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Abstract

We consider a generalized form of planning, possibly involv-
ing loops, that arises in nondeterministic domains when ex-
plicit strong fairness constraints are asserted over the plan-
ning domain. Such constraints allow us to specify the ne-
cessity of occurrence of selected effects of nondeterministic
actions over domain’s runs. Also they are particularly mean-
ingful from the technical point of view because they exhibit
the expressiveness advantage of LTL over CTL in verifica-
tion. We show that planning for reachability and maintenance
goals is EXPTIME-complete in this setting, that is, it has the
same complexity as conditional planning in nondeterministic
domains (without strong fairness constraints). We also show
that within the EXPTIME bound one can solve the more gen-
eral problems of realizing agent planning programs as well as
composition-based planning in the presence of strong fairness
constraints.

Introduction
In this paper we consider a generalized form of planning,
possibly involving loops, that arises in nondeterministicdo-
mains when explicitstrong fairness constraintsare asserted
over the planning domain. Such constraints allow us to spec-
ify the necessity of occurrence of selected effects of nonde-
terministic actions over domain’s runs.

More precisely, we consider a standard nondeterministic
planning domain, that is, a finite state transition system de-
scribed in the standard manner by means of action precon-
ditions andnondeterministiceffects (Rintanen 2004). On
top of such a domain, we introducestrong fairness con-
straintsexpressed in Linear-time Temporal Logic (LTL), see
e.g., (Clarke, Grumberg, and Peled 1999; Vardi 1996), that
assert further properties of (possibly infinite) domain runs.
Through such constraints, one can restrict the nondetermin-
ism of actions in nontrivial ways. Specifically, one can spec-
ify that some selected effects of a nondeterministic action
must occur infinitely often along every infinite evolution of
the planning domain. For example, in modeling a gambling
domain, one may specify that using a “Las Vegas” style slot
machine, both winning and loosing happen infinitely often.
We remark that, in general, such type of constraints does not
apply to all nondeterministic actions: the action of chopping
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a tree may result in the tree being (still) up or the tree falling
down; however, once the tree falls, the former effect does
not occur ever again.

In other words, strong fairness constraints, in particular
on action executions, provide great flexibility in modeling
planning scenarios. They allow for expressinglong-term
effects of action repetitions (e.g., tossing a coin an infinite
number of times yields an infinite number of heads), or ac-
tion fairness wrt effects (e.g., an infinite number of tails is
also obtained). They also allow for distinguishing between
those actions that guarantee their nondeterministic effects to
eventually occur and those that do not.

Interestingly, fairness assumptions in nondeterministic
domains are considered in the work onstrong cyclic
plans (Cimatti et al. 2003): a strong cyclic plan is a
plan guaranteed to reach the goal under the (implicit) fair-
ness assumption thateveryeffect of a nondeterministic ac-
tion eventuallydoes occur. While this is often a realis-
tic assumption—in particular, when nondeterminism stems
from probabilistic effects like throwing a die or tossing a
coin—in some cases it is not satisfactory. For instance,
imagine a classical (mechanical) slot machine and an elec-
tronic one; the former is guaranteed to be fair, while the lat-
ter may not, due to a potential bug. Both machines have es-
sentially the same description in the planning domain (apart,
perhaps, from action names). Yet, they are very different, in
that if the latter does indeed have a bug, then it may enable
infinite loosing runs. So, in order to eventually win one has
to repeatedly play in the classical machine—no plan guar-
antees winning in the buggy electronic machine. In this pa-
per, we aim then at giving the modeler the ability to control
the nature of nondeterministic choices, by allowing her/him
to state strong fairness conditions on selected effects of se-
lected actions.

Strong fairness conditions are notoriously difficult to deal
with in verification (Clarke, Grumberg, and Peled 1999).
The most common temporal properties in verification are the
following: (i) reachability: eventually something (good) be-
comes true;(ii) maintenanceor safety: something (good)
will be true forever;(iii) weak fairnessor response: forever
eventually something becomes true; we also have a well-
known generalized form, sometimes called genericallylive-
ness: forever, every time something becomes true (i.e., the
request), eventually something else becomes true (i.e., the
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response); and(iv) strong fairnessor reactivity: if some-
thing becomes true infinitely often, then something else be-
comes true infinitely often, as well. Note that strong fair-
ness constraints generalize liveness constraints, in the sense
that not necessarily all occurrences of the request need to
be taken but infinitely many of them do. Such types of
dynamic properties yield a sort of hierarchy (with reacha-
bility and maintenance together at the bottom) based on in-
creasingly more sophisticated technical machinery required.
The two main formalisms used in verification, LTL and
CTL, can deal with the first four, but only LTL is able
to deal with strong fairness (Clarke, Grumberg, and Peled
1999). Indeed, strong fairness is possibly the single rea-
son that makes LTL the logic of choice (over CTL) for in-
dustrial verification (Accellera 2004; Armoni et al. 2002;
Vardi 2007).

In this paper, then, we study techniques to solve plan-
ning problems in nondeterministic full observable domain
in the presence of strong fairness constraints. Our work is
thoroughly based on literature on verification and is quite
novel in the context of AI. Indeed, most work on using tem-
poral logic for planning in AI is based on CTL, which is
currently the standard logic for planning by model check-
ing (Ghallab, Nau, and Traverso 2004). Previous work on
the use of LTL in planning has mainly focused on deal-
ing with temporally-extended goals(Bacchus and Kabanza
1998; De Giacomo and Vardi 2000; Kerjean et al. 2006;
Baier, Bacchus, and McIlraith 2009), often considering the
temporal goals as complementary properties to be verified
while reaching a main goal on finite runs only. Such comple-
mentary properties are typically used as a declarative means
to control the search. Notice that LTL on finite runs is sub-
stantially simpler that standard LTL on infinite runs. Full
LTL goals have been considered in (De Giacomo and Vardi
2000), where the domain was specified however as a tran-
sition system, possibly with partial observability. Very so-
phisticated forms of domain specification, based on second-
order LTL, where considered in (Calvanese, De Giacomo,
and Vardi 2002), again under partial observability.

Our results directly extend those for conditional plan-
ning. Indeed, by dropping constraints on the runs, we are
left with a standard nondeterministic planning domain with
full observability, and a solution for reachability goals thus
amounts to finding a conditional plan. Hence, the fact that
conditional planning is EXPTIME-complete provides the
complexity lower bound for the problems that we are in-
terested in. A gross upper bound for such problems is also
available off-the-shelf: synthesis for arbitrary LTL formu-
las is 2EXPTIME-complete (Pnueli and Rosner 1989) and
one can readily represent our planning problem under strong
fairness constraints as an LTL synthesis problem. Unfortu-
nately, techniques forfull LTL synthesis, though known for a
long time, have been resistant to practical implementations,
due to the need of complementation of automata on trees,
see e.g., (Kupferman, Piterman, and Vardi 2006).

