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ABSTRACT
We analyze the evolution of smartphone usage from a dataset
obtained from three, 15-day-long, user-side, measurements
with over 1500 recruited smartphone users in the Greater
Tokyo area from 2013 to 2015. This dataset shows users
across a diverse range of networks; cellular access (3G to
LTE), WiFi access (2.4 to 5GHz), deployment of more pub-
lic WiFi access points (APs), as they use diverse applica-
tions such as video, file synchronization, and major software
updates.

Our analysis shows that smartphone users select appropri-
ate network interfaces taking into account the deployment of
emerging technologies, their bandwidth demand, and their
economic constraints. Thus, users show diversity in both
how much traffic they send, as well as on what networks
they send it. We show that users are gradually but steadily
adopting WiFi at home, in offices, and public spaces over
these three years. The majority of light users have been
shifting their traffic to WiFi. Heavy hitters acquire more
bandwidth via WiFi, especially at home. The percentage of
users explicitly turning off their WiFi interface during the
day decreases from 50% to 40%. Our results highlight that
the offloading environment has been improved during the
three years, with more than 40% of WiFi users connecting
to multiple WiFi APs in one day. WiFi offload at offices
is still limited in our dataset due to a few accessible APs,
but WiFi APs in public spaces have been an alternative to
cellular access for users who request not only simple con-
nectivity but also bandwidth-consuming applications such
as video streaming and software updates.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring

General Terms
Measurement
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Figure 1: Growth in residential broadband and cellular traf-
fic in Japan [34].
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1. INTRODUCTION
In recent years the deployment of high-speed Internet at

home and bandwidth-consuming applications have been driv-
ing the growth of residential broadband traffic. Following
this growth, smartphone traffic has had a large impact on
cellular providers. Figure 1 illustrates the growth in the to-
tal residential broadband and cellular (3G+LTE) download
traffic volumes in Japan [34]. The total residential broad-
band traffic was estimated from the traffic volume measured
at the customer edges of six Japanese commercial Internet
service providers (ISPs). The total cellular traffic was mea-
sured in the backbones of four Japanese cellular providers
covering most cellular users in Japan. The cellular traffic
volume from smartphones accounted for 20% of the resi-
dential broadband traffic volume at the end of 2014. One
reason for this trend is the rapid deployment of smartphones
with rich applications. Most Japanese smartphone users are
charged a flat rate with a soft bandwidth cap where user’s
maximum bandwidth is limited (e.g., 128kbps) during peak
hours for a few days if the previous three days download
volume surpasses a threshold (e.g., 1GB); thus, most light
users are not concerned about saving their cellular traffic
volume.

A crucial issue for cellular providers is the limited resource
of channels in cellular networks. Cellular providers employ



several methods to minimize quality of service/quality of
experience (QoS/QoE) degradation. One commonly used
technique to mitigate this issue is to apply a bandwidth cap
to heavy hitters. Second, providers are deploying new capac-
ity such as the new 4G LTE network reaching full coverage in
Japanese cities. Finally, they are currently encouraging their
customers to offload cellular traffic to WiFi networks (WiFi
offloading). To enable WiFi offloading, cellular providers are
deploying new free WiFi access points (APs) for their cus-
tomers in public places (e.g., cafes, metro stations, streets,
and airports). Furthermore, they have begun to give cus-
tomers free home WiFi routers with the expectation that
these will increase offloading at home to residential broad-
band. The Japanese government also plans to promote the
deployment of more free APs in public spaces towards the
2020 Olympic Games in Tokyo [35]. This promotion is ex-
pected with the goal of supporting Internet access for foreign
visitors. Rapid deployment of better WiFi coverage enables
cellular providers to offload 3G/LTE traffic to WiFi net-
works in many places if they appropriately manage to lead
their users to these networks.

The success of these WiFi deployment hinges on this key
question: how do smartphone users select a network from
the alternatives available to them? Prior work has not sup-
ported a straightforward answer to this question due to the
difficulty in tracking all traffic flows upstream.

To answer this question, we characterize smartphone traf-
fic behavior from measurements at the user-side. We previ-
ously gave preliminary analysis of a two-days-long Android
smartphone measurement in [18]. Here we go further, pre-
senting analysis of three measurements, each 15 days long,
covering over 1500 Android and iPhone users in the Greater
Tokyo area from 2013 to 2015. We characterize the evolu-
tion of smartphone usage in terms of cellular access, WiFi
access, geolocation, application, device OS, and bandwidth
cap.

The main findings of the paper are as follows. (1) Smart-
phone traffic is becoming the main player in home networks
(§ 3.1, § 3.2, and § 4). We estimate that the daily offloaded
traffic volume for light users accounts for 12% of residential
broadband light user traffic volume. Also, the estimated
total offloaded traffic volume accounts for 28% of the total
broadband traffic volume. (2) WiFi traffic volume has in-
creased more than cellular traffic volume due to the large
contribution of heavy hitters. Even for light users (i.e., me-
dian), the WiFi traffic is higher than that of cellular traffic
as of 2015 (§ 3.2, and § 4). (3) Users properly select net-
work interfaces; the number of users explicitly turning off
WiFi has decreased by 10% in three years (§ 3.3). Also, the
number of associated WiFi networks per user has increased.
As of 2015, 40% of WiFi users are associated with at least
two APs in one day (§ 3.4). The traffic volume to public
and office WiFi APs, however, only accounts for 2% of the
total WiFi traffic volume. (4) The signal strength of the
associated WiFi network is generally high; however, 12% of
the public WiFi networks exhibit subpar quality (§ 3.4, and
§ 3.5). We further confirm the rapid deployment of 5GHz
APs in public WiFi networks though dominant APs at home
and office are still 2.4GHz APs. (5) Bandwidth-consuming
applications (e.g., video, online storage) have become more
popular (§ 3.6) in WiFi networks. We see indications that
users use such bandwidth-consuming applications on public
WiFi networks (§ 3.7). Also, software updates require WiFi

year duration #And #iOS #total %LTE
2013 07 Mar - 22 Mar 948 807 1755 25%
2014 28 Feb - 22 Mar 887 789 1676 70%
2015 25 Feb - 25 Mar 835 781 1616 80%

Table 1: Overview of datasets.

networks by default, thus the timing of software update can
be delayed for users without home APs. For security-critical
updates, this delay may leave users vulnerable longer.

Overall, we characterize the diverse network usage of smart-
phones under certain demands (e.g., rich applications) and
constraints (e.g., bandwidth cap and network availability).
Our results show slow but clear growth of WiFi traffic of-
floading during these three years. In particular, the deploy-
ment of public WiFi networks provides users both simple
network connectivity and also more bandwidth for bandwidth-
intensive applications such as video streaming and software
updates. However, we find that WiFi offloading at offices is
still limited.

