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The survivability of the future Internet is largely dependent on whether it will be able to successfully
address both security and performance issues facing the Internet. On one hand, the Internet becomes
more and more vulnerable due to fast spreading malicious attacks. On the other hand, it is under great
stress to meet ever growing/changing application demands while having to sustain multi-gigabit for-
warding performance. In this paper, we propose a Ternary Content Addressable Memory (TCAM) copro-
cessor based solution for high speed, integrated TCP flow anomaly detection and policy filtering. The
attacking packets with spoofed source IP addresses are detected through two-dimensional (2D) match-
ing. The key features of the solution are: (1) setting flag bits in TCAM action code to support various
packet treatments; (2) managing TCP flow state in pair to do 2D matching. We evaluate the solution’s
ability to detect TCP-based flooding attacks based on real-world-trace simulations. The results show that
the proposed solution can match up OC-192 line rate. The possible modifications of the solution for the
detection of low rate TCP-targeted attacks are also discussed.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The fast spreading malicious attacks make the Internet more
and more vulnerable, while the ever growing application demands
require more and more types of Internet services. The future Inter-
net has to address both security and performance issues to survive.

Distributed Denial of Service (DDoS) attacks [11] are the major
threats to the Internet. In DDoS attacks, attackers send a large
amount of attacking packets using spoofed source IP addresses to
a victim server which eventually runs out of its resources and de-
grades the performance of legitimate packets. One effective way to
defend against DDoS attacks is IP traceback
[3,6,9,16,17,20,21,23,24]. Using IP traceback, the attackers can be
identified and punished through tracing their physical locations.
However, effectively identifying attackers is difficult due to the
stateless property of Internet routers/switchs. Hence it is impor-
tant and challenging to do IP traceback.

The fast growing application demands need the network to pro-
vide various types of services. To support differential services, dif-
ferent packets may need to be treated differently based on, e.g.,
quality-of-service requirements or other policies. To this end,
packet classification [2,15,18,25] based on a set of policy filtering
rules must be performed in a router interface to identify the
needed treatment of individual packets. Traditional policy filters
[2,15,18,25] treat each packet individually, and does not attempt
ll rights reserved.
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to associate the packet with other packets belonging to the same
flow. Flow classification is a stateful packet classification, generally
known as packet classification, which tracks the flow state by iden-
tifying every packet in every flow. Packet/flow classification has
long been identified as the most critical data path function, creat-
ing potential bottlenecks for high speed packet forwarding.

To remove these potential bottlenecks, various algorithmic and
hardware approaches have been developed, attempting to meet
the targeted performance for efficiently PF. However, implement-
ing different solutions to execute multiple tasks is very costly
and sometimes even infeasible due to various resource constraints.
Hence, it is both technologically and economically important to de-
velop integrated solutions for PF and Content Filtering (CF), match-
ing multi-gigabit line rate or even higher.

The traditional approach to enable security functions is gener-
ally separated from the approach that implements typical packet
forwarding functions. For example, hash-based IP traceback [23]
is generally implemented using dedicated chips for computing
hash functions. Packet classification is typically performed as part
of the packet forwarding functions in a router interface card, e.g.,
using a network processor and its associated Ternary Content
Addressable Memory (TCAM) coprocessor [5,27]. A TCAM copro-
cessor contains self-addressable rules which map to different
memory addresses in an associated memory (normally an SRAM)
containing the corresponding actions. A rule matching in a TCAM
is performed for all the rules in parallel. Each parallel matching
is done at a time. Due to its high speed performance, the TCAM
coprocessor is widely used as packet classifier in industry. How-
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ever, the separated solutions add the complexity and integration
costs to the next-generation Internet design. Hence, it is of both
technological and economical importance to develop integrated
solutions to enable security functions and high speed forwarding,
matching multiple gigabit line rate.

In this paper, we propose a TCAM coprocessor based solution for
high speed, integrated TCP traffic anomaly detection and policy fil-
tering. The TCP-based DDoS attacks using spoofed source IP ad-
dresses are detected in the edge router through two-dimensional
(2D) matching [8]. 2D matching means a normal TCP flow gener-
ated from one end host to another should have a corresponding
flow from the other direction. The key features of the solution
are: (1) setting flag bits in TCAM action code to support various
packet treatments in the network processor and the local CPU; (2)
managing TCP flow state in pair to do 2D matching. In the solution,
when a TCP flow has not been matched after a period of time Talm,
the flow is considered to have high probability to be an attacking
flow. Hence an alarm message composed of the flow identities is
sent to the destination server, which in turn can use the information
to do IP traceback. Based on the real Internet traffic analysis, the
proposed solution requires about 5 Mbits TCAM memory to support
OC-192 line rate for the integrated tasks. Such TCAM is available in
today’s market. We also discuss how to handle TCAM table overflow
and analyze the solution’s performance in case of table overflow.
The simulations based on the real world traffic traces are conducted
to evaluate the performance on the detection of TCP-based flooding
attacks. The results show that the proposed solution can handle OC-
192 line rate. The modifications on the proposed solution for the
detection of low rate TCP-targeted attacks are also discussed.