We will show here that planning under strong fairness
constraints in full observable domains remains EXPTIME-
complete for a variety of increasingly sophisticated goals.
To do so we adapt a specific form of LTL synthesis de-

veloped for so-called Generalized Reactivity GR(1) class,
which is based on model checking of game structures (Piter-
man, Pnueli, and Sa’ar 2006) and which admits efficient
symbolic implementation. Nonetheless, we are not able to
use such techniques off-the-shelf, because the presence of
strong fairness constraints gives rise to LTL formulas that
fall outside the GR(1) class. Consequently, we first need
to reduce the problem with strong fairness constraints to
a problem with weak fairness constraints of the required
GR(1) form.

The rest of the paper is organized as follows. We first in-
troduce some preliminary notions on LTL synthesis. Then,
we present planning under strong fairness constraints and
show how to solve it. After that, we move to more ad-
vanced forms of planning, by considering recently intro-
duced agent planning programs (De Giacomo, Patrizi, and
Sardina 2010), and composition-based planning (Sardina,
Patrizi, and De Giacomo 2008), both under strong fairness.
We close the paper with some final remarks.

Preliminaries on LTL

Linear-time Temporal Logic (LTL) is a well-known logic
used to specify dynamic or temporal properties of programs,
see e.g., (Vardi 1996).Formulasof LTL are built from a set
P of atomic propositions and are closed under the boolean
operators, the unary temporal operators© (next),3 (eventu-
ally), and2 (always, from now on), and the binary temporal
operatorU (something eventually will hold and,until then,
something else always hold). Interesting examples of LTL
formulas are:

• 3ϕ: goal formulaϕ is eventually reached.

• 2ϕ: the goal formulaϕ is always maintained true.

• ψ U ϕ: achieve goalϕ while maintainingψ.

• 23ϕ: formulaϕ is true infinitely often; this formula ex-
presses “weak fearness” or “responsiveness.”

2(ψ → 3ϕ): forever, if formulaψ becomes true, then
ϕ will eventually become true; this formula expresses a
form of “liveness.”

• 32ϕ: eventually formulaϕ becomes true and remains
true forever; this formula expresses “persistence.”

• 23ϕ → 23ψ: if formula ϕ is true infinitely often,
then alsoψ is true infinitely often; this formula expresses
“strong fairness” or “reactivity.”

All above formulas except the last one can be also expressed
in CTL. The last one, “strong fairness,” is expressible only
in LTL (cf. Introduction) and is the main focus of this paper.

LTL formulas are interpreted over infinite sequencesσ of
propositional interpretations forP , i.e.,σ ∈ (2P )ω. The set
of (true) propositions at positioni is denoted byσ(i), hence
σ is denoted byσ(0), σ(1), . . .. If σ is an interpretation,
i a natural number, andφ is an LTL formula, we denote
by σ, i |= φ the fact thatφ holds in modelσ at positioni,
which is inductively defined as follows (here,p ∈ P is any
proposition andφ, ψ any LTL formulas; we omituntil for



brevity):

σ, i |= p iff p ∈ σ(i);
σ, i |= φ ∨ ψ iff σ, i |= φ; or σ, i |= φ ∨ ψ;
σ, i |= ¬φ iff σ, i 6|= φ;
σ, i |= ©φ iff σ, i+1 |= φ;
σ, i |= 3φ iff for somej ≥ i, we have thatσ, j |= φ;
σ, i |= 2φ iff for all j ≥ i, we have thatσ, j |= φ.

An interpretationσ satisfiesφ, writtenσ |= φ, if σ, 0 |= φ.
Standard logical tasks such as satisfiability or validity are
defined as usual, e.g., a formulaφ is satisfiableif there exists
an interpretation that satisfies it. Checking satisfiability or
validity for LTL is PSPACE-complete.

Here we are interested in a different kind of logical task,
which is calledrealizability(akaChurch problem) or synthe-
sis(Vardi 1996; Pnueli and Rosner 1989). Namely, we parti-
tionP into two disjoint setsX andY. We assume to haveno
controlon the truth value of the propositions inX , while we
can control those inY. The problem then is:can we control
the values ofY so that for all possible values ofX a certain
LTL formula remains true?More precisely, interpretations
now assume the formσ = (X0, Y0)(X1, Y1)(X2, Y2) · · · ,
where(Xi, Yi) is the propositional interpretation at thei-
th position inσ, now partitioned in the propositional in-
terpretationXi for X and Yi for Y. Let us denote by
σX |i the interpretationσ projected only onX and truncated
at thei-th element (included), i.e.,σX |i = X0X1 · · ·Xi.
Therealizability problemchecks the existence of a function
f : (2X )∗ → 2Y such that for allσ with Yi = f(σX |i), σ
satisfies formulaϕ. The synthesis problemconsists in ac-
tually computing such a function. Observe that in realiz-
ability/synthesis we have no way of constraining the value
assumed byX propositions: the function we are looking for
only acts on propositions inY. This means that the most in-
teresting formulas for the synthesis have the formϕa → ϕr,
whereϕa captures the “relevant” assignments of proposi-
tions inX (andY) andϕr specifies the property we want to
assure for such relevant assignments. The realizability (and
actual synthesis) are 2EXPTIME-complete for arbitrary LTL
formulas (Pnueli and Rosner 1989). However, recently, sev-
eral well-behaved patterns of LTL formulas have been iden-
tified, for which efficient procedures based on model check-
ing technologies applied to game structures can be devised.
Here, we focus on one of the most general well-behaved pat-
terns, called “Generalized Reactivity (1)” or GR(1)(Piter-
man, Pnueli, and Sa’ar 2006). Such formulas have the form
ϕa → ϕr, with ϕa andϕr of the following shapes:

ϕa: Φ[X ,Y] ∧
∧
j 2Φj [X ,Y,©Φ[X ]] ∧

∧
k 23Φk[X ,Y],

ϕr: Φ[X ,Y] ∧
∧
j 2Φj[X ,Y,©Φ[X ,Y]] ∧

∧
k 23Φk[X ,Y],

whereΦ[Z] stands for any boolean combination of symbols
from Z. Notice that:(i) the first conjunct expresses initial
conditions;(ii) the second (big) conjunct expresses transi-
tions –with the limitation thatϕa cannot talk about the next
value ofY propositions; and(iii) the third (big) conjunct ex-
pressesweak fairnessconstraints of the form “it is always
true that eventually something holds.” However,one cannot
express strong fairness constraints in GR(1)formulas (but

see below). For GR(1) formulas, realizability and synthesis
are substantially simpler than for general LTL formulas:

Theorem 1 (Piterman, Pnueli, and Sa’ar 2006).
Realizability (and synthesis) of GR(1) LTL formulas
ϕa → ϕr can be determined in timeO((p ∗ q ∗w)3), where
p andq are the number of conjuncts of the form23Φ in ϕa
andϕr , respectively,1 andw is the number of possible value
assignments ofX andY under the conditions ofϕa’s first
two conjuncts.

Planning under Strong Fairness
The system we are interested to plan on consists of(i) a stan-
dard nondeterministicplanning dynamic domain, modeling
the potential evolutions of world, enriched with(ii) a set of
strong fairness constraints, ruling out unfeasible evolutions.

Dynamic domain A dynamic domainsis a tupleD =
〈P,Σ, A, S0, ρ〉, where:

• P = {p1, . . . , pn} is a finite set ofdomain propositions;

• Σ = 2P is the set ofdomain states;

• A = {a1, . . . , ar} is the finite set ofdomain actions;

• S0 ∈ Σ is theinitial state;

• ρ ⊆ Σ × A × Σ is thedomain transition relation. We
freely interchange transition notations〈S, a, S′〉 ∈ ρ and
S

a
−→ S′ in D.

