An obstruction to K-fold splitting

Jonathan L. King*

University of Florida, Gainesville 32611-2082, squash@math.ufl.edu

ABSTRACT. For a transformation T , if the sum of the K-th root of its partial mixing with the K-th root of its partial rigidity exceeds 1, then the transformation can have no factor isomorphic to a K -fold cartesian product.

The inspiration for this note is Nat Friedman's result, [1], that a transformation cannot be a cartesian product if its partial rigidity and partial mixing sum exactly to one, even along a subsequence.

Say that transformation $T: X \to X$ K-fold splits if T is a K-fold cartesian product $S_1 \times \cdots \times S_K$ where none of the S_k live on a 1-point space. [Our context is that of bi-measure preserving maps of a Lebesgue probability space.] We now define the notions of partial rigidity and mixing. Given a sequence of integers $\vec{s} = \{s[k]\}_{k=1}^{\infty}$ going to infinity, define four quantities

$$
\mathbf{m}(T;\vec{s}) \coloneqq \inf_{A,B} \frac{1}{\mu(A)\mu(B)} \liminf_{k \to \infty} \mu(A \cap T^{-s[k]}B) \qquad \mathbf{r}(T;\vec{s}) \coloneqq \inf_{A} \frac{1}{\mu(A)} \liminf_{k \to \infty} \mu(A \cap T^{-s[k]}A)
$$

$$
\mathbf{M}(T;\vec{s}) \coloneqq \inf_{A,B} \frac{1}{\mu(A)\mu(B)} \limsup_{k \to \infty} \mu(A \cap T^{-s[k]}B) \qquad \mathbf{R}(T;\vec{s}) \coloneqq \inf_{A} \frac{1}{\mu(A)} \limsup_{k \to \infty} \mu(A \cap T^{-s[k]}A)
$$

where the above infimums are taken over all sets $A, B \subset X$ of positive measure. When T is understood, we suppress T and write $m(\vec{s})$ for $m(T; \vec{s})$. Say that sequence \vec{n} is an (eventual) subsequence of \vec{s} , written $\vec{n} \prec \vec{s}$, if after discarding finitely many terms from \vec{n} the resulting sequence is an actual subset of \vec{s} .

The quantity $m(T; \vec{s})$ is called the **partial mixing** of T along \vec{s} and is also written as $m[X; \vec{s})$. For T, the *partial rigidity* along \vec{s} is

$$
\mathrm{rig}(T;\vec{s}) \coloneqq \sup_{\vec{n}:\vec{n}\prec\vec{s}} \mathbf{r}(T;\vec{n}).
$$

In both the above, when $\vec{s} = \mathbb{N}$ we write $\text{mix}(T)$ and $\text{rig}(T)$, respectively.

^{*}Partially supported by National Science Foundation Postdoctoral Research Fellowship. Affiliation when the article was submitted: Dept. of Mathematics, UC Berkeley

Note. If \mathcal{D} is any subcollection which is dense (symmetric-difference metric) in the collection of measurable sets, then none of the four quantities above would change were the infimums computed over all $A, B \in \mathcal{D}$ rather than over all measurable A and B.

We will use "stable subsequence \vec{n} " in the following shorthand: "There exists a stable sub*sequence* $\vec{n} \prec \vec{s}$ *such that* Property (\vec{n}, \vec{s}) " shall mean for any further subsequence $\vec{m} \prec \vec{n}$ that Property (\vec{m}, \vec{s}) holds.

PROPOSITION. Given any transformation T and sequence \vec{s} .

