-
brought to you by .{ CORE

View metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

Generalized Planning with Loops under Strong Fairness Cortsaints

Giuseppe De Giacomo and Fabio Patrizi
Dipartimento di Informatica e Sistemistica
SAPIENZA Universita di Roma
Roma, ITALY
{degi aconp, patri zi }@li s. uni ronal. it

Abstract

We consider a generalized form of planning, possibly irvolv
ing loops, that arises in nondeterministic domains when ex-
plicit strong fairness constraints are asserted over tae-pl
ning domain. Such constraints allow us to specify the ne-
cessity of occurrence of selected effects of nondetertignis
actions over domain’s runs. Also they are particularly mean
ingful from the technical point of view because they exhibit
the expressiveness advantage of LTL over CTL in verifica-
tion. We show that planning for reachability and maintemanc
goals is EXPTIME-complete in this setting, that is, it has th
same complexity as conditional planning in nondetermimist
domains (without strong fairness constraints). We alsavsho
that within the EXPTIME bound one can solve the more gen-
eral problems of realizing agent planning programs as vgell a
composition-based planning in the presence of strongdagn
constraints.

Introduction

In this paper we consider a generalized form of planning,
possibly involving loops, that arises in nondeterminisiie
mains when explicistrong fairness constraintsre asserted
over the planning domain. Such constraints allow us to spec-
ify the necessity of occurrence of selected effects of nende
terministic actions over domain’s runs.

More precisely, we consider a standard nondeterministic
planning domain, that is, a finite state transition system de
scribed in the standard manner by means of action precon-
ditions andnondeterministieffects (Rintanen 2004). On
top of such a domain, we introdustrong fairness con-
straintsexpressed in Linear-time Temporal Logic (LTL), see
e.g., (Clarke, Grumberg, and Peled 1999; Vardi 1996), that
assert further properties of (possibly infinite) domainsiun
Through such constraints, one can restrict the nondetermin
ism of actions in nontrivial ways. Specifically, one can spec
ify that some selected effects of a nondeterministic action
must occur infinitely often along every infinite evolution of
the planning domain. For example, in modeling a gambling
domain, one may specify that using a “Las Vegas” style slot
machine, both winning and loosing happen infinitely often.
We remark that, in general, such type of constraints does not
apply to all nondeterministic actions: the action of chaoypi

Copyright(© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Sebastian Sardina
School of Computer Science and IT
RMIT University
Melbourne, AUSTRALIA
sebasti an. sardi na@m t. edu. au

a tree may result in the tree being (still) up or the treerglli
down; however, once the tree falls, the former effect does
not occur ever again.

In other words, strong fairness constraints, in particular
on action executions, provide great flexibility in modeling
planning scenarios. They allow for expressiogg-term
effects of action repetitions (e.g., tossing a coin an itdini
number of times yields an infinite number of heads), or ac-
tion fairness wrt effects (e.g., an infinite number of tads i
also obtained). They also allow for distinguishing between
those actions that guarantee their nondeterministictsftec
eventually occur and those that do not.

Interestingly, fairness assumptions in nondeterministic
domains are considered in the work @trong cyclic
plans (Cimatti et al. 2003): a strong cyclic plan is a
plan guaranteed to reach the goal under the (implicit) fair-
ness assumption thaveryeffect of a nondeterministic ac-
tion eventuallydoes occur. While this is often a realis-
tic assumption—in particular, when nondeterminism stems
from probabilistic effects like throwing a die or tossing a
coin—in some cases it is not satisfactory. For instance,
imagine a classical (mechanical) slot machine and an elec-
tronic one; the former is guaranteed to be fair, while the lat
ter may not, due to a potential bug. Both machines have es-
sentially the same description in the planning domain gapar
perhaps, from action names). Yet, they are very differant, i
that if the latter does indeed have a bug, then it may enable
infinite loosing runs. So, in order to eventually win one has
to repeatedly play in the classical machine—no plan guar-
antees winning in the buggy electronic machine. In this pa-
per, we aim then at giving the modeler the ability to control
the nature of nondeterministic choices, by allowing hen/hi
to state strong fairness conditions on selected effects-of s
lected actions.

Strong fairness conditions are notoriously difficult toldea
with in verification (Clarke, Grumberg, and Peled 1999).
The most common temporal properties in verification are the
following: (i) reachability. eventually something (good) be-
comes true{(ii) maintenanceor safety something (good)
will be true forever(iii) weak fairnessor responseforever
eventually something becomes true; we also have a well-
known generalized form, sometimes called generidalbr
ness forever, every time something becomes true (i.e., the
request), eventually something else becomes true (ie., th

https://core.ac.uk/display/357379287?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

response); angiv) strong fairnessor reactivity. if some- veloped for so-called Generalized Reactivity GR(1) class,
thing becomes true infinitely often, then something else be- which is based on model checking of game structures (Piter-
comes true infinitely often, as well. Note that strong fair- man, Pnueli, and Sa’ar 2006) and which admits efficient
ness constraints generalize liveness constraints, iretises symbolic implementation. Nonetheless, we are not able to
that not necessarily all occurrences of the request need to use such techniques off-the-shelf, because the presence of
be taken but infinitely many of them do. Such types of strong fairness constraints gives rise to LTL formulas that
dynamic properties yield a sort of hierarchy (with reacha- fall outside the GR(1) class. Consequently, we first need
bility and maintenance together at the bottom) based on in- to reduce the problem with strong fairness constraints to

creasingly more sophisticated technical machinery regluir
The two main formalisms used in verification, LTL and
CTL, can deal with the first four, but only LTL is able
to deal with strong fairness (Clarke, Grumberg, and Peled
1999). Indeed, strong fairness is possibly the single rea-
son that makes LTL the logic of choice (over CTL) for in-
dustrial verification (Accellera 2004; Armoni et al. 2002;
Vardi 2007).

In this paper, then, we study techniques to solve plan-
ning problems in nondeterministic full observable domain
in the presence of strong fairness constrain@ur work is
thoroughly based on literature on verification and is quite
novel in the context of Al. Indeed, most work on using tem-
poral logic for planning in Al is based on CTL, which is
currently the standard logic for planning by model check-
ing (Ghallab, Nau, and Traverso 2004). Previous work on
the use of LTL in planning has mainly focused on deal-
ing with temporally-extended goa({8acchus and Kabanza
1998; De Giacomo and Vardi 2000; Kerjean et al. 2006;
Baier, Bacchus, and Mcllraith 2009), often considering the
temporal goals as complementary properties to be verified
while reaching a main goal on finite runs only. Such comple-
mentary properties are typically used as a declarative mean
to control the search. Notice that LTL on finite runs is sub-
stantially simpler that standard LTL on infinite runs. Full
LTL goals have been considered in (De Giacomo and Vardi

2000), where the domain was specified however as a tran- *

sition system, possibly with partial observability. Very-s

phisticated forms of domain specification, based on second-

order LTL, where considered in (Calvanese, De Giacomo,
and Vardi 2002), again under partial observability.