2. METHODOLOGY AND DATASET
We developed measurement software for Android1 and

iPhone2. The software supports iPhone 4-6 series for iOS,
and Android devices with OS version > 2.1. It runs in the
background and records several pieces of device information
such as byte and packet counts per network interface, appli-
cation information, battery status, geolocation information,
network information (e.g, BSSID, ESSID for WiFi), and a
unique random device ID. While most information is similar
across both OSes, there are some differences due to what in-
formation is available. Android OS reports application cate-
gories and their total traffic volume, but iOS has no interface
to obtain the traffic volume per application. Similarly, An-
droid OS reports non-associated WiFi AP information as
well as associated WiFi APs if the WiFi interface is turned
on, whereas iOS only reports the associated AP information.
In concern for energy use and privacy, we report only coarse
geolocation (5km precision) and do not report throughput.
The software collects statistics every 10 minutes and uploads
this data to a central server. If the upload fails the software
caches the data and sends it later.

We conducted three measurement campaigns in March of
2013, 2014, and 2015 (Table 1)3. Each campaign used an
independently recruited group of subjects from the greater
Tokyo area, with more than 800 Android and 700 iPhone
users. Each recruiting and selection process was done by
a marketing research company in consideration of the mar-
ket share of major Japanese cellular providers. During the
campaigns, a wide variety of users were selected as listed in
Table 2, and they were requested to use their smartphones as
usual. The male-female ratio of the users was about 50:50.
We also conducted a user survey at the end of the measure-
ments in order to better understand user’s behavior that
cannot be seen in the network data (see details in § 4.2).
The number of analyzed unique device IDs was about 1600-

1https://play.google.com/store/apps/details?id=
com.inetcore.linkspeed
2https://itunes.apple.com/jp/app/
li-yong-shi-tai-diao-zha/id597320740?l=en&mt=8
3Our work has been institutionally reviewed and approved
as human-subjects research (NII260128, NII270129).

https://play.google.com/store/apps/details?id=com.inetcore.linkspeed
https://play.google.com/store/apps/details?id=com.inetcore.linkspeed
https://itunes.apple.com/jp/app/li-yong-shi-tai-diao-zha/id597320740?l=en&mt=8
https://itunes.apple.com/jp/app/li-yong-shi-tai-diao-zha/id597320740?l=en&mt=8


Occupation Percentage
2013 2014 2015

government worker 2.1 3.4 2.4
office worker 20.0 20.1 23.6

engineer 16.7 14.7 16.6
worker (other) 12.8 13.7 13.2

professional 2.4 2.0 2.8
self-owned business 6.1 6.7 5.6

part timer 9.0 10.1 10.6
housewife 15.0 14.2 13.3

student 9.6 8.3 2.7
other 6.3 6.8 7.1

Table 2: User survey: user demographics.

1700 over three years. This number includes non-recruited
users who installed the measurement software from respec-
tive app stores.

We intend to characterize users behaviors depending on
their exchanged traffic volume. Throughout the paper, we
refer to light users as those whose daily download traffic
ranges from the 40th to 60th percentiles, and heavy hitters
as users whose daily download traffic is ranked in the top
5%. Note that as daily user traffic volume is highly variable,
one user may be a light user one day and heavy hitter on
another.

To focus on typical use, we cleaned our data to avoid
distortion due to two atypical events. First, we removed
tethering traffic data from the datasets since such data have
different traffic characteristics.

Second, we removed traffic relating to the iOS update in
2015 from our main analysis. Apple updated iOS(to iOS
8.2) during our measurement in 2015. We identified each
devices update (around March 10th, 2015) and ignored all
user traffic data in the day and the next day of the update
for our main analysis due to its huge data size (over 500MB).
We discuss traffic from this update specifically in § 3.7.

Possible measurement biases: An online market re-
search company selected these participants from pooled users,
so they are likely more advanced users than the average
smartphone user. The availability of public WiFi networks
in metro stations, cafes, shops, and on the streets is higher
in Tokyo than in different areas. Most commuters in this
area use public transportation (e.g., trains, subways, and
buses) rather than personal cars. Thus, the probability to
encounter public WiFi networks is likely high, and resulting
WiFi traffic volume in public spaces is also high.

3. ANALYSIS OF SMARTPHONE TRAFFIC

3.1 Aggregated traffic behavior
We first examine the aggregated traffic behavior of cellular

(3G and LTE) and WiFi networks in our datasets. Figure 2
indicates the weekly variations in the aggregated traffic vol-
ume in March 2015. The notations TX and RX in the figure
are traffic volumes from and to smartphones, respectively.
As expected, the WiFi volume exceeds the cellular volume.
Thus the traditional measurements of cellular traffic such as
Figure 1 underrepresent all smartphone activity due to WiFi
offload. The ratio of WiFi traffic to the total traffic increases
over time from 59% in 2013 to 67% in 2015. Also, the cellu-
lar traffic is mainly composed of LTE traffic accounting for
32% in 2013 but 80% in 2015 (see also Table 1).
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Figure 2: Aggregated traffic volume.

We see that network selection depends strongly on the
time of day, with cellular traffic peaks corresponding to com-
mute times and WiFi peaks to evening times at home. Three
traffic peaks in cellular RX are affected by human activi-
ties in the morning (8am), noon (12am), and evening (7-
9pm). Morning and evening peaks corresponded to the peak
time of commuting mainly by public transportation in the
Greater Tokyo area. In contrast, major peaks of the WiFi
RX (11pm-1am) are right after the evening peak of cellular
RX (9pm), though we also confirm peaks for morning and
noon in WiFi RX. Cellular traffic on weekends is smaller
than that on weekdays, while WiFi traffic is the opposite.
Thus, these observations clearly present different temporal
usage of WiFi and cellular networks.

3.2 Daily user traffic volume
We next focus on the daily traffic usage pattern per user.

Our goal is to understand the impact of light users and heavy
hitters by characterizing traffic distribution for each user as
it changes over three years.

Daily total traffic: We first show that daily traffic
increases each year, and users show a large variation in how
much they send. Figure 3 shows the CDF of the daily traffic
volume starting from midnight per user per day in a semi-log
plot. Note that a single user appears one time for each day
in the trace. We omitted users that downloaded less than
0.1MB. The shape of the curves is close to a unimodal
distribution. The traffic volumes obviously increase over
time, and the RX traffic volumes are about five times larger
than the TX traffic volumes. While these two observations
have been reported in residential broadband traffic [10], the
results clearly show the client-server type user behavior.

Daily cellular and WiFi traffic: Next, we present that
daily WiFi and cellular traffic volumes per user are largely
distributed. Figure 4 presents the CDFs of the daily user
traffic volume for cellular and WiFi network interfaces in
2015. As expected, the download and upload traffic volumes
are highly skewed. On one hand, 8% of cellular interfaces
and 20% of WiFi interfaces do not send and receive any
data. On the other hand, the data shows that nearly all
users respect traffic caps, with only 1.4% of users exceeding
the 1GB per 3-day soft bandwidth cap. We examine the
details of the bandwidth cap in § 3.8. When unconstrained
by limits, we see a much longer tail of heavy users—the top
heavy hitter downloaded 11GB in one day.
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Figure 5: Daily traffic volume per user.

median 2013 2014 2015 AGR
All 57.9 90.3 126.5 48%

Cell 19.5 27.6 35.6 35%
WiFi 9.2 24.3 50.7 134%
mean 2013 2014 2015 AGR

All 102.9 179.9 239.5 53%
Cell 42.2 58.5 71.5 30%

WiFi 60.7 121.5 168.1 66%

Table 3: Daily download traffic volume per user (MB/day)
and annual growth rate.

