization). For
isochronous centers of Liénard systems, the reader can see for
instance Refs. [1,23]. Refs. [3,10] are concerned with the planar
differential Liénard Type equations. For cubic time reversible sys-
tems see Refs. [1,19,20] and for cubic homogeneous perturbations
of linear center see Refs. [1,20,21].
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advanced course in this topic organized by the ECI-HYCON2
Graduate School on Control held in January 2011 at L2S. Last but
not least, I thank the anonymous referees for their suggestions.
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