Our results directly extend those for conditional plan-
ning. Indeed, by dropping constraints on the runs, we are
left with a standard nondeterministic planning domain with
full observability, and a solution for reachability goalsis
amounts to finding a conditional plan. Hence, the fact that
conditional planning is EXPTIME-complete provides the
complexity lower bound for the problems that we are in-
terested in. A gross upper bound for such problems is also
available off-the-shelf: synthesis for arbitrary LTL foum
las is 2EXPTIME-complete (Pnueli and Rosner 1989) and

a problem with weak fairness constraints of the required
GR(1) form.

The rest of the paper is organized as follows. We first in-
troduce some preliminary notions on LTL synthesis. Then,
we present planning under strong fairness constraints and
show how to solve it. After that, we move to more ad-
vanced forms of planning, by considering recently intro-
duced agent planning programs (De Giacomo, Patrizi, and
Sardina 2010), and composition-based planning (Sardina,
Patrizi, and De Giacomo 2008), both under strong fairness.
We close the paper with some final remarks.

Preliminaries on LTL

Linear-time Temporal Logic (LTL) is a well-known logic
used to specify dynamic or temporal properties of programs,
see e.g., (Vardi 1996formulasof LTL are built from a set

P of atomic propositions and are closed under the boolean
operators, the unary temporal operatgrgnexy, < (eventu-
ally), andOd (always from now on), and the binary temporal
operatoi/ (something eventually will hold andintil then,
something else always hold). Interesting examples of LTL
formulas are:

e O goal formulayp is eventually reached.
O¢: the goal formulap is always maintained true.
e 1 p: achieve goap while maintainingy.

OO: formulay is true infinitely often; this formula ex-
presses “weak fearness” or “responsiveness.”

O(y — <©p): forever, if formulay becomes true, then
o will eventually become true; this formula expresses a
form of “liveness.”

e OOp: eventually formulay becomes true and remains
true forever,; this formula expresses “persistence.”

o OCp — DOOy: if formula ¢ is true infinitely often,
then alsay is true infinitely often; this formula expresses
“strong fairness” or “reactivity.”

All above formulas except the last one can be also expressed

one can readily represent our planning problem under strong in CTL. The last one, “strong fairness,” is expressible only

fairness constraints as an LTL synthesis problem. Unfortu-
nately, techniques fdull LTL synthesis, though known for a
long time, have been resistant to practical implementation

due to the need of complementation of automata on trees,

see e.g., (Kupferman, Piterman, and Vardi 2006).

We will show here that planning under strong fairness
constraints in full observable domains remains EXPTIME-
complete for a variety of increasingly sophisticated goals
To do so we adapt a specific form of LTL synthesis de-

in LTL (cf. Introduction) and is the main focus of this paper.

LTL formulas are interpreted over infinite sequeneesf
propositional interpretations fa?, i.e.,o € (2). The set
of (true) propositions at positiohis denoted by (i), hence
o is denoted by (0),0(1),.... If o is an interpretation,
7 a natural number, and is an LTL formula, we denote
by 0,7 = ¢ the fact thatp holds in modeb at position,
which is inductively defined as follows (hene,c P is any
proposition andp, ¢ any LTL formulas; we omituntil for

brevity):

oi=p iff peo(i)

oyilEoVy it oil=d;oroil= gV

oifE—g it ol ¢

oiE=Q¢ it oit]l = ¢;

o,i | =<C¢ iff forsomej > i, we have that, j = ¢;
o,if=0¢ iff forall j >4, we havethat,j | ¢.

An interpretatiorns satisfiesy, writteno = ¢, if 0,0 = ¢.
Standard logical tasks such as satisfiability or validity ar
defined as usual, e.g., a formulés satisfiablef there exists
an interpretation that satisfies it. Checking satisfiabiit
validity for LTL is PSPACE-complete.

Here we are interested in a different kind of logical task,
which is calledealizability (akaChurch problemor synthe-
sis(Vardi 1996; Pnueli and Rosner 1989). Namely, we parti-
tion P into two disjoint setst’ and). We assume to haveo
controlon the truth value of the propositionsir, while we
can control those iy. The problem then iscan we control
the values o}y so that for all possible values &f a certain
LTL formula remains trueMore precisely, interpretations
now assume the formn = (Xo, Yp)(X1,Y1)(X2,Y2) -+,
where(X;,Y;) is the propositional interpretation at tlie
th position ino, now partitioned in the propositional in-
terpretationX; for X andY; for). Let us denote by
ox|; the interpretatior projected only on¥’ and truncated
at thei-th element (included), i.eqy|; = XoX; -+ X;.
Therealizability problemchecks the existence of a function
f:(2%)* — 2Y such that for al with Y; = f(ox|i), o
satisfies formulap. The synthesis problemonsists in ac-
tually computing such a function. Observe that in realiz-
ability/synthesis we have no way of constraining the value
assumed by’ propositions: the function we are looking for
only acts on propositions . This means that the most in-
teresting formulas for the synthesis have the form— ¢,
wherep, captures the “relevant” assignments of proposi-
tions in X (and))) andy,. specifies the property we want to
assure for such relevant assignments. The realizability (a
actual synthesis) are 2EXPTIME-complete for arbitrary LTL
formulas (Pnueli and Rosner 1989). However, recently, sev-
eral well-behaved patterns of LTL formulas have been iden-
tified, for which efficient procedures based on model check-

see below). For GR(1) formulas, realizability and syntbesi
are substantially simpler than for general LTL formulas:

Theorem 1 (Piterman, Pnueli, and Sa’ar 2006).
Realizability (and synthesis) of GR(1) LTL formulas
©a — r can be determined in tim@((p * ¢ * w)?), where

p andq are the number of conjuncts of the fom®® in ¢,
ande,., respectively,andw is the number of possible value
assignments o’ and) under the conditions op,’s first
two conjuncts.

Planning under Strong Fairness

The system we are interested to plan on consisf afstan-
dard nondeterministiplanning dynamic domajmrmodeling
the potential evolutions of world, enriched witl) a set of
strong fairness constraintsuling out unfeasible evolutions.

Dynamic domain A dynamic domainss a tupleD
<Pa Ea Aa SO7 p>, Where:

e P={pi1,...,pn}Iis afinite set olomain propositions
e ¥ = 2% is the set oflomain states

o A={ay,..
e Sy € X is theinitial state

., a,} is the finite set olomain actions

e p C ¥ x A x X is thedomain transition relation We

freely interchange transition notatiofs, a, S’y € p and

S 8 inD.