Traffic growth: We emphasize the difference of growth
in median and mean daily user traffic volume; they reflect
traffic behavior of light users and heavy hitters, respectively.
To investigate traffic growth, we list the median and mean
daily user download traffic volumes in Table 3. The median
traffic indicates the typical light user’s traffic volume, and
the mean traffic reflects traffic from all users, but is biased by
heavy hitters. The annual growth rates (AGRs) are obtained
by linear fit.

We see that users download more traffic via WiFi in late
years. In fact, the traffic growth of median WiFi RX is
significant while the median cellular RX is higher than the
median WiFi RX in 2013. Thus, light users overlook the im-
portance of WiFi offloading in 2013, but they change their
behavior depending on the increase in traffic volume. Sim-
ilarly, the growth of the mean WiFi traffic volume is high.
Heavy hitters are also heavier in WiFi than cellular in mean
traffic volume.

3.3 WiFi vs. Cellular
To assess the impact of traffic offloading we next exam-

ine of how users select between WiFi and cellular network
interfaces.

3.3.1 Aggregated view
WiFi-intensive and cellular-intensive users: We in-

troduce three types of users (cellular-intensive, WiFi-intensive,
and mixed user) from the usage of network interfaces. Fig-
ure 5 shows a heat map of traffic volumes (log-log scale), for
each user and each day by network (cellular and WiFi). The
color bar indicates the number of users per day for a specific
traffic ratio. The diagonal line indicates reference users who
downloaded equal amounts of data from both cellular and
WiFi networks.
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Figure 6: (a) WiFi-traffic ratio and (b) WiFi-user ratio.

We find the existence of three typical user types; Cellular-
intensive users do not use their WiFi interfaces due to no
available WiFi APs or no WiFi configuration. WiFi-intensive
users only rely on their WiFi interfaces to avoid their cel-
lular traffic fees. Mixed users select both cellular and WiFi
network interfaces. The figure indicates that 22% of users
are cellular-intensive and 8% are WiFi-intensive users. We
see a decrease in cellular-intensive users: from 35% in 2013
to 22% in 2015, while the fraction of WiFi-intensive users
is stable during the three years. Interestingly, both WiFi-
intensive and cellular-intensive users show a wide spread in
traffic volume; thus either can be heavy hitters.

User-level WiFi offloading: This data shows that mixed-
network users often offload traffic to WiFi networks. Users
above the diagonal are evidence of offloading, since their
WiFi traffic exceeds their cellular traffic. The concentration
of users above the diagonal shows WiFi offloading is com-
mon. Although 55% of mixed users are above the diagonal,
a large number of users remain below it, suggesting WiFi
usage can be further improved, especially for high cellular
traffic volume users.

3.3.2 WiFi-traffic ratio and WiFi-user ratio
We introduce two metrics to highlight the benefit of us-

ing WiFi networks: The WiFi-traffic ratio is defined as the
WiFi download traffic volume divided by the total download
traffic volume in one-hour time bins. A ratio close to 1.0 in-
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Figure 7: WiFi-traffic ratio (2013 and 2015).

dicates that most traffic volume is downloaded via WiFi.
The second metric is the WiFi-user ratio, defined as the ra-
tio of the number of users associating to WiFi networks in
each time bin. A ratio close to 1.0 means that, at that time,
most users are using WiFi.

We see that the WiFi-traffic ratio increases showing in-
creasing use of WiFi offloading. Figure 6(a) compares the
WiFi-traffic ratio over each day of the week in 2013 with
2015. We observe that the WiFi-traffic ratio varies between
0.4 and 0.9 with clear diurnal trend. WiFi traffic is the high-
est from 11pm to 2am and the lowest in weekday afternoons.
This temporal pattern differs from the simple WiFi traffic
volume (Figure 2). Traffic penetration via WiFi is common
at night though cellular traffic is still dominant in some time
periods during the daytime. This data also confirms that
WiFi offload is increasing, with the mean WiFi-traffic ratio
growing to 0.71 in 2015 from 0.58 in 2013.

WiFi-user ratio shows that more users connect to WiFi
networks in later years, however only 50% of users connect to
WiFi during peak hours. We examine the temporal variation
in the WiFi-user ratio in Figure 6(b). The number of users
peaks from 9pm to 2am, while 10am to 6pm is the off-peak.
The mean WiFi-user ratio also increases from 32% in 2013
to 48% in 2015. Thus, not only heavy hitters but also light
users recognize the benefit of connecting to WiFi. However,
only 50% of devices use WiFi even in the peak time.

3.3.3 Difference in users
We now highlight the difference in the WiFi-traffic ratio

and WiFi-user ratio between light users and heavy hitters.
We emphasize that in 2015, heavy hitters offload most of
their traffic volume to WiFi, and that the ratio of offload
traffic for light users also increases over the years. Figure 7
represents changes in WiFi-traffic ratio from 2013 to 2015.
Heavy hitters already offload most of their traffic to WiFi
and this trend shows no obvious diurnal pattern in 2013
(mean: 73%) and 2015 (mean: 89%). For light users, the
ratio increased over the three years (from 42% to 52% in
mean), particularly its diurnal pattern is much clearer in
2015, characterized by stable activity on weekends and typ-
ical daily trend on weekdays.

We see a large increase of WiFi-user ratio especially for
heavy-hitters during the three years. Figure 8 illustrates
the increase of the WiFi-user ratio. The difference between
heavy hitters and light users is dispersed over the three
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Figure 8: WiFi-user ratio (2013 and 2015).
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Figure 9: Ratio of users: (a) Android 2013, (b) Android
2015, and (c) iOS 2013 & 2015.

years. In 2013, about 60% of heavy hitters connect to WiFi
during their peak traffic time (mean: 51%). In 2015, more
than 80% of heavy hitters use WiFi during their peak time
(mean: 68%). These results suggest that some heavy hitters
in 2013 are mainly connected to cellular networks, but this
trend weakens as traffic volume increases over time.

3.3.4 Difference in device OS
We show that there are differences in offloading patterns

correlated with device OS. We first define more detailed cel-
lular and WiFi usage to quantify the potential opportunity
of WiFi offloading. For Android devices, we categorize users
into three groups, as shown in Figure 9(a). The first category
is users connecting their device to WiFi networks (WiFi-
user ; pink curve). The second category consists of WiFi-off
users whose WiFi interfaces are off (blue curve). The third
consists of WiFi-available users who use cellular interfaces
as the primary link but still turn on their WiFi interface
(green curve). Note that the WiFi-off users explicitly turn
off the WiFi interface and the WiFi-available users do not
connect to any WiFi AP.