The proposed solution focuses on the detection of TCP-based at-
tacks.1 The non-TCP-based attacks can be defended by other existing
solutions such as Probabilistic Packet Marking [9,16,21,24] and
Internet Control Protocol Message (ICMP)-based [3] IP traceback
solutions. The real traffic measurement shows that the TCP traffic
constitutes 80% of the total traffic (see Section 4), and the TCP-based
attacks account for more than 80% of over all attacks [11]. Hence
monitoring non-TCP packets for defense against DDoS attacks is
much less challenging than monitoring TCP packets.

The rest of the paper is organized as follows: Section 2 describes
the TCP traffic anomaly detection through 2D matching. The details
of the integrated solution is presented in Section 3. The perfor-
mance of the proposed solution is evaluated by simulations in Sec-
tion 4. Section 5 discusses how to modify the solution to detect low
rate TCP attacks. Section 6 briefly describes the related work. Final-
ly, Section 7 concludes the paper and discusses some future work.
2. TCP traffic anomaly detection through 2D matching

In this section, we first give the needed definitions and then dis-
cuss how to detect anomalous TCP flows through two-dimensional
(2D) matching.

A flow is a set of packets which have the same identity. The iden-
tity is extracted from the packet header. In this paper, the following
five tuples: source IP address (SIP), destination IP address (DIP),
source port number (SPN), destination port number (DPN), and pro-
tocol (PRO) are used as the flow identity. In other words, a flow is un-
iquely determined by the five tuples <SIP, DIP, SPN, DPN, PRO>.

TCP is a two-way communication protocol. A normal TCP flow
generated from one end host (e.g., A) to another (e.g., B) should
have a corresponding flow from the other direction (i.e., from B
to A). Fig. 1 shows a general Internet architecture. Assume host A
1 In fact, any attack with two-dimensional matching feature can be measured
through the proposed solution. For example, ICMP echo reply attacks. For simplicity,
we focus on the TCP-based attacks here.
in Autonomous System 1 (AS1 ) sends a SYN packet to host B lo-
cated in AS2 to initiate a TCP session. After receiving the SYN pack-
et, host B sends a SYN + ACK packet back to host A to establish the
session. In this case, the edge router 1 can detect both flows com-
ing from AS1 (called outbound flow) and into AS1 (called inbound
flow). For an outbound flow with flow identity <SIP, DIP, SPN,
DPN, PRO>, the corresponding inbound flow identity is <DIP, SIP,
DPN, SPN, PRO>. The feature of an outbound flow having a corre-
sponding inbound flow is called two-dimensional (2D) matching
[8]. An outbound (inbound) flow is called an unmatched flow if
no corresponding inbound (outbound) flow arrives within a period
of time Talm. An inbound (outbound) flow is called the
matching flow of its outbound (inbound) flow.

2D matching can be effectively applied to detect TCP-based at-
tacks using spoofed IP addresses. For attacking packets using
spoofed source IP addresses, the responding packets are routed to
the spoofed IP addresses which may be different from the original
AS. Thus the edge router at the attackers’ AS may only detect the out-
bound flow, and hence an unmatched flow is detected. Based on
these observations, one can do 2D matching at the edge routers for
TCP traffic anomaly detection. When an unmatched flow is detected,
the router sends an alarm message (e.g., ICMP message) including
the flow identity to the destination for possible IP traceback.

The most popular TCP-based DDoS attacks are TCP SYN and RE-
SET flooding attacks. In these attacks, the SYN or RESET flag bit is
set. To detect these attacks, we only need to maintain all the flows
start with SYN and RESET packets. However, there are other types
of TCP-based attacks [11] which have ACK bit set or no flag bit set.
Hence, any TCP packet can be an attack packet. In our solution, if a
packet does not belong to any existing flow, the packet is consid-
ered to be a new flow and will be monitored in the flow table to
allow 2D matching.

Except the attacking packets, unmatched flows may be caused
by: (1) the destination server is down; (2) the destination server
has changed its IP address, but a cache entry of the old server IP ad-
dress is still in the domain name server (DNS). In these cases, the
destination is unreachable and the flows sent to the destination
server can be viewed abnormally.

In the following sections, we will present the details on how to
integrate 2D matching and policy filtering using TCAM
coprocessors.
3. Integrated TCP traffic anomaly detection and packet
classification

This section first gives a brief review of policy filtering using a
network processor and its TCAM coprocessor, and then presents
the details of the proposed solution.



...

TCAM Co−processor

...

Rule n−1

Rule n

Rule 2
Rule 1

MAC Framer

Frame

Rule Update

Line Card

Action n

Action 1

Action 2

Action n−1

Network

Processor

Switch Fabric/other interface

Local CPU

Flow tableRule table

Fig. 2. TCAM coprocessor architecture.

flag

(b) Format of flow table in local CPU

(a) Format of action code

1−bit 1−bit 8−bit

forward action flow index free

32−bit2−bit

flag Timer

1−bit 1−bit

FIN ACK Tlocation

22−bit

22−bit 2−bit

Fig. 3. Data structures.