At each time point, a dynamic domain is in one of its
states; initially,Sy. An actiona is executablén a stateS if
S % S”inD for someS’. In such a caseq’ is a (possible)
a-successopf S. An actiona is nondeterministidgf there
exists a stat& having more than one-successor. Each state
S € X represents a complete valuation: P — {T, 1}
such thatu(p) = T iff p € S. Consequently, a propo-
sitional formulay identifies a subset af, namely, those
states whose valuations satisfies

Dynamic domain’s potential evolutions are calledhs

0
Technically, arun X is a sequence of the forr§® -

1 ... such thats® = S, and (St at, ST € p,

ing technologies applied to game structures can be devised.for ¢ > 0. For convenience, and wlog, we take runs to be
Here, we focus on one of the most general well-behaved pat- infinite. To that end, we assume the existence of a special

terns, called Generalized Reactivity (1pr GR(1)(Piter-

propositionend and a special actiamo0p, which when exe-

man, Pnueli, and Sa’ar 2006). Such formulas have the form cuted in any stat&' leads to an absorbing stateJ { end }—

wa — @r, With ¢, andy,. of the following shapes:

Pa’ (I)[va] A /\j D(I)j[vavoq)[X]] A /\k Doq)k[‘)(vy]v
Pr: (I)[va] /\/\j D(I)j[Xayqu)[va“ /\/\k Dofbk[)(,y],

where®|Z] stands for any boolean combination of symbols
from Z. Notice that: (i) the first conjunct expresses initial
conditions;(ii) the second (big) conjunct expresses transi-
tions —with the limitation that, cannot talk about the next
value of) propositions; andii) the third (big) conjunct ex-
pressesveak fairnessonstraints of the form “it is always
true that eventually something holds.” Howewane cannot
express strong fairness constraints in GRi{ddmulas (but

at any time point, one can stop executing domain actions
(forever).

Strong fairness constraints In addition to the usual
step-by-stepconstraints that the domain transition rela-
tion induces on runs, we consider more general con-
straints affecting runs’ whole extension. Formally, a
constraint on domain runis an LTL formulay over propo-
sitional vocabularyP ROP = PU P4, whereP, = {act =

a | a € A} is the set ofaction propositions proposition

We assume that both, and,. contain at least one conjunct
of such a form, if not, we vacuously add the trivial cneT.

(act = a) states that the current actionds To interpret

0
such 1formulas over domain runs of the form= S° -

St 2 ..., we simply consider the corresponding sequence
oy = (S°U {act = a"}), (ST U {act = a'}),---, and say
that \ satisfies a constraint (denoted\ =) iff o) E v

as explained in the previous section.

A strong fairness constrairi$ an LTL formula of the form
O0C¢ — OOy overPROP = P U Py, with ¢ andvy con-
taining no temporal operator other th@h which can never
occur nested (e.g.,0 O ¢ andO(pAq) are not allowed).
Observe thatveak fairnesgi.e., 0<$¢) is captured by con-
straints of the forraCT — O<C¢. Similarly, persistence
(i.e.,<0¢) is captured bydo—¢p — OO L.

To better understand how strong fairness constraints can
help expressing certain domans, let us next illustrater thei
use with some examples.

Example 1. The “Las Vegas” slot machine scenario pre-
sented in the Introduction can be easily modeled as a do-
mainD = ({win}, {{win},0}, {play},0, {(S,play, ') |
S, 8" C {win}}). States{win} and{) (i.e., ~win) represent
the cases in which the player has just won and lost, respec-
tively. The domain transition relation states that playatg
any states lead® to evolve nondeterministically to either
states{ win} or (.

So, in order to win, the best a player can do is play indefi-
nitely (assuming an infinite budget, of course). Howeves, th

always losing sequencg,s. = 0 2% 0 % g ”% .. isa
perfectly valid run undeD—the possibility that the player
never wins does exist! Consequently, there is no strategy
that can guarantee the player’'s ambitious goal.

A natural assumption foreal-world slot machines,
though, is that if someone plays infinitely often, then there
will indeed be infinitely many good rounds and, of course,
infinitely many bad ones. Thecnically, such information
can be easily stated using two strong fairness constraints:
OCact =play — OO—win andd$act = play — OCwin. A

Observe it is not always the case, though, that such con-
straints apply tall effects of a nondeterministic action.

Example 2. In the tree choppingscenario (Sardina et al.

A dynamic domain with strong fairness constraints is
called adynamic systemConcretely, alynamic systers
a pairS = (D,(C), whereD is a planning dynamic domain
andC is a finite set of strong fairness constraints.

Plans Next, we formalize the notion gflansand their re-
spectiveexecution®n a dynamic syste§ = (D, C).

aO

The length of a generic finite sequence = S° 2>

o—
S50 0 §tis 7| = £ 4 1, if 7 is infinite, then
|7| = oc. Also, if is finite, we defindast(r) = S¢. Given

a (ll

a (finite or infinite) sequence = S° AN BN S, we
define itsfinite prefix of lengthk (for 0 < & < |7| + 1) as

0 k—2
the sequence|, = S % ... ©— Gk—1,
A historyof S is afinite prefixof a run ofS. The set of
all histories ofS is referred to ag{. A general planoverS
is a functionr : H — A. The set of all general plans over a
domainsS is referred to asl.
An executiorof a general plam on systemsS is a, possi-

bly infinite, sequenceg = S° % g1 2 .. such tha(i)
SY = Sp; (ii) forall 0 < k < |7|, 7|x is an history ofS; (iii)
a*~! = (7)), forall 0 < k < |7|; and(iv) if 7 is finite,
thenw(last(n)) is undefined.

When all possible executions of a general plan are finite,
the plan is called aeneralized conditional plafgeneral-
ized since, in the presence of constraints on runs, they may
involve loops). Informally, generalized conditional plex-
ecutions are guaranteed to eventually terminate.

Goals We generalize the classical notion of reachabil-
ity goal. Given a dynamic domai, let ¢ and ¢

be propositional formulae oveP. A general planw
achievesp while maintainingy (written = = ¢/ ¢) if for
each of its (finite or infinite) executiong there exists &,

0 < k < |n|, such thatS* |= ¢ and S¥" = v, for all

0 < k' <k, and ify is finite, thenk = |7|.

Example 3. In a production line, when component items
reach the assemblage section, they are ottesty and
greasy The line provides two cleaning methods: one by

2006): with each chop, a tree may or may not fall down, but spraying air and another by spraying a special solvent. A
once down, the tree remains as such; also, continuous chop-finite number (depending on how dirty the item is) of air
ping does eventually bring the tree down. While the first part sprays ensures all the dust to be eventually removed from
of the scenario can be easily captured by a standard domaing given item; analogously a finite number of solvent sprays
(ln parthUlar, the fact that once a tree has fallen dOWre-lt r removes all the grease. Air (resp_’ 50|Vent) spraysange-
mains down), the effectiveness of the chopping action can timesalso effective in removing grease (resp., dust)—there
be captured by means of strong fairness, via the following s no guarantee for this though.

constraint¢act = chop — LG down. Figure 1 reports a fragment of the PDDL specification

As it can be seen, the example does not include a strong fair- corresponding to dynamic domain for the scenario. Ex-
ness constraint for one of the possible effects of the cligppi ~ Pressionvhen((cond)(eff)) states that itond holds before
action, that is:0%act = chop — OO-down. Also, note action execution theaff holds after it (i.e., conditional ef-
that the constraint capturing the effectiveness of the ehop fects); whereasneof (ey, ..., e,) states that the (nondeter-

ping action applies even in a domain where the tree can be Ministic) action yields one effect amorg, . . ., e,.
brought up again. Predicatesiusty and greasy represent the item’s current

state. The domain provides two nondeterministic actions
sprayAir andspraySol with no precondition and the fol-
lowing effects: (i) if the item is not dusty (greasy), then it

2In fact, nesting of operataf) raises no conceptual obstacle.
We avoid it for readability reasons only.