We confirm that 40% of Android devices explicitly turn
off their WiFi interface, but this ratio decreases during the
three years. The ratio of the WiFi-available users is sta-
ble at around 0.25 in both 2013 and 2015, meaning that
a quarter of the users could offload their traffic to WiFi if



any appropriate APs are discovered. We discuss these users
later in § 3.5. In comparison, the variation in the ratio of
WiFi-off users is opposite of that of WiFi users; the peak
time is business hours (10am-6pm). Our results show that
nearly 50% of Android users explicitly turn off their WiFi
devices during the day in 2013 (blue curve). However, the
situation of the low WiFi usage improves in 2015, demon-
strating that the ratio of WiFi-off users drops from 50% to
40% (Figure 9(b)).

WiFi connectivity of iOS is higher than that of Android.
For iOS devices, the software does not report detailed in-
formation about the WiFi interface. However, we conclude
that iOS devices connect to WiFi 30% more than do Android
devices, as shown in Figure 9(c). We also confirm that there
is no difference in the WiFi-user ratios among three cellu-
lar carriers providing iPhones. Thus, WiFi-user ratio differs
between the two device OSes rather than cellular carriers.

3.4 Usage of WiFi networks
Next we illustrate the results of user adoption of available

WiFi networks at home, in offices, and in public places.

3.4.1 Home, public, and other WiFi networks
We first define the locations of WiFi APs users connected

to. We identify each WiFi AP users associate with by its
(BSSID, ESSID) pair (the MAC address of AP and its net-
work name). We then categorize WiFi networks into these
three types:

Home: We identify home locations as the most common
(BSSID, ESSID) pair to which each device connects during
at least 70% of the time between 10pm and 6am in one
day. Note that users do not always have at least one home
network. In fact, the percentage of users with estimated
home AP increases over time; 66% in 2013, 73% in 2014 and
79% in 2015. These numbers are roughly consistent with
the result of our user survey in Table 8. Table 4 lists the
numbers of detected APs.

Public: We identify public networks based on well known
ESSID names (e.g., 0000docomo, 0001softbank, eduroam).
These services are often deployed by Japanese cellular providers
for their customers (§ 1), or by free/commercial WiFi providers
(e.g., 7Spot and Metro Free Wi-Fi). We categorize FON
APs that use a public ESSID at home as a home network
because we find that some users connected to the public ES-
SID over 24 hours instead of using the default private ES-
SID by FON. The number of detected public APs doubles
in three years as shown in the table.

Other: Other associated pairs are mainly located at of-
fices or mobile WiFi APs. It also includes some open APs
provided by shops and hotels. We further estimate APs at
offices when they (1) mainly connect between 11am and 5pm
on weekdays and (2) are not otherwise classified as home,
public or mobile APs. The number of estimated office APs
is stable over the years.

type 2013 2014 2015
home 1139 1223 1289
public 5041 9302 10481
other 545 673 664
(office) 166 168 166
total 6725 11198 12434

Table 4: Number of estimated APs.
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Figure 10: Number of associated unique APs per 5km cell:
(a) home in 2013, (b) public in 2013, (c) home in 2015, and
(d) public in 2015.

This classification shows a wide deployment of APs espe-
cially in public spaces. Figure 10 visualizes the locations
and densities of associated APs in the Greater Tokyo area.
Each cell is a 5km square, with color showing identified AP
density. The four quadrants of the figure show home and
public distribution in 2013 and 2015. Home networks are
widely dispersed, reflecting many residential areas. There
are only minor differences between the two datasets.

This data suggests that coverage of public WiFi networks
is broad in the Greater Tokyo. The maps of public networks
highlight strong densities in the downtown Tokyo area. The
number of associated public networks is over 300 in the high-
est density areas (Shinjuku and Shibuya areas). We also
confirm the wide coverage of public APs even far from the
downtown area. By comparing the two datasets, further-
more, high-density areas are more dispersed in 2015. For
example, the number of cells with at least one AP increases
from 229 to 265, and that of cells with larger than 100 APs
increases from 10 to 23. This result suggests that users can
potentially connect to widely deployed public WiFi APs if
devices are appropriately configured.

However, the contribution of public and office APs is still
small when measured by traffic volume. Figure 11 represents
the weekly traffic variations for home, public, and office in
2013 and 2015. The major contribution of WiFi traffic vol-
ume is home networks (95% of the total volume). The public
and office WiFi traffic volumes are much smaller (4% of the
total volume), though those volumes double during this pe-
riod. The diurnal patterns of public and office WiFi are
in opposition to that of home WiFi. These clear patterns
in 2015 emphasize the increase of users associated to these
WiFi networks.

3.4.2 Access patterns of WiFi networks: location
We first show the number of associated APs increases over

time, and that daily traffic volume per user does not corre-
late to mobility pattern. Figure 12 illustrates the number
of associated APs per user per day for all users (A), heavy
hitters (H), and light users (L). We find evidence that users
connect to multiple WiFi APs in late years. In 2013, 70%
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Figure 11: WiFi traffic volume: (a) home in 2013, (b) public in 2013, (c) office in 2013, (d) home in 2015, (e) public in 2015,
and (f) office in 2015.
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Figure 12: Percentage of the number of associated APs per
day per user: All users (A), heavy hitters (H), and light
users (L).

of users only connect to one AP per day, but it decreases
10% in three years. Moreover, we do not see a significant
difference between heavy hitters and light users. Thus, user
traffic volume does not correlate to the mobility patterns.

Next we detail that the main usage patterns of WiFi net-
works are still only at home, and that the use of multiple
APs has been more common. Table 5 lists the breakdown of
the number of associated ESSIDs per device in one day for all
users. The HPO column indicates the possible combinations
of WiFi network types; home (H), public (P), and other (O)
networks. For example, HPO = 120 represents the number
of devices that connect to one home network, two public net-
works, and no other network in one day. For users using one
AP, the percentage of using home WiFi decreases from 55%
to 46%, though it is still dominant. About 10% of the users
do not have any home WiFi network but connect to other
WiFi networks. They have no broadband wired links at

ESSIDs
HPO 2013 2014 2015

per day

1
100 54.7% 52.6% 46.4%
010 3.0% 2.4% 2.4%
001 10.5% 9.4% 9.2%

2

110 8.2% 10.0% 9.0%
101 10.7% 12.9% 16.5%
011 1.4% 1.3% 1.7%
020 0.6% 0.3% 0.3%
002 1.5% 1.8% 2.4%

3

102 1.8% 2.0% 2.7%
120 1.9% 1.4% 1.4%
111 2.2% 2.3% 3.4%
012 0.3% 0.4% 0.6%
021 0.4% 0.2% 0.3%
003 0.3% 0.4% 0.5%

4+ — 2.3% 2.5% 3.2%

Table 5: Breakdown of number of associated APs (user·day):
home (H), public (P), and other (O) networks.

home for WiFi offloading; however, they are aware of WiFi
traffic offloading. For users using two APs, the top connec-
tion pattern is one home and one other network. However,
our manual inspection reveals that iOS devices connect more
to public networks than to other networks whereas Android
devices connect oppositely. We also confirm low percentages
(2.2-3.4%) of users who connect to more than three networks
in one day. The maximum number of associated ESSIDs per
user per day is eight in our datasets: one home, four public,
and three other networks.