Z. Wang et al. / Computer Communications 32 (2009) 1893–1901 1895
3.1. Architecture of network processor using TCAM coprocessor

Packet classification (e.g., policy filtering, IP forwarding table
lookup) is one of the most critical data path functions in high speed
packet forwarding. TCAM coprocessors are widely used as packet
classifiers in today’s industry. Fig. 2 shows a system architecture
of a network processor using a TCAM coprocessor [27] for packet
classification. A TCAM coprocessor stores self-addressable rules
which map to different memory addresses in an associated mem-
ory (normally an SRAM) containing the corresponding actions.

In particular, a typical rule for policy filtering is composed of
104-bit five tuples: <SIP, DIP, SPN, DPN, PRO>, same as the flow
identity. The rules are usually arranged in an ordered list, with
lower memory locations having higher matching priorities. When
a packet arrives at the network processor, a search key composed
of the same set of five tuples, extracted from the packet header
is passed to the TCAM coprocessor for lookup. The action code in
the associated memory corresponding to the matched rule with
the highest match priority is returned to the network processor.
There is an identical copy of the rule table in the local CPU in
charge of rule management. The rule update in TCAM is done
through the interface between the TCAM coprocessor and the local
CPU. In the proposed solution, when a new flow is detected, its
identity serves as a new rule to be added to the rule table, meaning
that the rule table for flow classification is combined with the pol-
icy filtering table for packet classification. In addition, a flow table
in the local CPU is introduced to store active TCP flow states for 2D
matching.

A general rule usually has some wildcarded bits in some tuples,
whereas the identity of a specific flow has no wildcarded bits in
any tuple. For example, a policy filtering rule may be: <x.x.x.x,
x.x.x.x, 128–256, 80, 6>. Here ‘x’ represents a wildcarded byte. A
flow identity may be <1.2.3.4, 5.6.7.8, 1028, 80, 6>. A flow identity
has higher matching priority than a policy filtering rule. So a flow
identify must be located at a lower TCAM memory address than a
policy filtering rule.

3.2. Data structure for integrated solution

The policy filtering rules and the flow identities share the same
format. Hence, the integrated approach does not require any mod-
ification to the rule table format in TCAM. To support IP traceback,
however, the action codes need to be extended to allow flow detec-
tion. Before giving the details of the solution, we first present the
data structures of the action code and flow table entry.

Fig. 3(a) shows the format of the action code. The action code is
set to 32 bits in length such that the code can be returned in one
clock cycle through a 32-bit interface bus. The action code includes
one flag bit which indicates if a rule is a policy filtering rule (value
0) or a flow identity (value 1). One forward bit is used to indicate if
the action code needs to be passed (value 1) to the local CPU or not
(value 0). The following 8 bits indicate the forwarding action asso-
ciated with the policy filtering, such as the best effort forwarding,
dropping the packet and so on. Eight bits can express 256 different
actions which are enough to include all possible forwarding actions
in today’s Internet. The last 22 bits are the flow index which spec-
ifies the location of a flow state in the flow table located in the local
CPU. Twenty-two bits can represents 4 million different entries.
For a policy filtering rule, all index bits are set to 0. The last two bits
are free bits, and always set to zero. In the following, we use
a-b-x-y-00 to represent an action code. Here a and b represent
the binary values of the first two bits, respectively. x the decimal
value of the action, and z the decimal value of the flow index. For
example, (0-0-5-0-00) represents the action code of a policy filter-
ing rule with action 5; and (1-1-6-234-00) is the action code of a
flow identity with action 6, it locates at entry 234 in the flow table,
and the forward bit set means the action code needs to be passed
to the local CPU.

Fig. 3(b) gives the data structure of an entry in the flow table.
The first 2 bits are flags. The bits 00 indicate an empty entry; 01
an unmatched existing flow; 10 an expected flow; and 11 a
matched existing flow. FIN and ACK bits are used to terminate a
pair of completed flows. Tlocation is the flow location in the TCAM
rule table. Timer is used to trigger an event. There are three timers:
Talm; Tidl and Trmv. Talm detects an unmatched flow, an alarm mes-
sage is triggered if a flow has not been matched after Talm time.
Tidl is used to check if a matched flow is still active. If a pair of flows
are not terminated after Tidl time, the forward bits corresponding
to them are set to check if they are still active. Trmv is used to re-
move incompletely terminated flows. The values of the three
thresholds are related to the response time of TCP open, close
and reset. They should be longer than the response time of most
TCP open, close and reset. The longer threshold values result in
fewer false alarms but cost more resources to maintain the un-
matched, idle and completed flows. Similarly, ab-c-d-x-y is used
to express a flow entry. a; b; c and d are the binary values of the
first four bits, x and y are decimal values of Tlocation and timer,
respectively.

To do 2D matching, the flow entries in the flow table are man-
aged in pair. When a new flow arrives, the index is always set to an
even number, and the expected matching flow has the index equal
to the even number plus one. An index list is used to manage the
available indices. The number of entries in the flow table is set to
be the number of total TCAM entries allocated for flow identities.
Initially, all even indices are on the list. When a new flow is de-
tected, an index on the list is removed and assigned to the new
flow. When a pair of flows are finished and removed from the flow
table, the corresponding even index is returned to the list.