At each time point, a dynamic domain is in one of its
states; initially,S0. An actiona is executablein a stateS if
S

a
−→ S′ in D for someS′. In such a case,S′ is a (possible)

a-successorof S. An actiona is nondeterministicif there
exists a stateS having more than onea-successor. Each state
S ∈ Σ represents a complete valuationµ : P 7→ {⊤,⊥}
such thatµ(p) = ⊤ iff p ∈ S. Consequently, a propo-
sitional formulaϕ identifies a subset ofΣ, namely, those
states whose valuations satisfiesϕ.

Dynamic domain’s potential evolutions are calledruns.

Technically, arun λ is a sequence of the formS0 a0

−→

S1 a1

−→ · · · such thatS0 = S0 and 〈Si, ai, Si+1〉 ∈ ρ,
for i ≥ 0. For convenience, and wlog, we take runs to be
infinite. To that end, we assume the existence of a special
propositionend and a special actionnoOp, which when exe-
cuted in any stateS leads to an absorbing stateS∪{end}—
at any time point, one can stop executing domain actions
(forever).

Strong fairness constraints In addition to the usual
step-by-stepconstraints that the domain transition rela-
tion induces on runs, we consider more general con-
straints affecting runs’ whole extension. Formally, a
constraint on domain runsis an LTL formulaγ over propo-
sitional vocabularyPROP = P ∪PA, wherePA = {act =
a | a ∈ A} is the set ofaction propositions: proposition

1We assume that bothϕa andϕr contain at least one conjunct
of such a form, if not, we vacuously add the trivial one23⊤.



(act = a) states that the current action isa. To interpret

such formulas over domain runs of the formλ = S0 a0

−→

S1 a1

−→ · · · , we simply consider the corresponding sequence
σλ = (S0 ∪ {act = a0}), (S1 ∪ {act = a1}), · · · , and say
thatλ satisfies a constraintγ (denotedλ |= γ) iff σλ |= γ
as explained in the previous section.

A strong fairness constraintis an LTL formula of the form
23φ → 23ψ overPROP = P ∪ PA, with φ andψ con-
taining no temporal operator other than©, which can never
occur nested2 (e.g.,©©φ and©(p∧©q) are not allowed).
Observe thatweak fairness(i.e.,23φ) is captured by con-
straints of the form23⊤ → 23φ. Similarly, persistence
(i.e.,32φ) is captured by23¬φ→ 23⊥.

To better understand how strong fairness constraints can
help expressing certain domans, let us next illustrate their
use with some examples.

Example 1. The “Las Vegas” slot machine scenario pre-
sented in the Introduction can be easily modeled as a do-
mainD = 〈{win}, {{win}, ∅}, {play}, ∅, {〈S, play, S′〉 |
S, S′ ⊆ {win}}〉. States{win} and∅ (i.e.,¬win) represent
the cases in which the player has just won and lost, respec-
tively. The domain transition relation states that playingat
any states leadsD to evolve nondeterministically to either
states{win} or ∅.

So, in order to win, the best a player can do is play indefi-
nitely (assuming an infinite budget, of course). However, the

always losing sequenceλlose = ∅
play
−→ ∅

play
−→ ∅

play
−→ · · · is a

perfectly valid run underD—the possibility that the player
never wins does exist! Consequently, there is no strategy
that can guarantee the player’s ambitious goal.

A natural assumption forreal-world slot machines,
though, is that if someone plays infinitely often, then there
will indeed be infinitely many good rounds and, of course,
infinitely many bad ones. Thecnically, such information
can be easily stated using two strong fairness constraints:
23act=play→23¬win and23act=play→23win.�

Observe it is not always the case, though, that such con-
straints apply toall effects of a nondeterministic action.

Example 2. In the tree choppingscenario (Sardina et al.
2006): with each chop, a tree may or may not fall down, but
once down, the tree remains as such; also, continuous chop-
ping does eventually bring the tree down. While the first part
of the scenario can be easily captured by a standard domain
(in particular, the fact that once a tree has fallen down, it re-
mains down), the effectiveness of the chopping action can
be captured by means of strong fairness, via the following
constraint:23act = chop → 23down . �

As it can be seen, the example does not include a strong fair-
ness constraint for one of the possible effects of the chopping
action, that is:23act = chop → 23¬down . Also, note
that the constraint capturing the effectiveness of the chop-
ping action applies even in a domain where the tree can be
brought up again.

2In fact, nesting of operator© raises no conceptual obstacle.
We avoid it for readability reasons only.

A dynamic domain with strong fairness constraints is
called adynamic system. Concretely, adynamic systemis
a pairS = 〈D, C〉, whereD is a planning dynamic domain
andC is a finite set of strong fairness constraints.

Plans Next, we formalize the notion ofplansand their re-
spectiveexecutionson a dynamic systemS = 〈D, C〉.

The length of a generic finite sequenceτ = S0 a0

−→

S1 · · ·Sℓ−1 aℓ−1

−→ Sℓ is |τ |
.
= ℓ + 1, if τ is infinite, then

|τ |
.
= ∞. Also, if τ is finite, we definelast(τ) = Sℓ. Given

a (finite or infinite) sequenceτ = S0 a0

−→ S1 a1

−→ · · · , we
define itsfinite prefix of lengthk (for 0 < k < |τ | + 1) as

the sequenceτ |k = S0 a0

−→ · · ·
ak−2

−→ Sk−1.
A historyof S is afinite prefixof a run ofS. The set of

all histories ofS is referred to asH. A general planoverS
is a functionπ : H 7→ A. The set of all general plans over a
domainS is referred to asΠ.

An executionof a general planπ on systemS is a, possi-

bly infinite, sequenceη = S0 a0

−→ S1 a1

−→ · · · such that(i)
S0 = S0; (ii) for all 0 < k ≤ |τ |, τ |k is an history ofS; (iii)
ak−1 = π(τ |k), for all 0 < k < |τ |; and(iv) if η is finite,
thenπ(last(η)) is undefined.

When all possible executions of a general plan are finite,
the plan is called ageneralized conditional plan(general-
ized since, in the presence of constraints on runs, they may
involve loops). Informally, generalized conditional planex-
ecutions are guaranteed to eventually terminate.

Goals We generalize the classical notion of reachabil-
ity goal. Given a dynamic domainS, let φ and ψ
be propositional formulae overP . A general planπ
achievesφ while maintainingψ (written π |= ψ U φ) if for
each of its (finite or infinite) executionsη, there exists ak,
0 ≤ k ≤ |η|, such thatSk |= φ andSk

′

|= ψ, for all
0 ≤ k′ ≤ k, and ifη is finite, thenk = |η|.

Example 3. In a production line, when component items
reach the assemblage section, they are oftendusty and
greasy. The line provides two cleaning methods: one by
spraying air and another by spraying a special solvent. A
finite number (depending on how dirty the item is) of air
sprays ensures all the dust to be eventually removed from
a given item; analogously a finite number of solvent sprays
removes all the grease. Air (resp., solvent) sprays aresome-
timesalso effective in removing grease (resp., dust)—there
is no guarantee for this though.