- (a) $0 \leqslant m(\vec{s}) \leq M(\vec{s}) \leq 1$ *and* $0 \leqslant r(\vec{s}) \leq R(\vec{s}) \leq 1$ *.*
- (b) If $\vec{n} \prec \vec{s}$ then:
- $m(\vec{n}) \ge m(\vec{s}); \hspace{1cm} \mathbf{r}(\vec{n}) \ge \mathbf{r}(\vec{s});$ $\mathbf{M}(\vec{n}) \leq \mathbf{M}(\vec{s}); \hspace{1cm} \mathbf{R}(\vec{n}) \leq \mathbf{R}(\vec{s}).$
- (c) If X is not a 1-point space: $1 \geq \mathbf{M}(\vec{s}) + \mathbf{r}(\vec{s}), \qquad 1 \geq \mathbf{m}(\vec{s}) + \mathbf{R}(\vec{s}).$
- (d) There exists a stable subsequence $\vec{n} \prec \vec{s}$, such that $\mathbf{M}(\vec{n}) = \mathbf{m}(\vec{n})$ and $\mathbf{R}(\vec{n}) = \mathbf{r}(\vec{n})$.
- (e) There exists a stable subsequence $\vec{n} \prec \vec{s}$ for which $\mathbf{r}(T; \vec{n}) = \text{rig}(T; \vec{s})$.
- (f) *Suppose* T is a cartesian product $S_1 \times \ldots \times S_K$. Then $\mathbf{r}(T; \vec{s}) \geq \mathbf{r}(S_1; \vec{s}) \cdot \ldots \cdot \mathbf{r}(S_K; \vec{s})$ and $\mathbf{R}(T;\vec{s}) \leq \mathbf{R}(S_1;\vec{s}) \cdot \ldots \cdot \mathbf{R}(S_K;\vec{s})$. Moreover, there exists a stable subsequence $\vec{n} \prec \vec{s}$ for *which*

$$
\mathbf{r}(S_1 \times \ldots \times S_K; \vec{n}) = \mathbf{r}(S_1; \vec{n}) \cdot \ldots \cdot \mathbf{r}(S_K; \vec{n})
$$

with the parallel assertion for R*. The analogous (in)equalities hold when* r *and* R *are replaced by* m *and* M*.*

Proof of (c). The argument for the second inequality is similar to that of the first and so we argue the first: In light of $\mu(A \cap T^{-k}A^c) = \mu(A) - \mu(A \cap T^{-k}A)$, we have that for any non-trivial A

$$
\mathbf{M}(\vec{s}) \le \frac{1}{\mu(A)\mu(A^c)} \limsup_{k \to \infty} \mu(A \cap T^{-s[k]}A^c)
$$

=
$$
\frac{1}{\mu(A)\mu(A^c)} \left[\mu(A) - \liminf_{k \to \infty} \mu(A \cap T^{-s[k]}A) \right]
$$

$$
\le \frac{1}{\mu(A^c)} [1 - \mathbf{r}(\vec{s})].
$$

If the space has sets of arbitrarily small positive measure, then send $\mu(A) \to 0$ and conclude that $\mathbf{M}(\vec{s}) \leq 1 - \mathbf{r}(\vec{s})$. Or, if $\mathbf{r}(\vec{s})$ equals zero, we are still done since always $\mathbf{M}(\vec{s}) \leq 1$.

On the other hand, if we cannot send $\mu(A)$ to zero then the space is purely atomic and, since $r(\vec{s}) > 0$, there is a non-trivial atom $x \in X$ such that $T^{-s[k]}x = x$ for all large k. Setting $A := \{x\}$ and $B \coloneqq X \setminus \{x\}$ shows $\mathbf{M}(\vec{s})$ to be zero.

Proof of (d). We prove that $\mathbf{M}(\vec{n}) = \mathbf{m}(\vec{n})$. Given an ε , pick sets A, B so that

$$
\liminf_{k \to \infty} \mu(A \cap T^{-s[k]}B) < \left[\mathbf{m}(\vec{s}) + \varepsilon \right] \mu(A) \mu(B).
$$

Let \vec{v} be a subsequence of \vec{s} such that $\lim_k \mu(A \cap T^{-v[k]}B)$ exists and equals the above liminf. Thus

$$
\mathbf{M}(\vec{v}) \le \mathbf{m}(\vec{s}) + \varepsilon \le \mathbf{m}(\vec{v}) + \varepsilon.
$$
\nContemporary Mathematics: Measure and Measure

\nClassurable Dynamics, AMS (1989), vol. 94, 171–175.