The rule table in the local CPU is in charge of the TCAM rule ta-
ble management. It stores the same rules (including both policy
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filtering rules and flow identities) as those in the TCAM rule table.
The management of the two rule tables are the same, hence in the
following of the paper, the rule table refers to the rule tables in
both local CPU and TCAM.

3.3. Description of the integrated solution

In the proposed solution, the local CPU processes packet flows
at per flow level while the TCAM coprocessor processes packet
flows at per packet level. When a packet arrives at the network
processor, the search key composed of five tuples extracted from
the packet header is passed to the TCAM coprocessor. The action
code ða-b-x-y-00Þ corresponding to the matched rule with highest
matching priority is returned back to the network processor. The
network processor forwards the packet based on the action code
value. For a non-TCP packet, no extra processing is introduced.
For a TCP packet, the action code a-b-x-y-fk is passed to the local
CPU for the following three cases: (1) the packet belongs to a
new flow (i.e., a = 0); (2) the packet belongs to an existing flow
but the forward bit is set (i.e., a ¼ 1 and b ¼ 1); (3) the packet with
FIN bit set (i.e., a ¼ 1; b ¼ 0 and FIN bit = 1). The two free bits f and
k are set to be the bit values of FIN and ACK bits in the packet,
respectively. In the case of the arrival packet belonging to a new
flow, the flow identity is also passed to the local CPU for process.

The local CPU is in charge of adding new flows, testing flow
activity, removing completed and inactive flows, and triggering un-
matched alarms. Now we describe how the local CPU handles dif-
ferent packets and timer timeouts.

3.3.1. Packet in new flow
When a packet belonging to a new flow arrives, if no free entry

is available in the rule table, the action code and the flow identity
are simply dropped. Otherwise, the new flow ðFÞ and its expected
matching flow ðEÞ are added to both the flow and rule tables. In the
flow table, suppose the index of F is IN, then the index of E is IN þ 1.
The first two flag bits are 01 at entry IN implying that F is an exist-
ing unmatched flow and 10 at entry IN þ 1 indicating that E is an
expected matching flow. The flag bits in the action codes of both
flows are set to 1, and the forward bit corresponding to E is set
to 1. Hence the action code of the upcoming packet in E will be
passed to the local CPU to do 2D matching. The forward bit of F
is 0, implying that the upcoming packets in F do not need to be pro-
cessed in the local CPU. The timer Talm is set for F in the flow table.

3.3.2. Packet in expected flow
If a packet belonging to an expected flow E arrives, the two flag

bits in the flow entries for both E and its matching flow F are set to
11 indicating that the two flows are matched. The forward bit in
the action code corresponding to E is reset to 0. Then the upcoming
packets in the pair of flows will not be processed in the local CPU.
Hence a timer Tidl is set for both flows E and F. If no FIN bit is de-
tected within Tidl time, the forward bits for both flows will be set
to test if they are still active.

3.3.3. Packet in matched flow
The forward bits for a pair of matched flows are set after Tidl ex-

pires. This means that the action codes of the upcoming packets in
the pair of flows will be passed to the local CPU. If such a packet
arrives, it implies that the pair of flows are still active. Hence the
timer Tidl is set again for the next check. Then the forward bits in
the action codes for the pair of flows are reset to 0.

3.3.4. Packet with FIN and/or ACK bit set
If a packet of F with FIN bit set arrives, the FIN bit for its entry in

the flow table is set. The forward bits in the action code for the pair
of flows are also set, meaning that the action codes of the upcoming
packets in the pair of flows will be processed in the local CPU. If a FI-
N + ACK packet of F comes, the FIN bit is set for entry F. If its match-
ing flow E has FIN bit set, the packet is an acknowledgement packet
of the FIN packet in E, and hence the ACK bit in the entry of E is set. If
an ACK packet of E comes after both FIN bits set, this acknowledges
FIN packet in F, hence the ACK bit in the flow entry of F is set. If the
FIN and ACK bits are set for both flows, this implies that the two
flows have been completed and hence to be removed from the flow
and rule tables. In order to remove incompletely terminated (with-
out FIN and/or ACK packets) flows, when the FIN bit is set for an en-
try, timer Trmv is also set for the pair of flows. If no more packet
arrives within Trmv time, the flow pair is forced to be removed.
3.3.5. Timer timeout
If the timer Talm times out, it implies that an unmatched flow is

detected, an alarm message including the flow identity is gener-
ated and sent to the destination server for possible IP traceback.
If the timer Tidl is triggered, it indicates that no FIN packet in the
pair of flows arrives in the past Tidl time. However, that does not
ensure that the flow pairs are still active, because some flows
may be terminated incompletely. Hence it needs to check if they
are still active, so the forward bits in their action codes are set,
and the timer Trmv is also set. If no packet for the pair of flows ar-
rives within Trmv time, the flows are considered to be inactive and
removed from the tables. In this case, if some packets in the re-
moved flows come later, they will be treated as new flows.
3.4. Illustration of packet processing

