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ABSTRACT
The transient modal analysis method (TMA) has been used

to solve the inhomogeneous (loaded) transient thermoelastic
contact problem (ITTEC). In the TMA method, the solution of the
inhomogeneous transient problem is expressed in modal coordi-
nates, corresponding to eigenfunctions of the homogeneous (un-
loaded) problem. However, for the large-scale ITTEC problem,
this method is found to be extremely time-consuming, because
of the computation-intensive of the eigen-solutions. This paper
describes a new approach to solve the large-scale ITTEC prob-
lem with a dramatic reduction in computational complexity. The
method is referred to as fast speed expansion method (FSE). With
the FSE method, full eigen-solutions are performed only at a lim-
ited number of sparsely located speeds. For speeds between these
speeds, eigenvectors are solved by linear interpolation, while the
eigenvalues are computed from Taylor series. The method is il-
lustrated with application to an automotive clutches.

1 INTRODUCTION
Upon clutch application, the steel disks are squeezed agai

the friction disks by hydraulic pressure. Rotational speed of th
steel disks is produced by friction between the steel and fri
tion disks. The overwhelming majority of the frictional en-
ergy is converted to heat. Because the heat generation is n
uniform, it produces non-uniform deformations in disks. Thes
deformations affect the contact pressure distribution, which,
turn, further affects the temperature distribution. Hence, a fee
back process is established. When a particular sliding spe
1
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called the ‘Critical Speed’, is exceeded, this feedback proce
becomes instable, dut to at least one of real part of the eige
values is positive. This phenomenon is known as thermoelas
instability(TEI) [1]. Yi [2] developed a custom software, named
‘Hotspotter’, using the finite element method to solve the critica
speed of each model.

However, ‘Hotspotter’ assumes that the sliding speed is co
stant, whereas the actual engagement takes place at variable
ing speed, which probably is higher than the critical speed in
tially, but falls below it finally. Because engagement occurs ov
a very short period of time, detrimental high local temperature
may not be developed before the sliding speed has fallen bel
the critical value [3]. Therefore, it is necessary to solve the tra
sient behavior of the thermoelastic contact problem.

For a large-scale problem, transient simulation is extreme
time-consuming. Al-Shabibi and Barber [4] has developed a r
duced order model by using a truncated eigenfunction expans
to represent the temperature. The truncated eigenfunction
ries contain only those terms corresponding to several domina
eigenvalues. However, when the sliding speed falls below t
critical speed, the eigenvalues tend to cluster together and no s
set can be regarded as dominant. At same time, all of the real p
of the eigenvalues are negative and the stiffness ratio is large
other words, the system is stiff [5]. Thus, it is also hard to solv
the ITTEC problem by traditional numerical methods when th
sliding speed is below the critical speed. Zagrodzki [6] has d
veloped transient modal analysis method(TMA) to solve the IT
TEC problem for the whole speed range. In the TMA method
the transient nodal temperatures are expressed in modal coo
Copyright c© 2004 by ASME
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nates, corresponding to the eigenfunctions of the corresponding
homogeneous(unloaded) problem. However, for the large-scale
ITTEC problem, this method is time-consuming, too.

To overcome this difficulty, we propose a new method
based on the asymptotic waveform evaluation(AWE) [7,8]. This
method is referred to as fast speed expansion(FSE). With t
known eigenvalues and eigenfunctions at a limited number
sparsely speeds, the FSE technique employs an efficient alg-
rithm to interpolate and expand the eigenfunctions and eigen-
values over a speed band. Consequently, the FSE method
greatly reduce the transient problem computational time bydra-
matically reducing the number of full eigenvalue solutionsre-
quired.

2 FORMULATION
2.1 Finite Element Discretization

The temperature field can be expanded by the Fourier ser

T (r,φ,z,t) =
∞

∑
m=0

Re
[

θm (r,z,t)e jmφ]
, (1)

wherem is the wave numbers. The temperature field must satis
the heat conduction equation

Kβ
(

∂2T
∂r2 +

1
r

∂T
∂r

+
1
r2

∂2T
∂φ2 +

∂2T
∂z2

)

−ρβcβ
(

∂T
∂t

+ ω
∂T
∂φ

)

= 0

(2)
whereKβ, ρβ andcβ are the thermal conductivity, density and
specific heat of materialβ, respectively, andω is the angular ve-
locity in the chosen frame of the reference. As long as no in
termittent contact is experienced in the circumferential direction,
the thermoelastic contact problem for each wave number willbe
independent. Thus, we obtain the matrix form by applying th
finite element method to Eqn. (2)

MΘ̇m +(C+ jmωMω)Θm + qc = 0 , (3)

whereΘm andqc are the vectors of nodal temperatures and nod
heat sources, respectively. The nodal heat sourcesqc = 0 at all
nodes, except the ones on the contact interface due to frictional
heat generation

qc = f ωRPc , (4)

where

R ji = riδ ji , (5)
2
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ri is the radial coordinate for theith node,f is the friction coeffi-
cient, andPc are nodal contact forces, which is a linear function
of the nodal temperatures,Θm, and the external nodal forces,F
— i.e.