(define (donain productionLine)
(:predicates (dusty)(greasy))
(:action sprayAir
reffect (and
(when (not (dusty)) (not (dusty)))
(when (not (greasy)) (not (greasy)))
(when (dusty) (oneof (dusty)(not (dusty))))
(when (greasy) (oneof (greasy)(not (greasy))))))
(:action spraySol ...); see sprayAir
(:init (and (dusty)(greasy))))

Figure 1: Planning domain for the production line example.

remains as such after execution; gigif the item is dusty
(greasy), then dust (grease) may or may not be removed af-
ter execution. The effectiveness of these actions on duaist an
grease, respectively, is captured by the following tworgjro
fairness constraints:

OO (act = sprayAir A dusty) —
OO (act = sprayAir A dusty A O-dusty);

OO (act = spraySol A greasy) —
OO (act = spraySol A greasy A O—greasy).

In order to deal with the cases in whi€h# 3, we shall re-
duce the problem to synthesis of GR(1) specifications (Piter
man, Pnueli, and Sa’ar 2006). To do so, we exploit the con-
struction proposed in (Kesten, Piterman, and Pnueli 2005)
to reduce'fair discrete systems (fds)to “just discrete sys-
tems (jdf)", so as to come up with a problem formulation
compliant with the GR(1) form. To ease the presentation,
we present the reduction as a three-step process.

LTL encoding of dynamic systems In the first step, we
develop an LTL encodings of S, whose runs capture all
S evolutions, where the occurrences of operatoin strong
fairness constraints are compiled away. This will be useful
in the next step.

Let D be as above. The set of propositions thgt is
built upon isP = PU P4 U Px, wherePx contains one
propositiorpz_¢ for each subformul@)¢ appearing in some
strong fairness constraint € C. The intended meaning of
propositionpx_£ is to hold iff on next stat€ holds.

We stress thgpx £ is introduced only for syntactic con-
venience, so as to ease the reduction of the obtained LTL
encoding to the GR(1) form. Moreover, for convenience,
for each stateS € X, we define a propositional formula
vs = Ni_ li, wherel; = p; if p; € S, andl; = —p; other-

A procedure is needed to prepare each item for the as- |jise3

semblage process, that is, each item needs to be free of

dust and grease. Formally, this requires a ptasuch that

m | T U(—dusty A —greasy). Clearly, such a plan does ex-
ist: first repeat actioeprayAir until no dust is present on
the item, and then repeat actiepraySol until no grease
remains. Note that loops are required: one spray may not be
enough. Also, observe that there can be executions where
spraying air (solvent) is enough alone to remove both dust
and grease, so that no further processing is needed. Nenethe
less, only executing both loops guarantees all runs to even-
tually reach the goal. Of course, other plans may exist, e.g.
one where both actions are interleaved. [

With this example at hand, let us next see how to effectively
solve ourextendedglanning problems.

Solving Planning under Strong Fairness

Here, we face the problem of building plans that achieve
and maintain desired goal formulae. Let us start by formally
stating the extended planning task: given a dynamic system
S = (D,C), whereD = (P, %, A, Sy, p), an achievement
goal ¢ and a maintenance goal (both being propositional
formulae overP), the problem oplanning for reachability
and maintenance under strong fairness constraiatplires

to build a general plan overS such thatr = ¢ i/ ¢.

Observe that wheft = T, we obtain the standard notion
of reachability goal, and if in additio@ = (3, then the prob-
lem reduces to classical planning with nondeterminism and
full observability, for which the following is a known resul
see, e.g., (Rintanen 2004).

Theorem 2. Given a dynamic syste = (D, {)) and an
achievement goap, synthesizing a plam overS such that
m | TU ¢is EXPTIME-complete.

So, we definegs = 35" A Ogs"™" A 55", with
—~trans — SE‘\SP A @Snezt’ Where:
o 55" =g, i.e., D starts in its initial state;
e Formulaps” is defined as follows:
N hsrvar N =0\ sl
SEX,pa€Pa P, €Pa\{pa} (S,a,5")€p

wherep,, abbreviates propositiofuct = a). Each con-
junct asserts that iD is in stateS and actioru is to ex-
ecuted, then one of the possible successor states w.r.t.
is indeed the next state @ (an empty set of disjoins is
assumed.);

85" = Npocepy Pr£ < OF, that ispz_¢ holds in
current state if€ will hold in next state;

25" = N\, ec 7[O&/pr_£], wherey[a/ 3] means the for-
mula obtained by replacing each occurrence of subfor-
mulac« with formula in 4. By doing so, each constraint
in ps" assumes the form = 0G¢ — OO, where

¢ and1) are temporal operator free, while preserving its
semantics, due to the above constrainport.

C
[]

Observe that the obtained specification is, essentially, an

LTL representation of the original syste) wheregg'""
3Note that the set of formulae has linear size in the number of
states, which is exponential in the number of propositi@assthe
domain transition relation is described using explicitesta How-
ever, if a compact representation is used, as done, e.gdi Pt
can be polynomially encoded in LTL. In any case, as showm,late
our results do not depend on the size of the domain’s LTL encod
ing, but directly on the size of the domain’s state space.

—~1trans —~T1C

andps capture the information abofit, andps'“ rep-
resents the(()-free) strong fairness constraints. So, the con-
struction yields the following, straightforward, result:

a()

Lemma 3. A sequences = S° = S! “, .. isarun
of Siff o) E P35, Whereay = (S° U {p,o} U PY), (ST U
{par} U PL),--- such that for alli > 0, pz_¢ € P% iff
gitl): 5

From strong to weak fairness The second step consists
in compiling away the strong fairness constraints. This is

needed to guarantee a GR(1) specification to be obtained

at the end of the reduction process. Precisgly,above is
transformed into an equivalent formula (i.e., satisfied oy e
actly the same runs)s = @2 A Ogplrons A '€, where
each conjunct op’ is aweakfairness constraint.

First, we definePs as the set containing one proposi-
tion n_qAS for each conjunct = D<>$ — D<>$ occurring in
75", LetC be the set of all such conjuncts. Each propo-
sition n_gg is intended to hold at a given point in a run if,
from that point ongg remains false forever; in addition, we
introduce a propositiom, becoming true at a given point if
somen_$ is a mis-prediction (see below).

Then, we defines’s conjuncts as follows:

° sOfsnzt _ sE‘\Sinit A% A /\n_aEPC ﬁn_a;
o Qlrans — GSITS A o8 A %, where:

- ‘Pg = /\n_ggepc TL_(; — On—(g!
-5 = Oz ¢ (xc \ V(\:‘<>$—>D<>$)e€(¢ A n_d)));

) Sogc — DOﬁxc A\ /\(DO&SHDO@)Gé\DO(n_(bV w)

Assumption formulaThe formula encoding how the do-
main isexpectedo behave when a plan is under execution
is defined agp, = i A plrans a pre,

Propositional formulg™* = @ A ach = ¢ A mnt =
1 characterizes the initial state of the systefrstarts in its
initial state andach andmnt hold iff ¢ and+ do, respec-
tively.