Figure 1 reports a fragment of the PDDL specification
corresponding to dynamic domainD for the scenario. Ex-
pressionwhen((cond)(eff)) states that ifcond holds before
action execution theneff holds after it (i.e., conditional ef-
fects); whereasoneof(e1, ..., en) states that the (nondeter-
ministic) action yields one effect amonge1, . . . , en.

Predicatesdusty andgreasy represent the item’s current
state. The domain provides two nondeterministic actions
sprayAir andspraySol with no precondition and the fol-
lowing effects: (i) if the item is not dusty (greasy), then it



(define (domain productionLine)

(:predicates (dusty)(greasy))

(:action sprayAir

:effect(and

(when (not (dusty)) (not (dusty)))

(when (not (greasy)) (not (greasy)))

(when (dusty) (oneof (dusty)(not (dusty))))

(when (greasy) (oneof (greasy)(not (greasy))))))

(:action spraySol ... ); see sprayAir

(:init (and (dusty)(greasy))))

Figure 1: Planning domain for the production line example.

remains as such after execution; and(ii) if the item is dusty
(greasy), then dust (grease) may or may not be removed af-
ter execution. The effectiveness of these actions on dust and
grease, respectively, is captured by the following two strong
fairness constraints:

23(act = sprayAir∧ dusty) →
23(act = sprayAir∧ dusty ∧©¬dusty);

23(act = spraySol∧ greasy) →
23(act = spraySol∧ greasy ∧©¬greasy).

A procedure is needed to prepare each item for the as-
semblage process, that is, each item needs to be free of
dust and grease. Formally, this requires a planπ such that
π |= ⊤U(¬dusty ∧¬greasy). Clearly, such a plan does ex-
ist: first repeat actionsprayAir until no dust is present on
the item, and then repeat actionspraySol until no grease
remains. Note that loops are required: one spray may not be
enough. Also, observe that there can be executions where
spraying air (solvent) is enough alone to remove both dust
and grease, so that no further processing is needed. Nonethe-
less, only executing both loops guarantees all runs to even-
tually reach the goal. Of course, other plans may exist, e.g.,
one where both actions are interleaved. �

With this example at hand, let us next see how to effectively
solve ourextendedplanning problems.

Solving Planning under Strong Fairness
Here, we face the problem of building plans that achieve
and maintain desired goal formulae. Let us start by formally
stating the extended planning task: given a dynamic system
S = 〈D, C〉, whereD = 〈P,Σ, A, S0, ρ〉, an achievement
goalφ and a maintenance goalψ (both being propositional
formulae overP ), the problem ofplanning for reachability
and maintenance under strong fairness constraintsrequires
to build a general planπ overS such thatπ |= ψ U φ.

Observe that whenψ = ⊤, we obtain the standard notion
of reachability goal, and if in additionC = ∅, then the prob-
lem reduces to classical planning with nondeterminism and
full observability, for which the following is a known result;
see, e.g., (Rintanen 2004).

Theorem 2. Given a dynamic systemS = 〈D, ∅〉 and an
achievement goalφ, synthesizing a planπ overS such that
π |= ⊤U φ is EXPTIME-complete.

In order to deal with the cases in whichC 6= ∅, we shall re-
duce the problem to synthesis of GR(1) specifications (Piter-
man, Pnueli, and Sa’ar 2006). To do so, we exploit the con-
struction proposed in (Kesten, Piterman, and Pnueli 2005)
to reduce“fair discrete systems (fds)”to “just discrete sys-
tems (jdf)”, so as to come up with a problem formulation
compliant with the GR(1) form. To ease the presentation,
we present the reduction as a three-step process.

LTL encoding of dynamic systems In the first step, we
develop an LTL encodinĝϕS of S, whose runs capture all
S evolutions, where the occurrences of operator© in strong
fairness constraints are compiled away. This will be useful
in the next step.

Let D be as above. The set of propositions thatϕ̂S is
built upon isP̂ = P ∪ PA ∪ PX , wherePX contains one
propositionpx ξ for each subformula©ξ appearing in some
strong fairness constraintγ ∈ C. The intended meaning of
propositionpx ξ is to hold iff on next stateξ holds.

We stress thatpx ξ is introduced only for syntactic con-
venience, so as to ease the reduction of the obtained LTL
encoding to the GR(1) form. Moreover, for convenience,
for each stateS ∈ Σ, we define a propositional formula
γS =

∧n
i=1 li, whereli = pi if pi ∈ S, andli = ¬pi other-

wise.3

So, we definêϕS = ϕ̂S
init ∧ 2ϕ̂S

trans ∧ ϕ̂S
rc, with

ϕ̂S
trans = ϕ̂S

ρ ∧ ϕ̂S
next, where:

• ϕ̂S
init

= γS0
, i.e.,D starts in its initial state;

• Formulaϕ̂S
ρ is defined as follows:

∧

S∈Σ,pa∈PA

[γS∧pa∧
∧

p′a∈PA\{pa}

¬p′a → ©
∨

〈S,a,S′〉∈ρ

γS′ ],

wherepa abbreviates proposition(act = a). Each con-
junct asserts that ifD is in stateS and actiona is to ex-
ecuted, then one of the possible successor states w.r.t.ρ
is indeed the next state ofD (an empty set of disjoins is
assumed⊥);

• ϕ̂S
next =

∧
px ξ∈PX

px ξ ↔ ©ξ, that ispx ξ holds in
current state iffξ will hold in next state;

• ϕ̂S
rc =

∧
γ∈C γ[©ξ/px ξ], whereγ[α/β] means the for-

mula obtained by replacing each occurrence of subfor-
mulaα with formulaβ in γ. By doing so, each constraint
in ϕ̂S

rc assumes the form̂γ = 23φ̂ → 23ψ̂, where
φ̂ andψ̂ are temporal operator free, while preserving its
semantics, due to the above constraint onpx ξ.

Observe that the obtained specification is, essentially, an
LTL representation of the original systemS, whereϕ̂S

init

3Note that the set of formulae has linear size in the number of
states, which is exponential in the number of propositions,as the
domain transition relation is described using explicit states. How-
ever, if a compact representation is used, as done, e.g., in PDDL, it
can be polynomially encoded in LTL. In any case, as shown later,
our results do not depend on the size of the domain’s LTL encod-
ing, but directly on the size of the domain’s state space.



andϕ̂S
trans capture the information aboutD, andϕ̂S

rc rep-
resents the (©-free) strong fairness constraints. So, the con-
struction yields the following, straightforward, result:

Lemma 3. A sequenceλ = S0 a0

−→ S1 a1

−→ · · · is a run
of S iff σλ |= ϕ̂S , whereσλ = (S0 ∪ {pa0} ∪ P

0
X), (S1 ∪

{pa1} ∪ P 1
X), · · · such that for alli ≥ 0, px ξ ∈ P iX iff

Si+1 |= ξ.