Now we use one example to illustrate the TCP packet process-
ing. Assume a SYN packet ðpk1Þ of flow f1 which has identity
<1.2.3.4, 5.6.7.8, 80, 1028, 6> arrives. The search key composed of
the flow identity is matched against all the rules in the TCAM rule
table. Assume that the search key matches the rule x.x.x.x-5.x.x.x-
80-1028-6 with the highest matching priority as shown in Fig. 4(a).
The action code 0-0-3-0-00 is returned. The flag 0 indicates the
packet belonging to a new flow and hence the network processor
passes the action code and flow identity to the local CPU. Two indi-
ces are assigned for f1 and its expected matching flow e1 which has
identity <5.6.7.8, 1.2.3.4, 1028, 80, 6>. Two flows are added to both
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the flow (at 102 and 103) and rule (at 1 and 2) tables. The timer
Talm is set for f1 for triggering alarm. The entries in the flow table
at 102 and 103 are 01-0-0-1-Talm and 10-0-0-2-0, respectively,
as shown in Fig. 5(b). In the rule table, entry 1 has rule f1 with ac-
tion code 1-0-102-3-00 and entry 2 has flow e1 with 1-1-103-3-00
shown in Fig. 4(b).

Now assume the SYN + ACK packet ðpk2Þ of e1 arrives. The
search key matches the rule 5.6.7.8-1.2.3.4-1028-80-6, the action
code 1-1-103-3-00 is returned. The forward bit 1 indicates the ac-
tion needs to be passed to the local CPU. The local CPU checks the
action code, and updates the flag bits at both entries 102 and 103
to 11 which indicates that flows f1 and e1 are matched flows. The
timer Tidl is set for both flows. The forward bit for e1 is reset to 0.
The TCAM entry of e1 is updated (see [27] for consistent rule table
update) to a new location as shown in Fig. 4(c), and the flow table
is update as shown in Fig. 5(c).

Now, let us assume no packet with FIN bit set in f1 and e1 arrives
before Tidl expires. Then when Tidl expires, the forward bits of f1 and
e1 are set to test if the flows are still active. Now the updated rule
table is shown in Fig. 4(d), and the updated flow table is presented
in Fig. 5(d) with entries 11-0-0-0-Trmv and 11-0-0-2-Trmv at indices
102 and 103.

Now assume a packet ðpk3Þ in flow f1 with ACK bit set arrives,
the action code 1-1-102-3-00 is returned and the action code 1-
1-102-3-01 is passed to the local CPU. This packet indicates that
the pair of flows are still active, and they will be tested again after
Tidl time. Hence timer Tidl is set again, and the forward bits are reset
to 0 for both flows. Now the flow table is given in Fig. 5(c), and the
rule table is shown in Fig. 4(b).

Suppose a packet ðpk4Þwith FIN bit set in f1 arrives, the returned
action code is 1-0-102-3-00. Due to the FIN bit set, the action code 1-
0-102-3-10 is passed to the local CPU. The local CPU sets the FIN bit in
the flow table and the forward bit in the action code for flow f1. Now a
packet ðpk5Þwith FIN + ACK bits set in e1 comes, the action code 1-0-
103-3-11 is passed to the local CPU, the FIN bit of e1 is set. While the
ACK bit in f1 is set due to its FIN bit set. The flow table is updated as
shown in Fig. 5(e), and the rule table is updated as shown in Fig. 4(d).

Finally, assume an ACK packet in f1 comes, the action code 1-1-
102-3-01 is passed to the local CPU. The ACK bit of e1 is set (as in
Fig. 5(f)) and hence both flows are removed from both flow and
rule tables.

3.5. Computation load on local CPU

The local CPU processes packet at per flow level. For each flow,
the first, FIN and final ACK packets are processed. In addition, 1
packet needs to be processed every Tidl time. The real traffic mea-
surement at OC-192 (see Section 4) shows that the average new
TCP flows are about 5 K per second, and the concurrent active flows
are usually less than 50 K. That means a flow lasting less than 10 s
on average. If Tidl is set to 5 s, then each flow has about 5 packets or
0.2 packets per second to be processed. The local CPU needs to pro-
cess about 20 K packets per second which is not difficult to be han-
dled by a 100 MHz CPU.

3.6. TCAM rule update

The TCAM rule table update is through the interface between
the local CPU and the TCAM coprocessor. A consistent rule update
algorithm [27] which can update the rule table without interrup-
tion of TCAM lookup process is used. A flow identity has higher
matching priority than that of policy filtering rules and hence it
is added to a TCAM memory location lower than the policy rules.
All the flow identities can be stored independently, because a pack-
et cannot match more than one flow identity simultaneously. We
keep all the empty entries above the general rules so that for each
flow identity addition or deletion, no movement is needed for
other rules. Adding one rule takes 5 (a rule plus the action code
have 104 + 32 bits, (104 + 32)/32 < 5) clock cycles by assuming a
32-bit interface bus. Deleting a rule only takes 1 clock cycle by re-
set the valid bit of the entry [27]. To update a flow identity, a flow
identity is first written and validated in a new location and then
the flow identity in the old location is deleted. It takes one rule
write and one rule deletion. To process 20 K packets, maximum
40 K TCAM writes/updates (assume the action code changes before
and after the packet being processed) are needed. 40 K TCAM
writes and deletion only take about 240 K clock cycles, this is a
very small portion of the processing time for a 100 MHz CPU.