LTL formulatrans = O(plrans pplrans g ptrans) char-
acterizes the assumptions aoh, mnt andS’s evolutions.
Formulap!X " has been discussed above, whergd§"*
andp!rens are defined as follows:

(ach = Qach) A (—ach = O(ach = ¢));

trans __
ach

trans __

pirar (=mnt — OQ—mnt) A (mnt A ach — Omnt) A

(mnt A —ach — O(mnt = 1)).

Thatis,ach holds if ¢ has been achieved in the past or in the
current state, whereasnt holds iff 1) was never violated in
the past before was achieved.

Finally, we simply takep,¢ = ¢'& so as to capture the
strong fairness constraints originally defined®a runs (re-
modeled during the above reduction phase).

Requirement formula_astly, we construct formula, =

Ogptrans A p90al capturing therequirementsor the plan to

be synthesized. Formulgl"s" encodes the action execu-
tion constraints, requiring one and only one action to be exe
cuted at each s?epzf[c‘;"s = Vy_ea_/[y A Nyren o) ﬁy'J. As

for the synthesis “objective”, it is simply theeak fairness
formulapd°® = OO (ach A mnt). That is, we require a
successful plan to always eventually bring abgin every
run (i.e., equivalent tach being eventually true) while not
violating+ up to then (i.e., equivalent to not falsifyimgnt).

It is not hard to check that the LTL formulf obtained
is indeed in GR(1) form. Hence, we can apply the results
from (Piterman, Pnueli, and Sa’ar 2006) and thus obtain the
following theorem.

Observe that no strong fairness constraint appears in the ob Theorem 5 (Soundness & Completeness)here exists a

tained formula. Indeedy’s’ is a conjunction of weak fair-
ness formulaeld$€) only. Exploiting the results in (Kesten,
Piterman, and Pnueli 2005) we get:

Lemma 4. For every runo, o = pg if and only ifo = ps.

Building plans We can now show the final step of the re-
duction, i.e., the encoding of the problem as a GR(1) specifi-
cation. Taking the LTL formules as above, we start build-
ing the GR(1) formula” = ¢, — ¢, by specifying the sets

of uncontrolled and controlled propositions, and thenduil
the assumption and requirement formulas.

Uncontrolled and controlled proposition3he set ofun-
controlled propositions isY = P U Px U Po U {z.} U
{ach, mnt}, where all sets exceptuch, mnt} are as above.
Propositionach is intended to record that formudahas al-
ready been achieved along a run (either in the current or in
the past); similarly, propositiomnt records that) has been
maintained along a run up to the state (included) where
has been satisifed. Finally, the setohtrolledpropositions
is simply) = P4y, i.e., the domain actions.

plan overS that achieveg while maintaingy iff LTL for-
mulaY, constructed as above, is realizable.

As for complexity considerations, analyzing the structure
of T, we observe thati) ¢, contains as many subformulae
of the formO<¢ as strong fairness constraintdnnamely,
|Pcl; (ii) ¢, contains just one such subformul@i) the
number of possible value assignmentsifand) under
the conditions ofp, — ¢, is O(2/FIFIPxI+IPel .| py))
given that only oneP, proposition can be true at each
step. Consequently, from Theorem 1, checking the exis-
tence of a plan for reachability and maintenance can be done
in O((|Pc| -1 - (2IPIHIPxI+IPel .1 Py |))?). Hence together
with the EXPTIME-hardness of Theorem 2, we get a tight
complexity characterization for our problem.

Theorem 6 (Complexity). Checking the existence of a plan
that achievesy while maintainingy in a dynamic domain
under strong fairness constraints is EXPTIME-complete.

We remark that the technique of (Piterman, Pnueli, and Sa’ar
2006) synthesizes an actual solution to the problem, not
merely verifies its existence: one actually gets the plan out
of the realizability checking.

Agent Planning Programs

In this section we turn our attention &ment planning pro-
grams(De Giacomo, Patrizi, and Sardina 2010), which are
high-level specifications afesiredagent behaviors in terms
of declarative goals

Agent planning programs An agent planning program
or simply aplanning program for a dynamic domaii® is
atuple7T = (T, G, to,), where:

T = {to,...,tn} is the finite set oprogram states

G is a set of (extended) goals of the fofm, ¢): achieve
¢ while maintainingy;

to € T is theprogram initial state
0 C T x G x T is thetransition relation We freely inter-
change notationg&, ¢, ¢,t') € § andt¢ L84 in T,

When an agent planning program is “realized,” the follow-
ing happens: at any point in time, the planning program is
in a statet and the system, or more precisely the domain,
in a stateS (initially, statesty and Sy, respectively); the

agent then chooses to perform any transitioh% + (out-
going fromt); then, starting front, a course of actions that
brings the domain to a state satisfyidgvhile only travers-
ing states satisfying is executed; finally, the agent plan-
ning program moves t¢ and the agent may choose a new
transitiont’ 2% ¢, and so on. Notice that the executed
actions must guarantee, at any point in time, the feasibilit
of all possible (planning program’s) transitions the agmt

choose next, once the planning program has reached its suc-
cessor state. This is because the agent makes its decision

in a step-by-step fashion. The problem we deal with in this
section amounts to concretabalizingsuch programs.

We formalize the planning program semantics by gener-

Realizing agent planning programs We build a GR(1)
formula® = ¢, — ¢, in an analogous way as done in
the previous section. So, assurfieis an agent planning
program to be realized in a dynamic systém

Let s be the corresponding LTL specification with no
strong fairness constraints, obtained as shown before, and
let P,, = PUPx UPcU{mnt, ach,z.}. In the following
construction, we shall refer to the reduction presentetén t
previous section and often reuse symbols defined there.

Uncontrolled and controlled proposition3he set ofun-
controlledpropositions ist’ = P, s U X1 U Xyq, Where(i)
P, is as above(ii) X7 contains one proposition for each
program state, denoting the current state 6f; and (iii)
Xreqg = {reqj‘z | (t,9,¢,t') € §} contains one proposition
for each program transitiomeqi states that the agent, ac-
cording to progran¥, is currently requesting to achieye
while maintainingy.

The set ofcontrolled propositions iy = P4 U {last},
where P4 is as above and propositidnst states that last
action of current plan is to be executed next (then, after exe
cution, the agent can issue a new request).

Assumption formula The assumption formula is
0o = Pt A DOptrans A pre. For legibility, we define for
each program statee 7', a propositional formulaeq, =

Vit woies requ representing the fact that the agent is re-

guesting at least one transition available in program state

Propositional formulg i = ,@% At characterizes the
(legal) initial state of the overall system. Note no cornstia
onlast nor on propositions irt,., are imposed.