We further show that the distribution of user connection
durations to one WiFi network do not change over time.
Figure 13 shows the complementary cumulative distribution
of the consecutive time with the same AP in a log-log plot.
All plots are characterized by long tails with a cutoff. Ninety
percent of the users connect for less than 12 hours for home
networks, 8 hours for office networks, and 1 hour for public
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networks. The results of home and office are consistent with
typical user activity by definition. No clear difference is
observed between the three datasets, meaning that the usage
patterns in connection duration do not change for any WiFi
network type from 2013 to 2015.

3.4.3 Access patterns of WiFi networks: 2.4 and 5GHz
Recent WiFi APs operate in two frequency bands: 2.4 and

5GHz. We find that deployment of 5GHz APs has been rapid
for public networks, but most home and office networks are
at 2.4GHz. Deployment of 2.4GHz APs is wider than 5GHz
because of their earlier availability on the market. However,
the 2.4GHz spectrum is less robust against noise. We in-
vestigate the deployment status of 5GHz APs at home, in
offices, and in public spaces. Figure 14 shows the fraction
of unique associated 5GHz APs to the total unique asso-
ciated APs for the three years. The fraction of 5GHz APs
varies across homes, offices, and public spaces. Still less than
20% at home and office APs are 5GHz, i.e., most WiFi APs
mainly operate in 2.4GHz. For public WiFi, we see that
more than half are 5GHz APs in 2015. We believe that wide
use of 5GHz in public location is due to recent aggressive
rollout of WiFi, while long device lifecycle means that home
and office have not yet needed to upgrade.

3.4.4 Quality of WiFi networks: signal strength
There are several factors that affect the QoS/QoE of smart-

phones, in which the received signal strength indication (RSSI)
is a common metric for quantifying the strength of the receiver-
side signal in wireless communication. A larger RSSI repre-
sents a stronger signal, and an RSSI larger than −70dBm is
generally better for WiFi connectivity. For example, it has
been reported that the retransmission probability of a TCP
session is ≈ 10% for RSSI = −70dBm and rapidly increases
for RSSI < −70dBm in a dataset measured at a conference
WiFi network [41].

The signal strength at home is generally sufficient for net-
work connectivity. We calculate the maximum RSSI of each
associated AP in 2.4GHz, and plot the probability density
of RSSIs of associated home and public networks in Fig-
ure 15. Home networks are characterized by a bell shape
with a mean of −54dBm, consistent with those in French
home networks [13, 14]. Three percent of the home networks
report a weaker RSSI than −70dBm. We also confirm that
the shape of the plots of office networks is similar to that of
home networks.

On the other hand, a small percentage of associated pub-
lic APs indicate subpar quality. The plot of public WiFi

networks clearly shifts to smaller RSSIs around −60dBm.
For narrowing the cell size in public WiFi, the mean signal
strength can be weaker than that of home WiFi networks.
As the result, we confirm that 12% of associated public
WiFi networks indicate weaker signal strength (< −70dBm),
likely causing poor QoS/QoE to the users. This low-quality
connectivity is a reason to deploy more 5GHz APs in public
WiFi networks.

3.4.5 Quality of WiFi networks: channel usage
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Figure 16: Associated 2.4GHz channels (2013 and 2015).

Finally, we investigate the efficacy of channel selection
of APs. In addition to the RSSI, channel selection of WiFi
networks is an important factor that affects the performance
of the WiFi networks. In an IEEE 802.11b/g/n network, 13
channels are available in the 2.4GHz band, and two BSSIDs
using neighboring channels may interfere with each other
due to the overlap of channel bandwidth (i.e., cross channel
interference). It is known that at least a five-channel interval
is necessary to avoid cross channel interference between two
channels. Some recent home-use APs have a function for
detecting and avoiding channel interference. In addition,
public WiFi providers design and deploy their APs to avoid
cross channel interference between their APs; however, they
can still interfere with other public APs.

We confirm that deployment of public APs is generally
well designed, and the concentration on the default channel
has been relaxed in home APs. Figure 16 shows the proba-
bility density of the associated channels in the 2.4GHz band
for Android devices. Devices connected mainly to Ch1, Ch6,



and Ch11 in public WiFi APs, indicating that devices are
set up to minimize interference. Such observation is also
recently reported in [38, 6]. In 2013, the numerous connec-
tions to Ch1 at home are, however, potentially causing more
channel interference. This poor setting is likely due to the
lack of intelligent channel selection mechanisms at the APs.
However, we observe improvement in avoiding possible in-
terference in later years; WiFi channels at home are more
dispersed and have less concentration on Ch1 in 2015.

3.5 Availability of public WiFi APs
To understand how much cellular traffic WiFi-available

users can offload to public WiFi networks, we next look at
WiFi coverage, signal strength, and how much traffic they
can offload.

We first suggest a wide coverage of potentially available
public WiFi APs. We sum up all detected public networks
(all) and detected public networks with a signal strength
strong enough to be associated with (i.e., RSSI ≥ -70dBm)
(strong), in a 5km cell. We confirm that 2.4GHz public WiFi
networks are widely deployed in the Greater Tokyo area in
our data, though the coverage of our data is imperfect due
to the limited number of recruited users. In the downtown
area (Shinjuku, Shibuya area), for example, the number of
public WiFi networks with strong signal is over 10000 in
one cell, while the number of detected networks is about
45000 in one cell. Comparing the two datasets (2013 and
2015), the number of cells with more than 100 strong 2.4GHz
APs increases from 102 to 139, and that with more than
100 strong 5GHz APs is from 10 to 84. This observation
indicates that deployment of 5GHz APs in public networks
has largely improved.

Next, we identify that WiFi-available users (§ 3.3.4) en-
counter a few strong and available public WiFi APs, and
that the number of such APs increases. Figure 17 represents
the complementary cumulative distribution of the number of
detected public APs per WiFi-available device per 10 min-
utes in 2015. The plot labeled as “strong” represents the
number of detected networks with strong maximum signal
strength, and“all” represents the number of all detected net-
works. Both plots represent that a few users see many APs
but most see only a few. We observe that most users (90%)
see fewer than 10 2.4GHz APs. As expected, the number
of strong WiFi networks is much smaller than all detected
WiFi networks. The data shows that 5GHz deployment is
still early, since only a few users (10%) could find strong
5GHz APs, and only slightly more (30%) can find any 5GHz.
However, this deployment is better than that in 2013; 10%
for all APs and 3% for strong APs. Tail behavior of strong
2.4GHz and strong 5GHz APs resembles each other, sug-
gesting WiFi APs operating in both bands.