3.7. TCAM table overflow

There are two critical issues using TCAM for packet/flow classi-
fication. One is the TCAM lookup speed, and the other is the mem-
ory space. The proposed solution does not introduce any extra
TCAM lookups. Hence we only focus on the discussion of TCAM
memory space. TCAM coprocessors have limited memory storage.
The maximum TCAM memory in today’s market is 18 Mbits [4]. A
TCAM is usually shared by multiple tables such as longest prefix
matching and policy filtering tables. Hence the TCAM memory stor-
age capacity is a critical issue for the proposed solution. A critical
concern is that if the TCAM table cannot store all the concurrent ac-
tive flows, does the solution still work well? In the following, we
discuss the performance impacts in case of table overflow.

When the local CPU detects a new flow, it checks if there are a
pair of free entries in the TCAM rule table. The flow state is moni-
tored only if a pair of free entries are available. That means an
attacking packet may not be monitored immediately in case of table
overflow, and hence it may not detect attacks with single attacking
packet. But it can still detect the attacks with a large amount attack-
ing packets. In case of table overflow, each coming packet in an un-
monitored flow has some probability to be monitored, hence it
takes some time to monitor a packet from an attack. The following
theorem gives the average time an attack to be monitored.

Theorem 1. Assume a TCAM rule table has N entries. There are
nc > N number of concurrent active normal TCP flows, each flow has
nf packets per second, and the TCAM accepts ns number of new flows
per second. Then an attacker sending na attacking packets per second

can be monitored in ðnc�NÞnf�ns

nans
time on average.

Proof. The total number of arriving packets per second is ncnf ,
among these packets, Nnf packets belong to the flows monitored
in the TCAM rule table. The number of packets belonging to the
flows which are not monitored is ðnc � NÞnf , so each packet has
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Fig. 6. False alarm probability.

Table 1
Statistics of real traffic trace.

Trace 1 Trace 2

Total number of packet 12,746,894 14,494,880
Number of TCP packets 9,217,812 11,138,762
Average number of new TCP flows per second 4381 5181
Average number of concurrent active flows 19,423 24,476
Maximum number of concurrent active flows 21,030 26,718
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probability p ¼ ns
ðnc�NÞnf

to be monitored. For the attack, each attack-
ing packet has p probability to be monitored, the packet inter arri-
val time is 1=na. So the average time an attack to be monitored is
tp ¼

P1
k¼1 ð1� pÞk�1p� k�1

na

h i
¼ 1�p

pna
¼ ðnc�NÞnf�ns

nans
. h

Theorem 1 shows that the detection time of an attack is inver-
sely proportional to the attacking rate (i.e., the number of attacking
packets per second). The time to be monitored of an attack with 1
packet per second is 10 times of an attack with 10 packets per sec-
ond on average. This is verified in the simulations (see next
section).

In case of table overflow, every packet in a flow can be the first
packet to be monitored. For a pair of TCP flows, if the last packet of
these two flows is monitored, the flow will never be matched be-
cause both flows are completed. In this case, a normal TCP flow
is considered to be an attacking packet, and a false alarm will be
generated. The following theorem gives the false alarm probability
of a pair of flows with total n number of packets.

Theorem 2. Assume there are a total of n packets in a pair of flows,
each packet has probability p to be monitored, then the false alarm
probability is pfalse ¼ ð1� pÞn�1p.
Proof. The false alarm happens if the first n� 1 packets are not
monitored and the last one is monitored. So the probability of a
false alarm is pfalse ¼ ð1� pÞn�1p. h

The maximum false alarm probability occurs at p ¼ 1=n for a
pair of flows with a total of n packets. Fig. 6 shows the falsely
alarmed probability for the pair of flows with 10, 20, and 100 pack-
ets. The false alarm probability for the pair of flows with 100 pack-
ets is almost zero in all the probability range. For the pair of flows
with 10 packets, the maximum false alarm probability is about
0.04 at p ¼ 1=10, the maximum probability is dropped to 0.02
when the number of packets in the pair of flows reaches 20. The
probability of a packet in a new flow to be monitored depends
on the number of rule entries in the TCAM. If the TCAM can mon-
itor all the concurrent active flows, p ¼ 1, and hence no false alarm
occurs.

4. Performance evaluation

This section evaluates the performance of the proposed solution
in the case of table overflow. If the TCAM rule table can monitor all
the concurrent active TCP flows, the system can detect attacks even
with single attacking packet, while the normal TCP flows are not
falsely alarmed. In the case of TCAM rule table overflow, it takes
some time to monitor an attack; a normal flow may be falsely
alarmed; and some packets belonging to un-monitored flows are
dropped by the local CPU. These are quantitatively studied by sim-
ulations. In the simulations, four performance metrics: the average
time ðtA

mÞ an attack to be monitored, the number ðnfalseÞ of false
alarm flows per second, the number of TCAM writes per second,
and the number of un-monitored packets per second are measured.
tA

m is the average time difference between the arrival time of the
first attacking packet in an attack and the arrival time of the attack-
ing packet in that attack being monitored. The time an attack to be
monitored is zero if the first attacking packet in an attack is
monitored.