Now pick some $\varepsilon_j \searrow 0$. Use (1) to inductively pick subsequences $\vec{s} \supset \vec{v_1} \supset \vec{v_2} \supset \cdots$ such that $\mathbf{M}(\vec{v}_j) \leq \mathbf{m}(\vec{v}_j) + \varepsilon_j$. Define \vec{n} by $n[k] := v_k[k]$. Since \vec{n} is an eventual subsequence of each \vec{v}_j

$$
\mathbf{m}(\vec{n}) \leq \mathbf{M}(\vec{n}) \leq \mathbf{M}(\vec{v_j}) \leq \mathbf{m}(\vec{v_j}) + \varepsilon_j \leq \mathbf{m}(\vec{n}) + \varepsilon_j.
$$

Sending $j \to \infty$ achieves the first equality of (d). Evidently this equality is stable since M and m move in opposite directions under subsequencing.

A similar argument shows the existence of a subsequence $\vec{m} \prec \vec{s}$ for which the second equality, $\mathbf{R}(\vec{m}) = \mathbf{r}(\vec{m})$, holds. Picking an $\vec{n} \prec \vec{m}$ so that $\mathbf{M}(\vec{n}) = \mathbf{m}(\vec{n})$ gives us both equalities simultaneously.

Proof of (e). Let $\mathcal{D} = \{A_j\}_{j=1}^{\infty}$ be a dense collection of sets. Pick $\varepsilon_j \searrow 0$ and subsequence $\vec{v_j} \subset \vec{s}$ such that

$$
\mathbf{r}(\vec{v_j}) > \text{rig}(\vec{s}) - \varepsilon_j.
$$

Fix J. Let $m = v_J[k]$ for a k sufficiently large that

$$
\forall j < J: \quad \frac{1}{\mu(A_j)} \mu\big(A_j \cap T^{-m} A_j\big) > \operatorname{rig}(\vec{s}) - \varepsilon_J.
$$

Define \vec{n} inductively by setting $n[J] := m$; at stage J we can choose m sufficiently large that $n[J] > n[J-1].$

Proof of (f). The first inequality follows from the fact that the liminf of a product (of non-negative numbers) dominates the product of liminfs; the second is analogous.

By dropping to subsequences we can apply (d) iteratively K times to find an $\vec{n} \prec \vec{s}$ for which

$$
\mathbf{r}(S_1 \times \cdots \times S_K; \vec{n}) \leq \mathbf{R}(S_1 \times \cdots \times S_K; \vec{n}) \leq \mathbf{R}(S_1; \vec{n}) \cdot \cdots \cdot \mathbf{R}(S_K; \vec{n})
$$

= $\mathbf{r}(S_1; \vec{n}) \cdot \cdots \cdot \mathbf{r}(S_K; \vec{n}).$ (2)

This latter is dominated by $\mathbf{r}(S_1 \times \cdots \times S_K; \vec{n})$; hence the above inequalities are equalities. Equality will survive dropping to a subsequence of \vec{n} since all of the (in)equalities of (2) persist.

Calculus gives the following consequence of convexity.