Pc = AΘm + GF , (6)

whereA, G are matrices which can be obtained using a routin
finite element discretization of the thermoelastic problem.

Substituting Eqn. (4) and Eqn. (6) into Eqn. (3), we then
have

Θ̇m − B̃Θm = F̃ , (7)

2.2 Transient Modal Analysis(TMA) Mehod
If the sliding speed is constant, the TMA method permits

us to write the solution of Eqn. (7) as an integral of the poss-
bly time varying external loadsF(t) and the eigenvalues of the
corresponding homogeneous equationΘ̇m − B̃Θm = 0,

Θm (t)= Vexp(Λt)V−1Θm (0)+

∫ t

0
Vexp[Λ(t − τ)]V−1F̃(τ)dτ .

(8)
If the sliding speed varies, we need to discretize the sliding speed
in the time domain. During each small time step, the sliding
speed can be regarded as constant and solution (8) can be e
ployed for each time step.

Θm (t j) = V j exp(Λ j∆t j)V−1
j Θ(t j−1)+ (9)

∫ ∆t

0
V j exp[Λ j (∆t j − τ)]V−1

j F̃ j (τ)dτ, j = 1. . .M ,

where

∆t j = t j − t j−1 (10)

andV j, Λ j are respectively the eigenvector matrix and the diag
onal eigenvalue matrix of̃B j, at sliding speedω j.

2.3 Fast Speed Expansion (FSE) Method
Eqn. (9) requires to solve the full eigenvalue problem fo

each matrixB̃ j, which makes the TMA method extremely time-
consuming for the large-scale problem. However, the computa-
tion time can be dramatically reduced by interpolating the solu-
tion to the eigenvalue problem, using FSE method. The eige
value equation of the matrix̃B is

B̃(ω)X(ω) = λ(ω)X(ω) , (11)
Copyright c© 2004 by ASME
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Expanding the matrices in Eqn. (11) as Taylor series over
speed domain in the vicinity of some speedω0, we obtain

B̃(ω) = B̃0 + B̃1 (ω−ω0)+ . . .+ B̃n (ω−ω0)
n (12)

λ(ω) = λ0 + λ1(ω−ω0)+ . . .+ λn (ω−ω0)
n (13)

X(ω) = X0 + X1(ω−ω0)+ . . .+ Xn (ω−ω0)
n

. (14)

For our problem, the expansion ofB̃(ω) contains only the two
termsB̃0 andB̃1. Substituting Eqn. (12-14) into Eqn. (11) an
matching coefficients for each power of(ω−ω0), we obtain

(

B̃0−λ0I
)

X1 +
(

B̃1−λ1I
)

X0 = 0 (15)
(

B̃0−λ0I
)

X2 +
(

B̃1−λ1I
)

X1−λ2X0 = 0 (16)
(

B̃0−λ0I
)

X3 +
(

B̃1−λ1I
)

X2−λ2X1−λ3X0 = 0 (17)

. . .

(

B̃0−λ0I
)

Xn +
(

B̃1−λ1I
)

Xn−1−λ2Xn−2−

. . .−λnX0 = 0 . (18)

whereλ0 andX0 are the eigenvalues and eigenvectors of the m
trix B̃0. Numerical solution shows that the eigenvectors prese
approximately the same form over a quite wide speed range, tus,
they can be expanded by the only first two terms,

X(ω) = X0 + X1(ω−ω0) , (19)

where

X1 =
X(ω1)−X0

ω1−ω0
(20)

andX(ω1) represents the eigenvectors of the matrixB̃(ω1). Be-
causeX(ω) in Eqn. (19) is an approximation, Eqns. (15-1
cannot be satisfied exactly. The error measures

E1 =
(

B̃0−λ0I
)

X1−
(

λ1I− B̃1
)

X0 (21)

E2 =
(

B̃1−λ1I
)

X1−λ2X0 (22)

E3 = λ2X1 + λ3X0 (23)

. . .