The simulations are conducted based on the real router traces
downloaded from Abilene-IV Trace Data [10]. These traces are cap-
tured from OC-192 backbone Abilene router to and from Kansas
city. Each trace includes 90-s traffic on both inbound and outbound
links. We have tested more than 10 traces, and selected one trace
with average statistics (Trace 1) and one with maximum number
of packets (Trace 2). Table 1 shows the basic statistics of the two
traces. In both traces, the TCP packets account for more than 80%
of the total packets. We also note that the number of new TCP
flows per second is about 5 K, and the number of maximum con-
current active flows is less than 30 K which map to less than
4 Mbits TCAM memory (assume each rule takes 128 bits in the
TCAM rule table). We suggest to use 4 Mbits TCAM rule table to
store flow identities to avoid table overflow. Usually there are
thousands of policy filtering rules which takes less than 1 Mbits
TCAM memory. Hence a TCAM rule table with 5 Mbits memory is
enough to do the integrated tasks in OC-192 line rate in today’s
Internet.

We evaluate the performance of the proposed solution in case
of TCAM table overflow by set a small TCAM rule table. In the sim-
ulations, the number of entries in the TCAM rule table varies from
5 K (640 Kbits) to 25 K (3.2 Mbits). The attacking packets are gen-
erated starting at the 15th second. Three attacking rates (R): 20,
100 and 500 packets per second are simulated. From our trace data,
more than 99% TCP SYN and FIN packets can be acknowledged
within 1 s. Hence the three threshold can be set to longer than
1 s. In the simulations, a pair of matched flows are tested every
5 s ðTidl ¼ 5Þ to check if they are still active. A pair of flows are re-
moved from all the three tables if they are completely finished or
inactive for a time period longer than 5 s since it was tested, i.e.,
Trmv ¼ 5. An unmatched flow is considered to be an attacking flow
if it exits for a time period longer than 10 s, i.e., Talm ¼ 10.

Figs. 7 and 8 show the average time an attack to be monitored
ðtA

mÞ varying with the TCAM rule table size. tA
m in Trace 1 (2) is with-

in 11 (20) seconds in the entire range of rule table sizes. For rule
table with 5 K entries, tA

m in Trace 1 (2) is about 11 (19.5), 2.2 (4),
and 0.4 (0.8) seconds for R ¼ 20; 100; 500, respectively. tA

m in
Trace 2 is greater than that in Trace 1, because Trace 2 has more
new flows per second and more concurrent active flows. From
the results, we note that tA

m is inversely proportional to the attack-
ing rate, verifying Theorem 1. So for R ¼ 1; tA

m is about 20 times of
that for R ¼ 20, i.e., about 220 (400) seconds. tA

m reduces fast as the
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Fig. 7. Average time an attack to be monitored in Trace 1.
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Fig. 8. Average time an attack to be monitored in Trace 2.

Table 2
Number of TCP packets belonging to un-monitored flows per second.

TCAM size 5 K 10 K 15 K 20 K 25 K

Trace 1 19,294 13,655 9155 1565 0
Trace 2 23,160 15,613 11,279 7189 1726
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Fig. 10. Number of falsely alarmed flows per second.

Z. Wang et al. / Computer Communications 32 (2009) 1893–1901 1899
number of rule entries increases. This is because the TCAM rule ta-
ble can accept more rules and hence each packet has higher prob-
ability to be monitored. These results show that the proposed
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Fig. 9. Number of TCAM writes per second.
solution can quickly detect the attacks even if the attacking rate
is low and the TCAM rule table is small.

Fig. 9 shows the number of TCAM writes including adding new
flows and update flow entries per second in both traces. The num-
ber of writes per second increases from about 1.5 K to about 10 K
as the number of TCAM rule entries increases from 5 K to 25 K. This
is due to the fact that more flows are added to the rule table when
the TCAM table size increases. When the number of TCAM entries
increases from 20 K to 25 K, the number of writes per second in
Trace 1 increases slowly. This is because almost all TCP flows are
monitored in the rule table at 20 K, and hence only a few more
TCP flows can be added by further increasing the TCAM table size.

The network processor passes the action code of all packets
belonging to un-monitored flows to the local CPU. Some of these
packets are simply dropped due to lack of free rule entries. Table
2 shows the number of the dropped packets per second at various
rule table sizes. The average number of TCP packets per second in
Trace 1 (2) is 102,420 (123,764), the number of packets per second
in un-monitored flows are only about 19 K (23 K) even using a very
small TCAM rule table. It reduces quickly as the table size
increases.

The number of false alarm flows per second ðnfalseÞ is given in
Fig. 10. nfalse increases as the rule table size increases when the ta-
ble size is small. It then decreases as the table size increases when
the table size is over a certain value. The maximum nfalse in Trace 1
(2) is about 100 (150) at the rule table size 15 K (20 K). When the
number of rule entries is 5 K, nfalse is about 10. As shown in Theo-
rem 2, nfalse depends on the probability ðpÞ of a packet to be mon-
itored. p increases as the rule table size increases, and results in the
first increasing and then decreasing behavior.