From strong to weak fairness The second step consists
in compiling away the strong fairness constraints. This is
needed to guarantee a GR(1) specification to be obtained
at the end of the reduction process. Precisely,ϕ̂S above is
transformed into an equivalent formula (i.e., satisfied by ex-
actly the same runs)ϕS = ϕinitS ∧ 2ϕtransS ∧ ϕrcS , where
each conjunct ofϕrcS is aweakfairness constraint.

First, we definePC as the set containing one proposi-
tion n φ̂ for each conjunct̂γ = 23φ̂→ 23ψ̂ occurring in
ϕ̂S

rc. Let Ĉ be the set of all such conjuncts. Each propo-
sition n φ̂ is intended to hold at a given point in a run if,
from that point on,̂φ remains false forever; in addition, we
introduce a propositionxc becoming true at a given point if
somen φ̂ is a mis-prediction (see below).

Then, we defineϕS ’s conjuncts as follows:

• ϕinitS = ϕ̂S
init ∧ ¬xc ∧

∧
n φ̂∈PC

¬n φ̂;

• ϕtransS = ϕ̂S
trans ∧ ϕφ̂S ∧ ϕcS , where:

– ϕφ̂S =
∧
n φ̂∈PC

n φ̂→ ©n φ̂;

– ϕcS = ©xc ↔ (xc ∨
∨

(23φ̂→23ψ̂)∈Ĉ(φ̂ ∧ n φ̂));

• ϕrcS = 23¬xc ∧
∧

(23φ̂→23ψ̂)∈Ĉ 23(n φ̂ ∨ ψ̂).

Observe that no strong fairness constraint appears in the ob-
tained formula. Indeed,ϕrcS is a conjunction of weak fair-
ness formulae (23ξ) only. Exploiting the results in (Kesten,
Piterman, and Pnueli 2005) we get:

Lemma 4. For every runσ, σ |= ϕ̂S if and only ifσ |= ϕS .

Building plans We can now show the final step of the re-
duction, i.e., the encoding of the problem as a GR(1) specifi-
cation. Taking the LTL formulaϕS as above, we start build-
ing the GR(1) formulaΥ = ϕa → ϕr by specifying the sets
of uncontrolled and controlled propositions, and then build
the assumption and requirement formulas.

Uncontrolled and controlled propositions. The set ofun-
controlled propositions isX = P ∪ PX ∪ PC ∪ {xc} ∪
{ach,mnt}, where all sets except{ach,mnt} are as above.
Propositionach is intended to record that formulaφ has al-
ready been achieved along a run (either in the current or in
the past); similarly, propositionmnt records thatψ has been
maintained along a run up to the state (included) whereφ
has been satisifed. Finally, the set ofcontrolledpropositions
is simplyY = PA, i.e., the domain actions.

Assumption formula. The formula encoding how the do-
main isexpectedto behave when a plan is under execution
is defined asϕa = ϕinita ∧ ϕtransa ∧ ϕrca .

Propositional formulaϕinita = ϕinitS ∧ ach ≡ φ ∧mnt ≡
ψ characterizes the initial state of the system:S starts in its
initial state andach andmnt hold iff φ andψ do, respec-
tively.

LTL formulaϕtransa = 2(ϕtransS ∧ϕtransach ∧ϕtransmnt ) char-
acterizes the assumptions onach, mnt andS ’s evolutions.
FormulaϕtransS has been discussed above, whereasϕtransach

andϕtransmnt are defined as follows:
ϕtransach = (ach → ©ach) ∧ (¬ach → ©(ach ≡ φ));

ϕtransmnt = (¬mnt → ©¬mnt) ∧ (mnt ∧ ach → ©mnt) ∧
(mnt ∧ ¬ach → ©(mnt ≡ ψ)).

That is,ach holds ifφ has been achieved in the past or in the
current state, whereasmnt holds iffψ was never violated in
the past beforeφ was achieved.

Finally, we simply takeϕrca = ϕrcS so as to capture the
strong fairness constraints originally defined onD’s runs (re-
modeled during the above reduction phase).

Requirement formula. Lastly, we construct formulaϕr =
2ϕtransact ∧ ϕgoalr capturing therequirementsfor the plan to
be synthesized. Formulaϕtransact encodes the action execu-
tion constraints, requiring one and only one action to be exe-
cuted at each step:ϕtransact =

∨
y∈Y [y ∧

∧
y′∈Y\{y} ¬y

′]. As
for the synthesis “objective”, it is simply theweak fairness
formulaϕgoalr = 23(ach ∧ mnt). That is, we require a
successful plan to always eventually bring aboutφ in every
run (i.e., equivalent toach being eventually true) while not
violatingψ up to then (i.e., equivalent to not falsifyingmnt).

It is not hard to check that the LTL formulaΥ obtained
is indeed in GR(1) form. Hence, we can apply the results
from (Piterman, Pnueli, and Sa’ar 2006) and thus obtain the
following theorem.
Theorem 5 (Soundness & Completeness).There exists a
plan overS that achievesφ while maintaingψ iff LTL for-
mulaΥ, constructed as above, is realizable.

As for complexity considerations, analyzing the structure
of Υ, we observe that:(i) ϕa contains as many subformulae
of the form23ξ as strong fairness constraints inC, namely,
|PC |; (ii) ϕr contains just one such subformula;(iii) the
number of possible value assignments ofX andY under
the conditions ofϕa → ϕr is O(2|P |+|PX |+|PC | · |PA|)
given that only onePA proposition can be true at each
step. Consequently, from Theorem 1, checking the exis-
tence of a plan for reachability and maintenance can be done
in O((|PC | · 1 · (2|P |+|PX |+|PC | · |PA|))3). Hence together
with the EXPTIME-hardness of Theorem 2, we get a tight
complexity characterization for our problem.
Theorem 6 (Complexity). Checking the existence of a plan
that achievesφ while maintainingψ in a dynamic domain
under strong fairness constraints is EXPTIME-complete.
We remark that the technique of (Piterman, Pnueli, and Sa’ar
2006) synthesizes an actual solution to the problem, not
merely verifies its existence: one actually gets the plan out
of the realizability checking.



Agent Planning Programs
In this section we turn our attention toagent planning pro-
grams(De Giacomo, Patrizi, and Sardina 2010), which are
high-level specifications ofdesiredagent behaviors in terms
of declarative goals.

Agent planning programs An agent planning program,
or simply aplanning program, for a dynamic domainS is
a tupleT = 〈T,G, t0, δ〉, where:

• T = {t0, . . . , tn} is the finite set ofprogram states;

• G is a set of (extended) goals of the form(ψ, φ): achieve
φ while maintainingψ;

• t0 ∈ T is theprogram initial state;

• δ ⊆ T ×G × T is thetransition relation. We freely inter-

change notations〈t, ψ, φ, t′〉 ∈ δ andt
ψ,φ
−→ t′ in T .

When an agent planning program is “realized,” the follow-
ing happens: at any point in time, the planning program is
in a statet and the system, or more precisely the domain,
in a stateS (initially, statest0 andS0, respectively); the

agent then chooses to perform any transitiont
ψ,φ
−→ t′ (out-

going fromt); then, starting fromS, a course of actions that
brings the domain to a state satisfyingφ while only travers-
ing states satisfyingψ is executed; finally, the agent plan-
ning program moves tot′ and the agent may choose a new

transitiont′
ψ′,φ′

−→ t′′, and so on. Notice that the executed
actions must guarantee, at any point in time, the feasibility
of all possible (planning program’s) transitions the agentcan
choose next, once the planning program has reached its suc-
cessor state. This is because the agent makes its decisions
in a step-by-step fashion. The problem we deal with in this
section amounts to concretelyrealizingsuch programs.