LTL formula @l *"s = plrans A plrens characterizes the
ssumptions on the overall evolution. In particulgf " is
he same as that ips of the previous section, whilg!r"s

defines the “transition rules” for the planning program|toui

as the conjunction of the following formulae:

alizing what was proposed in (De Giacomo, Patrizi, and Sar- e \/,cx, [t A Ay ey, ¢y 1], thatis, the program is in ex-

dina 2010) to our context.
An agent planning prograrh is realizableif there exists
a function, called/ -realization w : H x § — II such that:

1. for all transitionst P2 tin T, w(So, to R t) is de-
fined, that is, there is a plan for every

2. if w(h,t 23 ') is defined witho(h, t 23 /) = r, then:

(a) = is a generalized conditional plan for syste$p,
where S), is obtained fromS by replacing its initial
stateSy with statelast(h);

(b) 7 E YU ¢in S, thatis,r achievesp while maintain-
ing conditiom) when exectuted in syste&),;

(c) forall ’s executions) and all possible next transitions

L= 0, w(h - n,t' ¢ t") (noteh - n is well

defined as they end and start in the same state, respec-®

tively.)

The problem we are concerned with is themow such a
functionw can be built? Once again, it turns out that the
problem can be solved by resorting to LTL synthesis for
GR(1) specifications.

actly one of its states;

* Nicxplt = reqy, thatis, in each state, the agent exe-
cuting the program ought to be requesting some of the
possible transitions available in its current state;

¢ ¢ ;

® Nregtreqt) g rent rety 105 = Ted s that s, at
most one program transition can be requested at a time;

* Nity,oanyeslt A Teqi A last — QOt'], that is, if transition

t <M>> t" is currently being requested and the last action

of current plan is to be executed next, then the program
shall move next to its successor stéte

® Aicx Lt A—last) — (Ot], thatis, the program remains
stillif the current plan is still not completed (new requeest
are not allowed if the latest is not fulfilled);

Niexr, .00 (E A Tequ A =last) — Oreqi], that is,
the agent remains requesting the same transition if the cur-
rent plan is still not completed.

Finally, ¢7° = ¢, whereyy’ includes the reduction of
strong fairness constraints into weak fairness ones, as de-
fined in the previous section.

Requirement formula Now, we build formula
@, = Optrans A pgeal which captures the requirements for
therealization(i.e., requirements on functian).

LTL formula ptrans = plrans p pirans a pirans, encodes

the constraints on action executions and how planning pro-
gram transitions are successfully carried out:

ptrans requires exactly one domain action to be executed
per step (see previous section);

plrans — /\Teqie%q [req?) A last — Og), that is, upon

plan completion, requested achievement goa indeed
achieved;

trans

plrans /\Teqiexmq[requ —], that is, maintenance
goal in current request is respected.

Finally, we encode the synthesis “objective” by means of
just one weak fairness conjungt, !, = O last.

The following result comes by comparing the above con-
struction with the definition of planning program realipati

Theorem 7 (Soundness & Completeness)lhere exists a
realization of an agent planning prograff over a dynamic
systens iff LTL formula® built as above is realizable.

Clearly,® is a GR(1) formula, hence by reasoning analo-
gously to Theorem 6 we get:

Theorem 8 (Complexity). Checking the existence of a re-
alization of an agent planning program over a dynamic
domain under strong fairness constraints is EXPTIME-
complete.

Again, the technique proposed actually synthesizes the rea
ization of the planning programs during the checking.

Example 4. Consider an extension the production line sce-
nario, in which items arrive on request and can be placed in
one of three locations: on a workbench, to be processed; in

(define (donain productionLi ne2)
(:predicates (dusty) (greasy) (onW) (stored)
(di sposed) (grabbed))

(:action | oad
:precondition (not (onW))
ceffect (and (onWb)
(not (stored)) (not (disposed))
(oneof (dusty) (not (dusty)))
(oneof (greasy) (not (greasy)))))

(:action sprayAir
:precondi tion (onW)
reffect (and
(when (not (dusty)) (not (dusty)))
(when (not (greasy)) (not (greasy)))
(when (dusty) (oneof (dusty) (not (dusty))))
(when (greasy) (oneof (greasy) (not (greasy))))))
(:action spraySol ...) ;anal ogous to sprayAr
(:action grab
:precondition (and (onW) (not (grabbed))
:effect(and (not (onW)) (grabbed)))

(:action store
:precondition (grabbed)
:effect(and (not (onW)) (stored)
(not (grabbed))))
(:action dispose
:precondition (grabbed)
reffect(and (not (onW)) (disposed)
(not (grabbed))))

(:init (not (onW)) (not (grabbed))))

Figure 2: Planning domain for the production line example.

a storage, to be sent to the assemblage tape; or in a garbage

area, to be disposed of. The PDDL fragment reported in Fig-
ure 2, describes the domain using the following predicates:
dusty and greasy, stating whether the current item is dusty
and greasy, respectivelyn Wb, stored anddisposed, cap-
turing the fact that the current item is on the workbench, in
the storage or in the garbage area, respectivelyyasided,
stating whether the arm is holding an item. |Initially, the
workbench is empty and the arm not holding anything.

The domain provides actions to manipulate the items. Ac-
tion 1oad places a new item in the workbench, which is re-
quired to be empty. ActionsprayAir andspraySol work
as in Example 3, except that they require the item to be on
the workbench. Actionstore anddispose move the cur-

rent item to the storage or the garbage area, respectively,

and can only be executed if the arm holds the item, which
is achieved by executing actigirab, executable when the
item is on the workbench and the arm is not holding any-
thing. Effectiveness adprayAir andspraySolis captured

by the very same fairness constraints as in Example 3.

The items preparation process is captured by the planning
program depicted in Figure 3. Maintenance goals are omit-
ted as allT. Initially, in statet,, the program requires a new
item to be loaded on the workbench. Then, from state

there are two possible choices: either the item is not stored
(possibly because it is damaged) or it is cleaned and then
stored for the assemblage stage—the choice is under the au-
tonomous agent running the program. Finally, the routine
starts again from statg for processing a new item.

The planning program has a realization, which is as fol-

lows. Transitiont, on b t; is served by executingjoad,
thus obtaining a new item, possibly dusty and greasy, on the

workbench. Next, it; %225 ¢ is requested, it is served by
the sequencgrab; dispose. Observe that, in principle, the
transition could be realized by simply leaving the item on

the workbench. However, that will preclude the next request

to on b t1 to be realized, as the workbench needs to be
empty to load a new item. If transition _““**2397°Y ¢,

is requested instead, it can be served by iterating actions
sprayAir and spraySol as necessary (cf. Example 3),

stored

from where next request — ¢y, can simply be achieved
by the sequencgrab; store. |

—stored

_)@A/Onmﬁdusty A —greasy
0 ()

stored

Figure 3: Planning program for the item preparation routine

release release

Component-based Planning Arm BC_).