From these results, we suggest to use either a large (4 Mbits or
above) or small (640 Kbits) TCAM rule table to accommodate flow
identities. For a large one, no table overflow exists, and hence no
falsely alarmed flows. For a small one, the number of falsely
alarmed flows is small and also the number of TCAM writes is
small, but the attack detection time is long. For a middle sized
TCAM, when the number of alarms is high, a small monitoring
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probability can be set for each new flow even if there are some free
entries. In other words, a new flow may not be monitored even if
the free entries are available in the rule table. This can reduce
the number of falsely alarmed flows.

Through these results, we conclude that the proposed inte-
grated solution can effectively perform the two tasks even using
a small TCAM. The proposed solution can be implemented in rou-
ter/switch which use TCAM coprocessors in its router interface
cards.
5. Detection of low rate TCP-targeted DoS attacks

In this section, we discuss how to modify the proposed solution
to detect low rate TCP-targeted DoS attacks. Low rate TCP-targeted
DoS attack [12] exploits the fixed minimum TCP retransmission
Time Out (RTO) and periodically sends a short burst of data to a
targeted router/server to force all the affected TCP flows to enter
the retransmission timeout state. Due to the low traffic rate, this
type of attacks is more difficult to be detected than the flooding
based DoS attacks. Randomizing TCP RTO [28] is an effective way
to defend such type of attacks. But it may reduce the TCP perfor-
mance when no attack exists.

Some detection methods through monitoring the traffic flow
patterns have been proposed [19,22,26] to against low rate TCP-
targeted attacks. The key issue in these methods is how to effec-
tively monitor the per flow state to determine if a flow shows
the periodic burst pattern. Our proposed solution can be easily
modified to detect such type of attacks. To detect low rate TCP at-
tacks, when a new flow arrives, all the upcoming packets are mon-
itored (with forward bit set), and the packet inter arrival time is
recorded. The traffic patterns can be identified through analyzing
the packet inter arrival time. Whenever a flow is identified as a reg-
ular flow, the flow is monitored at the flow level, i.e., the flow is
periodically tested. In the case of no table overflow, all TCP flows
are monitored in the flow table, and hence the packet arrival pat-
terns can be easily captured for low rate TCP-targeted attack detec-
tion. Moreover, due to the ability of measuring 2D flows, more
sophistical detection schemes [19] can be implemented such as
monitoring the traffic volumes in both directions. In the case of ta-
ble overflow, our proposed solution is still valid but the attacking
flow may be detected with some delay. As discussed in the previ-
ous section, if the attack has tens of attacking packets per second,
the detection time is only tens of seconds even if a TCAM rule table
is small.
6. Related work

The DDoS attacks are the major threat to today’s Internet. One
effective way to defend against such attacks is to identify and pun-
ish the attackers through tracing their physical locations. IP trace-
back schemes have been extensively studied in the past decade.
These schemes includes statistical filtering, hop-by-hop tracing,
ICMP messaging based, hash-based and probabilistic packet mark-
ing. Statistical filtering [6,17] drops most likely attacking packets
based on the statistics of packet header information such as IP ad-
dress, port number, protocol type, etc. Hop-by-hop tracing scheme
[13] uses a pattern-based scheme to track in progress attacks. ICMP
messaging based scheme [3] sends additional ICMP packet to the
destination for path reconstruction. Hash-based solution [23] com-
putes and stores a Bloom filter digest of every packet for IP trace-
back. Probabilistic packet marking solution [9,16,21,24] marks
each packet with partial path information probabilistically. The
attacking path is reconstructed using the marking information ex-
tracted from a large number of packets.
There are other schemes for DDoS attacks and/or traffic anom-
aly detection. Lakhina et al. [14] proposed a general method to
diagnose traffic anomaly by measuring traffic volume. Fan et al.
[8] designed a bloom filter array for traffic anomaly detection
through 2D matching. In [1], a DDoS defense system based on
the packet score has been developed. The bad packets with score
less than the threshold are discarded.

TCAM has been widely used for longest prefix matching and
policy filtering table matching [15,25] in industry. Except the lon-
gest prefix matching and policy filtering, another promising appli-
cation of TCAM coprocessors is high-speed signature matching for
intrusion detection [7]. A distributed TCAM coprocessor architec-
ture [29] for longest prefix matching that matches OC-768 line rate
was proposed. However, there is no application of TCAM coproces-
sor to enable integrated security and packet classification tasks.
7. Conclusions

In this paper, we propose an integrated solution for TCP-based
traffic anomaly detection and policy filtering based on TCAM
coprocessors. The DDoS attacks using spoofed source IP address
are detected through two-dimensional (2D) matching. The key fea-
tures of the proposed solution are: (1) setting flag bits in TCAM ac-
tion code to support various packet treatments; (2) managing TCP
flow state in pair to do 2D matching. The performance of the pro-
posed solution has been analyzed and tested by simulation based
on the real world traffic traces. The results show that the proposed
solution can handle OC-192 line rate. The possible modifications of
the proposed solution to defend low rate TCP-targeted attacks are
also discussed. Using the inbound and outbound IP prefix matching
will be studied for UDP-based traffic anomaly detection.
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