Finally, we infer that WiFi offloading to available public
WiFi networks can reduce 15-20% of daily cellular traffic for
WiFi-available users. As described in § 1, cellular providers
deploy free public WiFi service to their customers. Devices
whose WiFi interfaces are enabled but not associated with
any WiFi networks (i.e., WiFi-available user) can offload
their cellular traffic to the public WiFi networks of their
providers. Examining of such available WiFi networks for
WiFi-available users, we confirm that 60% of WiFi-available
users have opportunities to connect to stable public WiFi
networks. We sum up cellular download traffic volume dur-
ing these periods as possible offloading traffic, then conclude

Cell home Cell other WiFi home WiFi public
type % type % type % type %

2
0
1
3

brows. 38.0 brows. 38.5 brows. 28.0 brows. 44.1
social 7.3 comm. 7.7 social 6.8 social 4.0

comm. 6.2 social 7.6 comm. 4.3 life 3.3
video 5.7 news 2.6 video 4.0 comm. 3.0
news 2.0 video 2.1 news 3.5 news 2.9

2
0
1
4

brows. 36.4 brows. 31.4 video 30.4 dload 22.5
video 7.4 comm. 9.9 brows. 20.7 brows. 21.9

comm. 7.4 video 8.0 comm. 6.5 video 13.8
social 6.3 news 6.6 news 6.0 life 4.9
news 6.2 game 6.3 dload 4.7 health 3.2

2
0
1
5

brows. 28.3 brows. 28.3 video 25.4 brows. 24.0
video 11.0 comm. 12.7 brows. 20.0 video 19.6

comm. 9.5 video 12.0 dload 11.1 dload 9.9
social 7.9 news 7.6 comm 7.4 life 4.1
news 5.8 social 6.9 social 4.7 comm 3.6

Table 6: Top application categories, as ranked by RX traffic
volume.

that 15-20% of daily cellular traffic volume for such WiFi-
available users can be transferred to public WiFi networks.

3.6 Application breakdown
WiFi offloading often requires application support, so we

now examine applications, their traffic volumes, and their
support for offload.

We first group popular applications into 26 categories in
Google Play. Major application categories are: browser, so-
cial networking (e.g., Facebook, Twitter), video and media
(e.g., Youtube, Nicovideo), communication (e.g., Line, email
clients), news, gaming, music, travel, shopping, download-
ing, entertainment (e.g., lottery, survey), tools (e.g., printer,
speed test), productivity (e.g., online file storage service),
and lifestyle (e.g., restaurant info, cooking). Note that the
browser category includes web use; some web use may over-
lap with other categories (such as videos and social networks
that are accessed from the browser instead of an applica-
tion).

We distinguish application usage at home or other places
with WiFi and cellular network interfaces. Table 6 and Ta-
ble 7 show the percentage of the traffic volume (sum of RX
and TX) generated from the five largest Android application
categories in each year, broken out by network type and lo-
cation. We infer home locations of cellular networks with
the same classification technique described in § 3.4.1.

First of all, users are more likely to use high-bitrate appli-
cations like video when they are on free networks like WiFi.
The ratio of video traffic increases especially in WiFi net-
works over the years, while we see that most common ap-
plication categories in all scenarios are: browser, social net-
working, video, and communications. Thus, watching video
with a smartphone has been a casual usage, though the users
understand that a rich and low-cost network environment is
preferable for this purpose. Furthermore, we observed an in-
crease in video traffic in public WiFi networks. Thus, users
demand for public WiFi networks is changing from simple
connectivity-sensitive to more bandwidth-consuming applica-
tions. Instead, most traffic of video and media category in
cellular at home is due to cellular-intensive users (without
APs at home).

We also confirmed some applications force users to use
WiFi networks to reduce traffic volume in cellular networks.
The percentage of the productivity category increases in up-
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Figure 19: Effect of soft bandwidth cap.

Cell home Cell other WiFi home WiFi public
type % type % type % type %

2
0
1
3

brows. 23.0 brows. 24.5 social 24.8 brows. 33.8
video 16.1 social 15.1 brows. 18.4 social 9.1
social 14.2 video 10.6 video 14.7 comm. 4.2

comm. 10.8 comm. 6.6 prod. 13.8 prod. 3.5
prod. 2.1 prod. 3.0 comm 5.2 video 2.1

2
0
1
4

brows. 31.0 brows. 28.5 prod. 39.5 brows. 41.8
social 9.5 social 15.8 video 18.7 prod. 15.2
prod. 9.0 comm. 11.5 brows. 15.7 life 6.9
video 9.0 video 7.5 social 6.9 comm. 5.0

comm. 8.5 game 3.8 comm. 5.8 news 4.6

2
0
1
5

brows. 33.7 brows. 29.7 brows 19.9 video 35.6
comm 11.2 comm 14.5 prod 15.7 brows. 25.8
social 11.0 social 11.3 video 12.7 prod 5.2
game 9.9 life 5.9 social 10.5 comm. 5.0
news 3.7 game 5.1 comm. 8.0 busi 4.6

Table 7: Top application categories, as ranked by TX traffic
volume.

load volume. In particular, in WiFi networks at home, this
category accounts for a high percentage of traffic volume due
to online storage software that uploads/downloads large files
only if a WiFi interface is available. Thus, applications seem
to play a major role in promoting WiFi offloading.

Finally, for light users, the contribution of video applica-
tions to download traffic becomes small. We investigate the
application usage of light users in 2015 (data omitted due
to space). The results are almost consistent with those for
all users. A notable difference is a low contribution of video
traffic; it is not ranked in the top five categories in both
cellular and WiFi networks.

3.7 Software update
While § 3.6 looked at typical application use, in 2015 we

captured an unusual event where many iOS devices carried
out software upgrades. Apple only allows iOS upgrades on
WiFi, not cellular, by default. Thus, this event provides a
case study of application-forced WiFi offloading.

The impact of the update on traffic volume is high; the size
of the update is 565MB which is more than ten times larger
than the daily median download traffic volume (50.7MB),
and it is more than half of the soft bandwidth cap limit.

Timing of software updates follows a typical flash crowd,
with a large burst and a long tail. Figure 18 shows the time-
of-day of updates in CDF and PDF since we first see an iOS
update on March 10th, 2015 (JST). In two weeks, 58% of all
iPhone devices are updated to iOS 8.2. Half users updated

in the first four days, with 10% of on the first day (cf. CDF
(all)). We also confirm two broad peaks; one is the first
and second days (label (a) in the figure), and the other is
the first weekend (label (b)). Considering the percentage of
the un-updated devices, the time for migrating to the new
version would have a longer tail.

We find that availability of WiFi is important to timely de-
ploy updates; lack of WiFi can delay OS upgrades. In fact,
only 14% of users without inferred home APs updated their
device OS. Moreover, the CDF of updates without home
APs demonstrates that the updates of such users are de-
layed. The median update delay of users with home WiFi
and without is 3.5 days. For security-critical updates, this
delay may leave users vulnerable longer.

Furthermore, we observed that some users without home
WiFi seem to go out-of-their way to access public WiFi to
obtain the update. We inspect 19 updated devices that have
no inferred home APs. Eleven users without home AP up-
date their devices via public WiFi, and two via office APs.
This observation is unexpected but reasonable behavior that
reduces update costs.