En = λn−1X1 + λnX0 (24)

can be minimized by using the least square method upon E
(21-24). From Eqn. (21), the optimalλ1 is found from

∂(E∗
1E1)

∂λ∗
1

= X∗
0

[(

B̃0−λ0I
)

X1−
(

λ1I− B̃1
)

X0
]

= 0 , (25)
3
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Figure 1. Two layers clutch system.

where∗ means conjugate and transpose. From Eqn. (25), w
obtain

λ1 =
X∗

0

[(

B̃0−λ0I
)

X1 + B̃1X0
]

X∗
0X0

(26)

and the other coefficients ofλ(ω) are obtained in the same way
as

λ2 =
X∗

0

(

B̃1−λ1I
)

X1

X∗
0X0

(27)

λ3 = −
λ2X∗

0X1

X∗
0X0

(28)

. . .

λn = −
λn−1X∗

0X1

X∗
0X0

. (29)

These results permit us to approximate the eigenvalues a
eigenfunctions at any speedω using the full eigenvalue solution
at only a limited number of ‘main’ speeds. In particular, we can
use this method to obtain the eigensolution at the ‘minor’ speeds
ω j in Eqn (9).

3 Results
The FSE method was applied to the two-layer transmissio

clutch problem shown in Fig.1. The layers are pressed agait
each other by a uniform hydraulic pressure, and the lower plate
is supported by frictionless contact with a rigid plane. Thethick-
ness of each layer is 2 mm. The inner radius and the outer rads
are 60 mm and 80 mm, respectively. Sliding friction occurs a
the interface between two layers. The sliding speed is decreased
linearly from 170 r/s to 0 r/s in a period of 1 second. The magn-
tude of the initial perturbation temperature field is from -40◦C to
+40◦C.

3.1 Convergence of FSE Method
The ‘exact’ solution to the problem is established by th

TMA method with 160 time steps. To reduce the computation
Copyright c© 2004 by ASME

se: http://www.asme.org/about-asme/terms-of-use



b
d

g
t
o

h

e

to
g
it

h

y,

s ef

n

.,

er

a

Dow
0 0.2 0.4 0.6 0.8 1
−20

0

20

40

60

80

100

Time (s)

T
em

pe
ra

tu
re

TMA −− 160 Time Steps
TMA −− 10 Time Steps
FSE −− 10 Mains & 16 Minors

Figure 2. Comparision between the FSE method and the TMA method

effort involved, we applied the FSE method to the same pro
lem. We solved the full eigenvalue problem at 10 main spee
and used interpolation and expansion to approximate the eigen-
solution at 16 minor speeds in each main speed interval. Fi2
compares the evolution of a typical nodal temperature nearhe
mid-point of the contact interface by the proposed FSE methd
with the TMA method. The predicted temperatures are almo
indistinguishable from those obtained with the TMA method us-
ing 160 time steps. By contrast, significant errors are obtained if
the TMA method is used alone with only ten time steps.

3.2 Temperature Field by FSE Method
Fig.3 shows the critical speeds for this clutch problem wit

different wave numbers. We notice only when the wave num
ber is 0, 1 or 2, which are defined as mode0, mode1 and mod
respectively, the critical speed is below the initial sliding speed,
170r/s. In other words, only these three modes are instable at the
current initial sliding speed. Therefore, the effect of themodes
with other wave numbers to the temperature field can be ignord.
The temperature field is

T (r,φ,z,t) =
2

∑
m=0

Re
[

θm (r,z,t)e jmφ]
, (30)

Fig.4 shows the contour of the temperature field from 0
0.45 seconds, using the FSE method. As we can see from Fi
the critical speeds for mode1 and mode2 locate closer to inal
sliding speed than that of mode0. Therefore, correspondingtem-
perature fields of mode1 and mode2 decay more rapidly than tt
of mode0. As a consequence, in Fig.4, the mode1 and mod
4
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Figure 3. Critical speeds with different wave numbers

components in temperature field are found to die out quickl
with only mode0 remaining in the end of the transient process.

4 CONCLUSIONS
The FSE method employs an efficient algorithm to perform

full eigenvalue solutions only at a limited number of sparsely
main speeds, whilst to interpolate and expand the eigenfunctions
and eigenvalues at speeds between these main speeds. Thi-
ficiently reduces the number of eigenvalue solutions required to
solve the ITTEC transient problem and results in a significat
reduction in computation time.
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