Up to now, we have assumed that actions are always avail-
able, of course as long as their preconditions are fulfilled. store/dispose
However, it is often the case that actions can be carried
outonly through certain available actuators, such as a grip- .]]]]
erally have their own internal logic that needs to be re-
spected and evelocal actions (e.g., a camera needs to o)))
be turned on before a picture can be taken). To account Whenabehaviorisina certain state, it can be instructed to
for this, in this section, we consider planning in the pres- Performany of the actions available from that state due to an
ence of fairness constraintait where actions are avail- (outgoing) transition whose guard holds true. Observe that
able only by means of a set of so-called “available behay- Pehaviors are, in general, nondeterministic, that is, rgare
iors” We point out that the new task is similar to that State and an action, there may dmveraltransitions whose
of behavior composition (De Giacomo and Sardina 2007; guards evaluate t&. Consequently, when choosing the ac-
Sardina, Patrizi, and De Giacomo 2008) and that of agent tion to execute next, one cannot be certain of the resulting
2010), except for two main differences. First, here, we are Since this depends on what particular transition happens to
interested in solving a standard planning problem, rather take place. In other words, nondeterministic behaviors are
than implementing a desired target system. More impor- Only partially controllable which captures the fact that one
tantly, the representations that we shall use here for behay hasincompleténformation on the component's functioning.
iors is substantially more expressive than the ones used in Finally, since behaviors can include their olaeal actions,
such works, in that strong fairness constraints will be used ~thatis actions irD that are notind, it is assumed that those
So, besides the dynamic systein= (D, C), as before, actions are a_llways possible in the dynamic system and have
we assume also a set of availablehaviorsmodeling the ~ NO effecton its state.
components at disposal (typically, physical devices of-sof Example 5. Continuing our production line example, we
ware modules). A representation for such behaviors needs now imagine that we cannot act in the world if not by us-
to capture the following features: first, behaviors’ logiayn ing the three available robotic arms depicted in Figure 4. Al
depend on properties of the domain (e.g., an arm can grab actions are consequences of any of these arms. We observe
a block if not holding anything); second, different choices that arms* and B” are nondeterministic when trying to
may be available when activating the behavior (e.g., at some hold a component item. This is because the arm may fail
point the arm may be used to move a block or to flip it). to properly hold the item, falling then into staii¢ and#?,
Finally, beingabstractionsof actual components, the repre- respectively. In that case, the arms cannot do their actual
sentation needs to be able to accommodate lack of informa- job—spraying air or solvent—and all they can do is to just

tion about the internals of the components. . release the item. Only when the devices are successful in
Formally, abehaviorover a dynamic syster (with set holding the item, reaching thus statgsandb5, can the item
of states¥)) is a tupleB = (B, O, by, G, o, Ci), where: be sprayed (and afterwards finally released). Finally, Afm

is capable of loading items into the workbench and unload

) o _ _ items by storing or disposing them. For simplicity, we as-

O is the finite set of behavior’s actions s2.N A # 0; sume no guards in behaviors transitions, though, it is easy

bo € B is the behavior’s initial state; to imagine arms that do require some condition to be true in
_ .) the world to be able to perform an action (e.g., @fimay

G is a set oguards that is, boolean functions of the form gy he able to load items of no more than a certain weight).

e B s the finite set of behavior’s states;

g: 2= {T,1}; Now, consider again the nondeterminism of aifiisand
e 0 C B x G x O x BistheB’s transition relation. We B’ when it comes to hold an item for spraying. Under this
freely interchange notatior(s, g, a, ') € o andb <g._,a>> b setting, the original goal of preparing each item for the as-

in B: semblage process cannot be guaranteed anymore. The rea-
' son is that even though one can use ahisndB® to spray

Cj is afinite set of strong fairness constraints over the set the items to remove their dust and grease, it could happen

BU{act =010 € O}. that one of the arms can never succeed grabbing the item.

Technically, this means that when requesting actiend

in, say, armi3“, its actual evolution always results in state
by from where it is not possible to spray the item with air.
Nonetheless, the domain expert knows that while arms can
indeed fail to properly hold an item at some point, they will
eventually succeed with enough tries. To accommodate this
domain information we include the following strong fairees
constraints for behavioi§® andB:

OO (b3 A act = hold) — OObS (for behavior armiz®);
OO (bY A act = hold) — OO, (for behavior armBY).

With this extra domain information, it is now possible to
solve the (extended) planning task, namely, it is possible t
build a planrt such thatr = T 1/(—dusty A —greasy) and
m relies only on the three arms at disposal. As it can be
easily seen, such a plan exists: first, use &tto load the
item; then repetitively use armt$* and B¢ to spray air and
solvent to the item; finally, once processed the item can be
either stored or disposed using afifione again.

We note two important points next. Firstly, in contrast
with the solutions in previous sections, one cannot spray an
item several times in a row anymore. Instead, each spray
should be preceded by a holding operation and followed by
a releasing: this are constraints coming from the available
actuators, not the actual environment. Secondly, in a suc-
cessful run, there could be several failed tries of cleaaing
block, that is, actionso1d followed immediately by actions
release. However, due to the strong fairness constraint, we
know that by trying enough times, the arm will eventually
succeed holding, and thus spraying, the item. |

As one can clearly see from the example, the possibility
of using strong fairness constraints in defining availalele b
haviors is of ultimate importance. Indeed such constraints
allow the domain expert to accommodate more expressive
kind of incomplete information that could have a big im-
pact in the overall problem. Note that in, e.g.,(De Giacomo
and Sardina 2007; Sardina, Patrizi, and De Giacomo 2008;
De Giacomo, Patrizi, and Sardina 2010), such types of con-
straints are not accounted for, and the problem described in
the above example would yield no solution.

From Behavior Programs to Richer Domains

The problem now is how to solve a planning problem by
acting in the domaionly through the available behaviors

4,

To combine allB;’s and D into a plannlng domain, we
build a new dynamic syster§ ((P,S, A, So,ﬁ) C),

where:

1. P = PUB,U---UB, is the set of (extended) domain
propositions;

2. 3 = 2P isthe set ofS states. We denote each stéte 3,

asS = SuUb U---Uby, making explicit the components
S, representing the state of the original dom®&inandb;
representing the state of behavi§yr(: = 1,...,n);

3. Sp = SoUb1oU- - -Ubno, that is, initiallyD is in its initial

state and so is each available behavior;

A= Ui_i{({a,i) | a € O;}, i.e., all domain actions are

made available through behaviors. Observe thatlso

contains all behaviors’ local actions (i.e., those natiin

570 C S x A x 3 is such that(S (a,1), S'> € p, where
S = SUbjU---Ub, andS’ = S’ub’ U b, iff

if a € A, then(S,a,S’) € p, that is, domain action

may evolve the dynamic systefhfrom S to S’;

e if a € A, thenS = §’, thatis,a is a local action for a

behavior and so it has no effects Dy

there exists a transitiofp;, g, a,b;) € p; such that

g(S) = T, thatis, actioru is indeed enabled if3;;

for eachy # i, b’ = b;, that is, all non-activated be-
haviors remain st|II

Cis a set of strong fairness constraint such thatC iff

e there exists a strong fairness constrainE C' such
that ¢ is obtained by replacing each occurrence of
atomic propositions of the forrfuct = a) in ¢ with
Vi, (act = (a,i)); or

e for some: € {1,...,n}, there exists a strong fairness
constraintc € C; such that is obtained by replacing:
(i) each occurrence of propositions of the fofaat =
a) in ¢ with proposition(act = {(a,)); and(ii) each
occurrence of (proposition denoting) state B; with
(the conjunction of literals denoting) its encodiing

Informally, the above transformation compiles away all be-

haviors by encoding them into an extended dynamic system.
A state in this extended system encodes not only the state of
the original system, but also the state of each available be-

6.