3.8 Effect of soft bandwidth cap
Japanese cellular providers commonly limit heavy hitter’s

maximum bandwidth especially in peak hours. A typical
bandwidth cap begins after 1GB is received over the previous
three days. The download speed of users over the cap will be
limited (e.g., 128kbps) during peak hours for the next few
days. However, two cellular providers relaxed this policy in
February 2015, so we expect less impact from bandwidth
caps in 2015 compared to prior years.

We detect potentially capped users from their current and
past traffic volumes, and find that the ratio of such users is
small. The number of potentially capped users grows each
year, from 0.5% in 2013, 0.8% in 2014, to 1.4% in 2015.

We can also see the effects of bandwidth limitation after
exceeding the cap. To observe this effect, we plot the ratios
of the daily traffic volume per user to the mean daily traf-
fic volumes for the previous three days in 2014 and 2015 in
Figure 19, where“potentially capped”represents users whose
traffic volume in the previous three days exceeds the thresh-
old (= 1GB). The gap between potentially capped users and
others indicates the effect of the soft bandwidth cap. The
download traffic volume of capped users decreases due to the
cap in 2014. Typically, 45% of capped users download less
than half the mean of three-day traffic volume. On the other
hand, only 30% of other users download the same percent-



WiFi home office public
AP 13 14 15 13 14 15 13 14 15
yes 70.4 72.9 78.2 31.6 25.6 28.0 44.9 47.9 53.6
no 25.9 22.8 18.6 63.2 69.0 67.4 48.9 44.9 40.9

NA 3.7 4.3 3.2 5.1 5.4 4.6 6.1 7.2 5.5

Table 8: User survey: associated WiFi APs during the mea-
surements (%: 2013/2014/2015).

age of traffic volume. Further manual inspection clarified
that 65% of capped users have no inferred home APs.

However, some users that exceed the threshold for band-
width capping but appear to not be penalized with slower bit
rates. A reason of this large traffic volume is likely download
traffic in off-peak hours.

By comparing the two figures, we confirm that the gap be-
tween the capped users and others is small in 2015, showing
the change of the policy. The figure shows that the gap is
0.15 in 2015 at the median while 0.29 in 2014. This change
also supports the reason of traffic increase of bandwidth-
consuming applications in cellular networks from 2014 to
2015 (Table 6).

4. IMPLICATIONS
Next, we provide implications on the contribution of smart-

phone traffic on residential broadband traffic, connectivity
and quality of WiFi networks, and bandwidth-consuming
applications.

4.1 Large impact of home WiFi offload
We start by examining the impact of offloaded traffic vol-

ume on the total volume of residential broadband traffic.
As shown in Figure 1, the nationwide cellular traffic volume
(3G+LTE) corresponds to 20% of the estimated nationwide
residential wired broadband traffic volume [34], so a large
amount of smartphone traffic offloading will suggest an in-
crease in broadband traffic. In our measurements, the me-
dian cellular download traffic volume is 36MB/day and the
median WiFi download traffic is 51MB/day in 2015 (§ 3.2).
Thus, 58% of smartphone traffic is WiFi; a 1.4:1 ratio of
WiFi-to-cellular traffic. This ratio is higher than that in
Cicso’s report (45% in 2014) [11]. As a result, we roughly
estimate 28% (= 20%*1.4) of the total residential broadband
traffic volume as WiFi traffic by smartphones because 95%
of WiFi traffic is at home (§ 3.4.1).

We also compare smartphone traffic volume with broad-
band traffic volume per user. A different source of residential
broadband traffic data reported that the median download
traffic volume of a residential customer per day in a Japanese
ISP is 436MB/day as of 2015 [9]. We again infer with this
volume that traffic share of one smartphone in a home net-
work is 12% (= 51MB / 436MB).

Thus, the growth in offloaded WiFi traffic even for light
users has had a large impact on legacy broadband ISPs, where
it is hidden in the traffic volume of heavy hitters.

4.2 Connectivity of WiFi networks
To understand the behavior of user that cannot be seen

in the network data, we had all our users fill out a ques-
tionnaire. In the post questionnaire, we asked two questions
about WiFi APs to users. The first question is “where did
you connect to WiFi APs in three locations (home, office,
and public)?” (Table 8), to compare with the results of our

Reason home office public
13 14 15 13 14 15 13 14 15

No available APs 33 34 40 46 49 52 25 24 23
Difficult to set up 32 27 21 16 15 11 31 31 25
No configuration 48 35 32 33 25 22 43 31 29

Battery drain 18 14 15 16 9 7 25 18 13
Failed 5 6 8 7 7 7 9 8 11

Security issue NA 6 14 NA 9 14 NA 15 35
LTE is enough NA 25 21 NA 12 10 NA 22 23

Other 6 5 5 12 10 10 9 5 4

Table 9: User survey: reasons for unavailability of WiFi APs
(%). Multiple answers were allowed.

location-based analysis (§ 3.4.2). The second one is “why
did you not connect to WiFi APs in these three locations?”
(Table 9), to understand possible causes of unavailability of
WiFi networks.

The answer to the first question shows that the percent-
age of associated APs at home and in public increased while
that for office network is low and stable. The percentages of
home WiFi APs are consistent with our estimation (Table 5),
but, high percentages of public WiFi differ from our esti-
mation. This gap represents the difference between user’s
recognition and actual connectivity; users think they have
more connectivity than they really do in public WiFi net-
works. However, the results of the associated WiFi networks
demonstrate that the percentage of users with multiple APs
has been increasing, and it is more than 40% in 2015 (§ 3.4).

From the measurement results and the answer to the sec-
ond question (Table 9), we summarize the plausible reasons
for the low availability of WiFi networks during daytime
as follows. (1) Users report that connecting private smart-
phones to WiFi networks at offices (Bring your own device;
BYOD) is still not common in Japan. It is supported by
high percentages of the answer “there is no deployment of
APs” in Table 9. In addition, a major reason of “Other” for
office WiFi networks is due to the security policy that does
not allow employees to connect their personal smartphone
to the office WiFi networks. Our traffic data showed a sig-
nificant increase in office WiFi traffic volume (Figure 11)
though the number of inferred office APs (Table 4) remains
stable during the three years.

(2) Configuring WiFi APs is difficult. Configuration prob-
lems decrease in public WiFi networks over time in the sur-
vey. Users report in our questionnaire that entering WiFi
passwords into their mobile devices is often complicated.
To reduce complexity, since 2013 WiFi APs from cellular
providers use SIM-based authentication [25] without user
and password information. As a result, smartphone cus-
tomers can use WiFi APs from their provider with no man-
ual actions. Coupled with the deployment of more access
points (Figure 10), we believe this simplification in their use
helps increase the degree of WiFi offload.