We formalize the planning program semantics by gener-
alizing what was proposed in (De Giacomo, Patrizi, and Sar-
dina 2010) to our context.

An agent planning programT is realizableif there exists
a function, calledT -realization, ω : H× δ 7→ Π such that:

1. for all transitionst0
ψ,φ
−→ t in T , ω(S0, t0

ψ,φ
−→ t) is de-

fined, that is, there is a plan for every

2. if ω(h, t
ψ,φ
−→ t′) is defined withω(h, t

ψ,φ
−→ t′) = π, then:

(a) π is a generalized conditional plan for systemSh,
whereSh is obtained fromS by replacing its initial
stateS0 with statelast(h);

(b) π |= ψ U φ in Sh, that is,π achievesφ while maintain-
ing conditionψ when exectuted in systemSh;

(c) for all π’s executionsη and all possible next transitions

t′
ψ′,φ′

−→ t′′ ∈ δ, ω(h · η, t′
ψ′,φ′

−→ t′′) (noteh · η is well
defined as they end and start in the same state, respec-
tively.)

The problem we are concerned with is then:how such a
functionω can be built? Once again, it turns out that the
problem can be solved by resorting to LTL synthesis for
GR(1) specifications.

Realizing agent planning programs We build a GR(1)
formulaΘ = ϕa → ϕr in an analogous way as done in
the previous section. So, assumeT is an agent planning
program to be realized in a dynamic systemS.

Let ϕS be the corresponding LTL specification with no
strong fairness constraints, obtained as shown before, and
letPϕS

= P ∪PX ∪PC ∪{mnt , ach, xc}. In the following
construction, we shall refer to the reduction presented in the
previous section and often reuse symbols defined there.

Uncontrolled and controlled propositions. The set ofun-
controlledpropositions isX = PϕS

∪ XT ∪ Xreq , where(i)
PϕS

is as above;(ii) XT contains one proposition for each
program statet, denoting the current state ofT ; and (iii)
Xreq = {reqφψ | 〈t, ψ, φ, t′〉 ∈ δ} contains one proposition

for each program transition:reqφψ states that the agent, ac-
cording to programT , is currently requesting to achieveφ
while maintainingψ.

The set ofcontrolledpropositions isY = PA ∪ {last},
wherePA is as above and propositionlast states that last
action of current plan is to be executed next (then, after exe-
cution, the agent can issue a new request).

Assumption formula. The assumption formula is
ϕa = ϕinita ∧2ϕtransa ∧ ϕrca . For legibility, we define for
each program statet ∈ T , a propositional formulareq t =∨

〈t,ψ,φ,t′〉∈δ req
φ
ψ representing the fact that the agent is re-

questing at least one transition available in program statet.
Propositional formulaϕinita = ϕinitS ∧t0 characterizes the

(legal) initial state of the overall system. Note no constraints
on last nor on propositions inXreq are imposed.

LTL formulaϕtransa = ϕtransS ∧ ϕtransT characterizes the
assumptions on the overall evolution. In particular,ϕtransS is
the same as that inϕS of the previous section, whileϕtransT
defines the “transition rules” for the planning program, built
as the conjunction of the following formulae:

•
∨
t∈XT

[t ∧
∧
t′∈XT \{t}

¬t′], that is, the program is in ex-
actly one of its states;

•
∧
t∈XT

[t → req t], that is, in each state, the agent exe-
cuting the program ought to be requesting some of the
possible transitions available in its current state;

•
∧

req
φ

ψ
,req

φ′

ψ′∈Xreq ,req
φ

ψ
6=req

φ′

ψ′

[reqφψ → ¬reqφ
′

ψ′ ], that is, at

most one program transition can be requested at a time;

•
∧

〈t,ψ,φ,t′〉∈δ[t ∧ req
φ
ψ ∧ last → ©t′], that is, if transition

t
〈ψ,φ〉
−→ t′ is currently being requested and the last action

of current plan is to be executed next, then the program
shall move next to its successor statet′;

•
∧
t∈XT

[(t ∧ ¬last) → ©t], that is, the program remains
still if the current plan is still not completed (new requests
are not allowed if the latest is not fulfilled);

•
∧
t∈XT ,〈t,ψ,φ,t〉∈δ

[(t ∧ req
φ
ψ ∧ ¬last) → ©req

φ
ψ], that is,

the agent remains requesting the same transition if the cur-
rent plan is still not completed.

Finally, ϕrca = ϕrcS , whereϕrcS includes the reduction of
strong fairness constraints into weak fairness ones, as de-
fined in the previous section.



Requirement formula. Now, we build formula
ϕr = 2ϕtransr ∧ ϕgoalr , which captures the requirements for
therealization(i.e., requirements on functionω).

LTL formulaϕtransr = ϕtransact ∧ϕtranslast ∧ϕtransmaint encodes
the constraints on action executions and how planning pro-
gram transitions are successfully carried out:

• ϕtransact requires exactly one domain action to be executed
per step (see previous section);

• ϕtranslast =
∧

req
φ

ψ
∈Xreq

[reqφψ ∧ last → ©φ], that is, upon

plan completion, requested achievement goalφ is indeed
achieved;

• ϕtransmaint =
∧

req
φ

ψ
∈Xreq

[reqφψ → ψ], that is, maintenance

goalψ in current request is respected.

Finally, we encode the synthesis “objective” by means of
just one weak fairness conjunct:ϕreq

goal = 23last .
The following result comes by comparing the above con-

struction with the definition of planning program realization.

Theorem 7 (Soundness & Completeness).There exists a
realization of an agent planning programT over a dynamic
systemS iff LTL formulaΘ built as above is realizable.

Clearly,Θ is a GR(1) formula, hence by reasoning analo-
gously to Theorem 6 we get:

Theorem 8 (Complexity). Checking the existence of a re-
alization of an agent planning program over a dynamic
domain under strong fairness constraints is EXPTIME-
complete.

Again, the technique proposed actually synthesizes the real-
ization of the planning programs during the checking.

Example 4. Consider an extension the production line sce-
nario, in which items arrive on request and can be placed in
one of three locations: on a workbench, to be processed; in
a storage, to be sent to the assemblage tape; or in a garbage
area, to be disposed of. The PDDL fragment reported in Fig-
ure 2, describes the domain using the following predicates:
dusty andgreasy , stating whether the current item is dusty
and greasy, respectively;onWb, stored anddisposed , cap-
turing the fact that the current item is on the workbench, in
the storage or in the garbage area, respectively; andgrabbed ,
stating whether the arm is holding an item. Initially, the
workbench is empty and the arm not holding anything.

The domain provides actions to manipulate the items. Ac-
tion load places a new item in the workbench, which is re-
quired to be empty. ActionssprayAir andspraySol work
as in Example 3, except that they require the item to be on
the workbench. Actionsstore anddispose move the cur-
rent item to the storage or the garbage area, respectively,
and can only be executed if the arm holds the item, which
is achieved by executing actiongrab, executable when the
item is on the workbench and the arm is not holding any-
thing. Effectiveness ofsprayAir andspraySol is captured
by the very same fairness constraints as in Example 3.