In a similar way as done in (De Giacomo, Patrizi, and havior. Moreover, actions in the extended systems include
Sardina 2010), we can reduce the component-based plan-the specific behavior (i.e., its index) where it is carrietl ou
ning task to the original component-free problem. To that The main difference with the LTL compilation in (De Gi-
end, we show below how to suitably embed the behavior de- acomo, Patrizi, and Sardina 2010) is that we consider here

scriptions into a dynamic system.

Let Bl, e ,Bn, with B;, = <Bi, Oi, bio, Gi, 0Oi, Cl>, be
the set of available behaviors over a dynamic system
(P, %, A, So, p), C). For eachs;, let B; be a tightest set of
boolean propositions that is large enough to provide a pinar
encoding ofB; states (clearly|B;| is logarithmic in|B;]).
We assume alB;’s pairwise disjoint and disjoint fron®.
We represent the encoding of a generic elenteatB;, as

b € 2B, under the assumption thacontains all and only
B;’s propositions evaluating td in the encoding ob.

strong fairness constraints, both of the dynamic dorfain
and in available behaviofs.

At this point, it is not difficult to see that solving the
component-based planning problem of achievihgvhile

“In addition, with respect to (De Giacomo, Patrizi, and Sar-
dina 2010), we directly use an efficient (logarithmic) eringdof
behaviors and we avoid introducing the generalized notfdnss
tories and plans to account for behavior delegation. Theore#s
that such delegation is already included in the actionfiisethe
extended dynamic system.

maintainingy in S by means of operating a set of avail-
able behaviorsB3,...,B, is equivalent to solving the
component-free planning problem in the extended dynamic
systemsS, as constructed above. As for complexity, ob-
serve that, when behaviors are present, we get tlhﬁt =
O(|P|+nxlog(max_, | B;|)). Recalling that the complex-

ity of planning under strong fairness constraints is expene
tial in the number of domain propositions (see discussion
before Theorem 6), we get that this variant of the problem
can also be solved in EXPTIME.

Conclusion

In this work we have tackled strong fairness constraints in
planning. Such constraints have a strong modeling power
in regulating nondeterminism in nondeterministic domains
and have great theoretical interest, as the ability of esgpsre
ing them is one of the most distinctive advantages of LTL
over CTL in verification. We have shown that quite ad-
vanced forms of planning can be dealt with in presence of
such constraints, while remaining in the same EXPTIME-
complete class of standard conditional planning in nonde-
terministic domains with full observability (Rintanen 200

We conclude by stressing that, even if the study in this paper
is substantially theoretical, the technique adopted for-so
ing such forms of planning is readily implementable through

Calvanese, D.; De Giacomo, G.; and Vardi, M. Y. 2002.
Reasoning about actions and planning in LTL action theo-
ries. InProc. of KR'02 593-602.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P.
2003. Weak, strong, and strong cyclic planning via sym-
bolic model checkingArtificial Intelligence Journall47(1-
2):35-84.

Clarke, E. M.; Grumberg, O.; and Peled, D. A. 1988del
checking Cambridge, MA, USA: The MIT Press.

De Giacomo, G., and Sardina, S. 2007. Automatic synthesis
of new behaviors from a library of available behaviors. In
Veloso, M. M., ed.Proc. of IJCAI'07, 1866-1871.

De Giacomo, G., and Vardi, M. Y. 2000. Automata-theoretic
approach to planning for temporally extended goals. In
Proc. of ECP'99 226-238.

De Giacomo, G.; Patrizi, F.; and Sardina, S. 2010. Agent
programming via planning programs. Rroc. of AA-
MAS’1Q To appear.

Ghallab, M.; Nau, D. S.; and Traverso, P. 20@4itomated
Planning: Theory and PracticeMorgan Kaufmann.

Kerjean, S.; Kabanza, F.; St.-Denis, R.; and Thiébaux, S.
2006. Analyzing LTL model checking techniques for plan
synthesis and controller synthesis (work in progreE$c-
tronic Notes in Theoretical Comp. Scienb$9(2):91-104.

systems for LTL synthesis, based on model checking game Kesten, Y.; Piterman, N.; and Pnueli, A. 2005. Bridging the

structures, such as TByAnzf, and Ratsy.

Acknowledgments

We would like to thank the anonymous reviewers for their
helpful comments. Fabio Patrizi is partially funded by the
IST Programme of the EU Commission — Project SM4All

gap between fair simulation and trace inclusibriormation
and Computatior200(1):35 — 61.

Kupferman, O.; Piterman, N.; and Vardi, M. Y. 2006. Safra-
less compositional synthesis. Broc. of CAV’'06 31-44.

Piterman, N.; Pnueli, A.; and Sa’ar, Y. 2006. Synthesis of
reactive(1) designs. IRroc. of VMCAI'0§ volume 3855

(FP7-224332). Sebastian Sardina acknowledges the supportof Lecture Notes in Computer Science (LNC3j4-380.

of Agent Oriented Software and the Australian Research
Council (under grant LP0882234).

References

Accellera. 2004.Property Specification Language Refer-
ence Manualwww. eda. or g/ vf v/ docs/ PSL-v1. 1.
pdf .

Armoni, R.; Fix, L.; Flaisher, A.; Gerth, R.; Ginsburg, B.;
Kanza, T.; Landver, A.; Mador-Haim, S.; Singerman, E.;
Tiemeyer, A.; Vardi, M. Y.; and Zbar, Y. 2002. The For-
Spec temporal logic: A new temporal property-specification
language. IProceedings of the TACAS'0296-211.

Bacchus, F., and Kabanza, F. 1998. Planning for tempo-
rally extended goalsAnnals of Mathematics and Atrtificial
Intelligence22:5-27.

Baier, J. A.; Bacchus, F.; and Mcllraith, S. A. 2009. A
heuristic search approach to planning with temporally ex-
tended preferencesArtificial Intelligence Journall73(5-
6):593-618.

Swww. ¢s. nyu. edu/ acsys/ t1 v/
Sww. i st . tugraz. at/staff/jobst mann/ anzu/
rat.fbk.eul/ratsy/

Springer.

Pnueli, A., and Rosner, R. 1989. On the Synthesis of a
Reactive Module. IProc. of POPL'89 179-190.

Rintanen, J. 2004. Complexity of planning with partial ob-
servability. InProc. of ICAPS’04

Sardina, S.; De Giacomo, G.; Lespérance, Y.; and Levesque,
H. J. 2006. On the Limits of Planning over Belief States. In
Proc. of KR'06 463-471.

Sardina, S.; Patrizi, F.; and De Giacomo, G. 2008. Behavior
composition in the presence of failure. Bioc. of KR'08
640-650.

Vardi, M. Y. 1996. An Automata-Theoretic Approach to
Linear Temporal Logic. Inogics for Concurrency: Struc-
ture versus Automat&pringer.

Vardi, M. Y. 2007. Automata-theoretic model checking re-
visited. InProc. VMCAI'07, 137-150.