(3) Many users have no incentive to use public WiFi net-
works because the current quality of cellular networks is
enough and are charged a flat fee per month. High percent-
age of the answer “communication speed in LTE is enough”
in Table 9 supports this claim. Nonetheless, we estimated
that 15-20% of the traffic data can be offloaded if users ap-
propriately configure the settings for public WiFi networks
(§ 3.5).

(4) Finally, we found that security with public WiFi was
a significant concern, and that battery life was not.



4.3 Quality of public WiFi networks
We discuss how public WiFi networks can improve their

quality. The quality and accessibility of WiFi networks have
been improved over the years. However, 12% of associated
public WiFi networks using 2.4GHz are characterized by a
low RSSI (§ 3.4.4). Such low-quality network environments
are likely a reason for users hesitating to use the public WiFi
network, though over half of the associated public networks
have sufficient quality. To cope with this problem, device
OSes should implement tests for the quality of a WiFi net-
work before starting to offload to prevent the degradation of
user QoE.

The coordinated deployment of public APs is a difficult
problem in reality because they use unlicensed bands. To
mitigate performance degradation due to channel interfer-
ence among different public WiFi networks, deployment of
APs that support multiple providers by announcing multi-
ple ESSIDs from a single AP should be promoted, especially
in downtown areas. In fact, we confirmed this type of APs
in our dataset, by checking similar BSSIDs assigned to dif-
ferent providers. It will be also cost-effective to use these
APs for providing free WiFi APs to foreign visitors instead
of deploying new APs, towards the 2020 Olympic Games.
Extended usage of such APs has already been discussed in
the context of providing free WiFi in disaster areas after the
Tohoku earthquake.

We also observed a significant deployment of 5GHz APs in
public spaces (§ 3.4.3). 5GHz APs are more robust against
noise and helpful in improving the quality of WiFi network
[40, 46]. This migration also contributes to increases in avail-
ability, use, and traffic in public WiFi networks. Further-
more, the limited spatial and more reliable nature of 5GHz
APs may allow new types of applications to emerge, such as
fine-grained targeting advertisement.

4.4 Bandwidth-consuming applications
We observed a large growth of bandwidth-consuming ap-

plication traffic (§ 3.6). Users with WiFi access download
more video (Table 7), suggesting that users understand that
rich-bandwidth and low-cost WiFi networks are available,
and changing their usage accordingly. Similarly, other bandwidth-
consuming applications contribute to WiFi offloading. For
example, iOS shows a pop-up message to users to promote
the use of WiFi for software updates. We see a similar
change in upload use when WiFi is available. For example,
WiFi has been largely used for the productivity category,
which includes online file storage (Table 6).

This intelligent network connectivity management by soft-
ware has two different perspectives. On one hand, it will
be more common and necessary to cope with bandwidth-
consuming applications in the future, particularly to avoid
bandwidth caps. On the other hand, it causes another adap-
tive behavior of users. Some users rely on public WiFi net-
works for their software updates (§ 3.7). Furthermore, we
observed an increase in video traffic even in public WiFi
networks. User demand is towards casual use of bandwidth-
consumption applications in public WiFi networks. This
trend may introduce a change of the economic cost and the
QoS model (i.e., traffic engineering) of public and free WiFi
networks, because low-cost connectivity is the main advan-
tage with current WiFi networks.

5. RELATED WORK

Cellular smartphone usage: Quantifying the diverse
usage of smartphones has been one of the hot topics in traf-
fic measurement and analysis. Some studies have pointed
out that the flow-level performance of the 3G/LTE cellular
network is affected by many aspects such as the differences
in the cellular providers, types of devices, transport pro-
tocols, and mobility [32, 28, 29, 27, 37, 19, 42, 17]. The
application usage and resulting performance in cellular net-
works also indicate large diversity [47, 16, 28, 51, 44, 27].
In particular, the usage pattern of applications in smart-
phones depends on the mobility and geographical region of
users [47, 51, 52]. Recent studies addressed the impact of
user measurement environment on network performance [21,
43]. There are several approaches to characterize this di-
versity such as application identification [50, 36], app store
usage [49], and geolocation mapping [3, 48]. Another di-
rection of current research is to quantify and model energy
consumption of smartphones [27, 15, 7]. Regarding band-
width caps, a recent experiment concerning cellular service
pricing shows that time-dependent pricing helps reduce peak
traffic volume in cellular networks [30].

WiFi smartphone usage: Some studies focused on WiFi
smartphone usage in campus networks [26, 22, 8], city-level
networks [1], or networks in public transportations [24]. They
argued that typical applications of such WiFi networks were
HTTP, more specifically video, social networking, and soft-
ware updates. In addition, the deployment of WiFi APs and
their interference are discussed [2].

Throughput/delay performance of WiFi and 3G/LTE
networks: Several performance metrics have been com-
pared using vehicle-based [4, 20, 12] and speedtest-based [45]
measurements. They showed that the throughput and de-
lay performance of WiFi networks are basically better than
those of cellular networks, and they are also highly vari-
able depending on the environment, different from broad-
band wired access. Furthermore, in the context of traffic
offloading, some studies evaluated the performance gain of
WiFi offloading on the basis of WiFi APs discovered using
vehicle based measurements [31, 23].

WiFi networks: Home WiFi usage has been analyzed
in detail [33, 39, 13, 14]. An earlier report pointed out a low
percentage of traffic volume from mobile devices at home
in 2009 [33]. Also, the performance [40, 46], the traffic ra-
tio [33], and the availability [13, 14] of home WiFi networks
have been intensively studied. A large analysis of ESSIDs
focused on the social relationships of users [5]. A recent
large-scale survey of WiFi networks revealed application us-
age and channel interference in the wild [6].

The main difference between our work and others is to pro-
vide a comprehensive view of smartphone usage in cellular
and WiFi networks from measurements with over 1500 users,
for better understanding the adoption of smartphone users
to avaialble WiFi networks. We previously explained the
preliminary results of WiFi traffic offloading performance
based on a two-day measurement with 450 Android users [18].
However, the measurement period was short and the avail-
able information was limited mainly to traffic volume with-
out application and geographical information. For the cur-
rent study, we analyzed three 15-day-long detailed datasets
and provided more comprehensive results including the dif-
ferences regarding device OS, location, and applications.



6. CONCLUDING REMARKS
We measured WiFi and 3G/LTE smartphone usage from

more than 1500 Android/iOS smartphone users in the Greater
Tokyo area for two weeks each in 2013, 2014, and 2015. Our
results showed that smartphone users select WiFi and cel-
lular networks based on several tradeoffs. In particular, we
highlighted slow but clear adoption of available WiFi envi-
ronment at home, in offices, and in public spaces. Light
users have been offloading their traffic to WiFi networks,
while heavy hitters totally rely on WiFi networks for their
traffic offload. Moreover, we confirmed that wide deploy-
ment of WiFi APs enables users to obtain more opportu-
nities to offload their traffic to WiFi networks. Users who
have access to public WiFi send more traffic, and WiFi-
availability results in heavier use of video and is required for
large software updates. This adoption indicates that users
recognize public WiFi networks as a part of the common
network infrastructure.
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