CONVEXITY. *Fix an* $r \in [0, 1]$ *and let* E *denote the set of* K-tuples of real numbers $x_k \in [0, 1]$ *such that the product* $x_1 \cdot x_2 \cdot \ldots \cdot x_K$ *equals* r. Then the function $f: E \to \mathbb{R}$ *defined by* $f(x_1, \ldots, x_K) :=$ $\prod_{1}^{K} (1-x_k)$ *takes on a maximum at* $x_1 = x_2 = \cdots = x_K = \sqrt[K]{r}$ *. Hence*

$$
[(1-x_1)\cdot\ldots\cdot(1-x_K)]^{1/K} \leq 1-r^{1/K}
$$

for any tuple $(x_1, \ldots, x_K) \in E$ *.*

Splitting Theorem. *If* T *has a factor which* K*-fold splits then*

$$
[\text{rig}(T)]^{1/K} + [\text{mix}(T)]^{1/K} \leq 1.
$$

The inequality persists if the rigidity and mixing are computed along any sequence \vec{s} .

Remark. Given any number $\rho \in [0, 1]$ there is, [2], a weak-mixing map S with rig(S) = ρ and $\text{rig}(S) + \text{mix}(S) = 1$. Let T be the K-fold cartesian power of S. By computing the effect of T on K-dimensional cubes one sees that $\text{rig}(T) = [\text{rig}(S)]^K$ and $\text{mix}(T) = [\text{mix}(S)]^K$. This shows that the 1 in the righthand side of the theorem cannot be reduced.

Contemporary Mathematics: Measure and Measurable Dynamics, AMS (1989), vol. 94, 171–175.

4 JLF King

PROOF. Since partial mixing and rigidity can only increase under passage to factors we may assume T itself splits as $S_1 \times \cdots \times S_K$. Fix a sequence \vec{s} . By (e) followed by applying (b) then (d) to **, we may replace** \vec{s} **by a subsequence and rewrite the desired conclusion as**

$$
[\mathbf{r}(\vec{s})]^{1/K} + [\mathbf{M}(\vec{s})]^{1/K} \le 1.
$$

Properties (e) and (d) are stable and so for any further subsequence $\vec{n} \prec \vec{s}$ we have $\mathbf{r}(T; \vec{n}) = \mathbf{r}(T; \vec{s})$ and $\mathbf{M}(T;\vec{n}) = \mathbf{M}(T;\vec{s})$. Hence applying (f) to r and then to M yields

$$
\mathbf{r}(T; \vec{n}) = x_1 \cdot x_2 \cdot \ldots \cdot x_K
$$

$$
\mathbf{M}(T; \vec{n}) \le (1 - x_1)(1 - x_2) \cdot \ldots \cdot (1 - x_K)
$$

where $x_k = \mathbf{r}(S_k; \vec{n})$ and, by (c), $\mathbf{M}(S_k; \vec{n}) \leq 1 - \mathbf{r}(S_k; \vec{n})$. Thus

$$
\left[\mathbf{M}(T;\vec{s})\right]^{1/K} \le 1 - \left[\mathbf{r}(T;\vec{s})\right]^{1/K}
$$

by the convexity fact above.

For any non-zero *n* it is an elementary fact, [3; Prop. 1.13], that $[\text{rig}(T)]^2 \leq \text{rig}(T^n) \leq \text{rig}(T)$ and $\text{mix}(T^n) = \text{mix}(T)$.

APPLICATION. Given T, pick $K \in \mathbb{N}$ smallest such that

$$
[\text{rig}(T)]^{2/K} + [\text{mix}(T)]^{1/K} > 1.
$$

Then no (non-zero) power of T *can* K*-fold split. So if*

$$
\mathrm{rig}(T)+\sqrt{\mathrm{mix}(T)}\,>\,1
$$

then no power of T *splits.*

REFERENCES

- 1. N.A. Friedman, Partial mixing, partial rigidity and factors, In preparation..
- 2. N.A. Friedman and D.S. Ornstein, On mixing and partial mixing, Illinois Journal of Mathematics 16 (1972), 61–68.
- 3. J.L. King, Joining-rank and the structure of finite rank mixing transformations, J. d'Analyse Math. 51 (1988), 182–227.

Filename: Article/09Split/split.ams.tex As of: Fri Oct 20, 1995 Typeset: 14August2009