The items preparation process is captured by the planning
program depicted in Figure 3. Maintenance goals are omit-
ted as all⊤. Initially, in statet0, the program requires a new
item to be loaded on the workbench. Then, from statet1,

(define (domain productionLine2)

(:predicates (dusty) (greasy) (onWb) (stored)

(disposed) (grabbed))

(:action load

:precondition (not (onWb))

:effect (and (onWb)

(not (stored)) (not (disposed))

(oneof (dusty) (not (dusty)))

(oneof (greasy) (not (greasy)))))

(:action sprayAir

:precondition (onWb)

:effect(and

(when (not (dusty)) (not (dusty)))

(when (not (greasy)) (not (greasy)))

(when (dusty) (oneof (dusty) (not (dusty))))

(when (greasy) (oneof (greasy) (not (greasy))))))

(:action spraySol ... ) ;analogous to sprayAir

(:action grab

:precondition (and (onWb) (not (grabbed))

:effect(and (not (onWb)) (grabbed)))

(:action store

:precondition (grabbed)

:effect(and (not (onWb)) (stored)

(not (grabbed))) )

(:action dispose

:precondition (grabbed)

:effect(and (not (onWb)) (disposed)

(not (grabbed))) )

(:init (not (onWb)) (not (grabbed))))

Figure 2: Planning domain for the production line example.

there are two possible choices: either the item is not stored
(possibly because it is damaged) or it is cleaned and then
stored for the assemblage stage—the choice is under the au-
tonomous agent running the program. Finally, the routine
starts again from statet0 for processing a new item.

The planning program has a realization, which is as fol-

lows. Transitiont0
onWb
−→ t1 is served by executingload,

thus obtaining a new item, possibly dusty and greasy, on the

workbench. Next, ift1
¬stored
−→ t0 is requested, it is served by

the sequencegrab; dispose. Observe that, in principle, the
transition could be realized by simply leaving the item on
the workbench. However, that will preclude the next request

t0
onWb
−→ t1 to be realized, as the workbench needs to be

empty to load a new item. If transitiont1
¬dusty∧¬greasy

−→ t2
is requested instead, it can be served by iterating actions
sprayAir and spraySol as necessary (cf. Example 3),

from where next requestt2
stored
−→ t0 can simply be achieved

by the sequencegrab; store. �



t0 t1 t2
onWb ¬dusty ∧ ¬greasy

stored

¬stored

Figure 3: Planning program for the item preparation routine

Component-based Planning
Up to now, we have assumed that actions are always avail-
able, of course as long as their preconditions are fulfilled.
However, it is often the case that actions can be carried
out only through certain available actuators, such as a grip-
per, a motor, or a web-browser. Also, these actuators gen-
erally have their own internal logic that needs to be re-
spected and evenlocal actions (e.g., a camera needs to
be turned on before a picture can be taken). To account
for this, in this section, we consider planning in the pres-
ence of fairness constraintsbut where actions are avail-
able only by means of a set of so-called “available behav-
iors.” We point out that the new task is similar to that
of behavior composition (De Giacomo and Sardina 2007;
Sardina, Patrizi, and De Giacomo 2008) and that of agent
planning programming (De Giacomo, Patrizi, and Sardina
2010), except for two main differences. First, here, we are
interested in solving a standard planning problem, rather
than implementing a desired target system. More impor-
tantly, the representations that we shall use here for behav-
iors is substantially more expressive than the ones used in
such works, in that strong fairness constraints will be used.

So, besides the dynamic systemS = 〈D, C〉, as before,
we assume also a set of availablebehaviorsmodeling the
components at disposal (typically, physical devices or soft-
ware modules). A representation for such behaviors needs
to capture the following features: first, behaviors’ logic may
depend on properties of the domain (e.g., an arm can grab
a block if not holding anything); second, different choices
may be available when activating the behavior (e.g., at some
point the arm may be used to move a block or to flip it).
Finally, beingabstractionsof actual components, the repre-
sentation needs to be able to accommodate lack of informa-
tion about the internals of the components.

Formally, abehaviorover a dynamic systemS (with set
of statesΣ) is a tupleB = 〈B,O, b0, G, ̺, CB〉, where:

• B is the finite set of behavior’s states;

• O is the finite set of behavior’s actions s.t.O ∩ A 6= ∅;

• b0 ∈ B is the behavior’s initial state;

• G is a set ofguards, that is, boolean functions of the form
g : Σ 7→ {⊤,⊥};

• ̺ ⊆ B × G × O × B is theB’s transition relation. We

freely interchange notations〈b, g, a, b′〉 ∈ ̺ andb
〈g,a〉
−→ b′

in B;

• CB is a finite set of strong fairness constraints over the set
B ∪ {act = o | o ∈ O}.
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Figure 4: The three different arms available in the domain.

When a behavior is in a certain state, it can be instructed to
perform any of the actions available from that state due to an
(outgoing) transition whose guard holds true. Observe that
behaviors are, in general, nondeterministic, that is, given a
state and an action, there may beseveraltransitions whose
guards evaluate to⊤. Consequently, when choosing the ac-
tion to execute next, one cannot be certain of the resulting
state, and hence of which actions will be available later on,
since this depends on what particular transition happens to
take place. In other words, nondeterministic behaviors are
only partially controllable, which captures the fact that one
hasincompleteinformation on the component’s functioning.
Finally, since behaviors can include their ownlocal actions,
that is actions inO that are not inA, it is assumed that those
actions are always possible in the dynamic system and have
no effect on its state.

Example 5. Continuing our production line example, we
now imagine that we cannot act in the world if not by us-
ing the three available robotic arms depicted in Figure 4. All
actions are consequences of any of these arms. We observe
that armsBa andBb are nondeterministic when trying to
hold a component item. This is because the arm may fail
to properly hold the item, falling then into stateba1 andbb1,
respectively. In that case, the arms cannot do their actual
job—spraying air or solvent—and all they can do is to just
release the item. Only when the devices are successful in
holding the item, reaching thus statesba2 andbb2, can the item
be sprayed (and afterwards finally released). Finally, armBc

is capable of loading items into the workbench and unload
items by storing or disposing them. For simplicity, we as-
sume no guards in behaviors transitions, though, it is easy
to imagine arms that do require some condition to be true in
the world to be able to perform an action (e.g., armBc may
only be able to load items of no more than a certain weight).

Now, consider again the nondeterminism of armsBa and
Bb when it comes to hold an item for spraying. Under this
setting, the original goal of preparing each item for the as-
semblage process cannot be guaranteed anymore. The rea-
son is that even though one can use armsBa andBb to spray
the items to remove their dust and grease, it could happen
that one of the arms can never succeed grabbing the item.



Technically, this means that when requesting actionhold

in, say, armBa, its actual evolution always results in state
ba1 from where it is not possible to spray the item with air.
Nonetheless, the domain expert knows that while arms can
indeed fail to properly hold an item at some point, they will
eventually succeed with enough tries. To accommodate this
domain information we include the following strong fairness
constraints for behaviorsBa andBb:

23(ba0 ∧ act = hold) → 23ba2 (for behavior armBa);

23(bb0 ∧ act = hold) → 23bb2 (for behavior armBb).

With this extra domain information, it is now possible to
solve the (extended) planning task, namely, it is possible to
build a planπ such thatπ |= ⊤U(¬dusty ∧ ¬greasy) and
π relies only on the three arms at disposal. As it can be
easily seen, such a plan exists: first, use armBc to load the
item; then repetitively use armsBa andBc to spray air and
solvent to the item; finally, once processed the item can be
either stored or disposed using armBc one again.

We note two important points next. Firstly, in contrast
with the solutions in previous sections, one cannot spray an
item several times in a row anymore. Instead, each spray
should be preceded by a holding operation and followed by
a releasing: this are constraints coming from the available
actuators, not the actual environment. Secondly, in a suc-
cessful run, there could be several failed tries of cleaninga
block, that is, actionshold followed immediately by actions
release. However, due to the strong fairness constraint, we
know that by trying enough times, the arm will eventually
succeed holding, and thus spraying, the item. �

As one can clearly see from the example, the possibility
of using strong fairness constraints in defining available be-
haviors is of ultimate importance. Indeed such constraints
allow the domain expert to accommodate more expressive
kind of incomplete information that could have a big im-
pact in the overall problem. Note that in, e.g.,(De Giacomo
and Sardina 2007; Sardina, Patrizi, and De Giacomo 2008;
De Giacomo, Patrizi, and Sardina 2010), such types of con-
straints are not accounted for, and the problem described in
the above example would yield no solution.

From Behavior Programs to Richer Domains
The problem now is how to solve a planning problem by
acting in the domainonly through the available behaviors.

In a similar way as done in (De Giacomo, Patrizi, and
Sardina 2010), we can reduce the component-based plan-
ning task to the original component-free problem. To that
end, we show below how to suitably embed the behavior de-
scriptions into a dynamic system.

Let B1, . . . ,Bn, with Bi = 〈Bi, Oi, bi0, Gi, ̺i, Ci〉, be
the set of available behaviors over a dynamic systemS =
〈〈P,Σ, A, S0, ρ〉, C〉. For eachBi, letBi be a tightest set of
boolean propositions that is large enough to provide a binary
encoding ofBi states (clearly,|Bi| is logarithmic in|Bi|).
We assume allBi’s pairwise disjoint and disjoint fromP .
We represent the encoding of a generic elementb ∈ Bi, as
b ∈ 2Bi , under the assumption thatb contains all and only
Bi’s propositions evaluating to⊤ in the encoding ofb.

To combine allBi’s andD into a planning domain, we
build a new dynamic system̂S = 〈〈P̂ , Σ̂, Â, Ŝ0, ρ̂〉, Ĉ〉,
where:

1. P̂ = P ∪ B1 ∪ · · · ∪ Bn is the set of (extended) domain
propositions;

2. Σ̂ = 2P̂ is the set ofŜ states. We denote each stateŜ ∈ Σ̂
asŜ = S ∪ b1 ∪ · · · ∪ bn, making explicit the components
S, representing the state of the original domainD, andbi
representing the state of behaviorBi (i = 1, . . . , n) ;

3. Ŝ0 = S0∪b10∪· · ·∪bn0, that is, initiallyD is in its initial
state and so is each available behavior;

4. Â =
⋃n
i=1{〈a, i〉 | a ∈ Oi}, i.e., all domain actions are

made available through behaviors. Observe thatÂ also
contains all behaviors’ local actions (i.e., those not inA);

5. ρ̂ ⊆ Σ̂ × Â × Σ̂ is such that〈Ŝ, 〈a, i〉, Ŝ′〉 ∈ ρ̂, where
Ŝ = S ∪ b1 ∪ · · · ∪ bn andŜ′ = S′ ∪ b′1 ∪ · · · ∪ b′n, iff

• if a ∈ A, then〈S, a, S′〉 ∈ ρ, that is, domain actiona
may evolve the dynamic systemD fromS to S′;

• if a 6∈ A, thenS = S′, that is,a is a local action for a
behavior and so it has no effects onD;

• there exists a transition〈bi, g, a, b′i〉 ∈ ̺i such that
g(S) = ⊤, that is, actiona is indeed enabled inBi;

• for eachj 6= i, b′j = bj , that is, all non-activated be-
haviors remain still;

6. Ĉ is a set of strong fairness constraint such thatĉ ∈ Ĉ iff

• there exists a strong fairness constraintc ∈ C such
that ĉ is obtained by replacing each occurrence of
atomic propositions of the form(act = a) in c with∨n
i=1(act = 〈a, i〉); or

• for somei ∈ {1, . . . , n}, there exists a strong fairness
constraintc ∈ Ci such that̂c is obtained by replacing:
(i) each occurrence of propositions of the form(act =
a) in c with proposition(act = 〈a, i〉); and (ii) each
occurrence of (proposition denoting) stateb ∈ Bi with
(the conjunction of literals denoting) its encodingb.

Informally, the above transformation compiles away all be-
haviors by encoding them into an extended dynamic system.
A state in this extended system encodes not only the state of
the original system, but also the state of each available be-
havior. Moreover, actions in the extended systems include
the specific behavior (i.e., its index) where it is carried out.

The main difference with the LTL compilation in (De Gi-
acomo, Patrizi, and Sardina 2010) is that we consider here
strong fairness constraints, both of the dynamic domainD
and in available behaviors.4

At this point, it is not difficult to see that solving the
component-based planning problem of achievingφ while

4In addition, with respect to (De Giacomo, Patrizi, and Sar-
dina 2010), we directly use an efficient (logarithmic) encoding of
behaviors and we avoid introducing the generalized notion of his-
tories and plans to account for behavior delegation. The reason is
that such delegation is already included in the action itself in the
extended dynamic system.



maintainingψ in S by means of operating a set of avail-
able behaviorsB1, . . . ,Bn is equivalent to solving the
component-free planning problem in the extended dynamic
systemŜ, as constructed above. As for complexity, ob-
serve that, whenn behaviors are present, we get that|P̂ | =
O(|P |+n∗ log(maxni=1 |Bi|)). Recalling that the complex-
ity of planning under strong fairness constraints is exponen-
tial in the number of domain propositions (see discussion
before Theorem 6), we get that this variant of the problem
can also be solved in EXPTIME.

Conclusion
In this work we have tackled strong fairness constraints in
planning. Such constraints have a strong modeling power
in regulating nondeterminism in nondeterministic domains,
and have great theoretical interest, as the ability of express-
ing them is one of the most distinctive advantages of LTL
over CTL in verification. We have shown that quite ad-
vanced forms of planning can be dealt with in presence of
such constraints, while remaining in the same EXPTIME-
complete class of standard conditional planning in nonde-
terministic domains with full observability (Rintanen 2004).
We conclude by stressing that, even if the study in this paper
is substantially theoretical, the technique adopted for solv-
ing such forms of planning is readily implementable through
systems for LTL synthesis, based on model checking game
structures, such as TLV5, Anzu6, and Ratsy7.
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