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ABSTRACT

The transient modal analysis method (TMA) has been used
to solve the inhomogeneous (loaded) transient thermoelastic
contact problem (ITTEC). In the TMA method, the solution of the
inhomogeneous transient problem is expressed in modal coordi-
nates, corresponding to eigenfunctions of the homogeneous (un-
loaded) problem. However, for the large-scale ITTEC problem,
this method is found to be extremely time-consuming, because
of the computation-intensive of the eigen-solutions. This paper
describes a new approach to solve the large-scale ITTEC prob-
lemwith a dramatic reduction in computational complexity. The
method isreferred to asfast speed expansion method (FSE). With
the FSE method, full eigen-solutionsare performed only at alim-
ited number of sparsely located speeds. For speeds between these
speeds, eigenvectorsare solved by linear interpolation, while the
eigenvalues are computed from Taylor series. The method isiil-
lustrated with application to an automotive clutches.

1 INTRODUCTION

called the ‘Critical Speed’, is exceeded, this feedback proces
becomes instable, dut to at least one of real part of the eiger
values is positive. This phenomenon is known as thermoelast
instability(TEI) [1]. Yi [2] developed a custom software, named
‘Hotspotter’, using the finite element method to solve the critical
speed of each model.

However, ‘Hotspotter’ assumes that the sliding speed is con
stant, whereas the actual engagement takes place at variable sl
ing speed, which probably is higher than the critical speed ini:
tially, but falls below it finally. Because engagement occurs ovel
a very short period of time, detrimental high local temperature:
may not be developed before the sliding speed has fallen belo
the critical value [3]. Therefore, it is necessary to solve the tran
sient behavior of the thermoelastic contact problem.

For a large-scale problem, transient simulation is extremely
time-consuming. Al-Shabibi and Barber [4] has developed a re
duced order model by using a truncated eigenfunction expansic
to represent the temperature. The truncated eigenfunction s
ries contain only those terms corresponding to several dominai
eigenvalues. However, when the sliding speed falls below th

Upon clutch application, the steel disks are squeezed againstcritical speed, the eigenvaluestend to cluster together and no su

the friction disks by hydraulic pressure. Rotational speed of the set can be regarded as dominant. At same time, all of the real pe
steel disks is produced by friction between the steel and fric- of the eigenvalues are negative and the stiffness ratio is large, |
tion disks. The overwhelming majority of the frictional en- other words, the system is stiff [5]. Thus, it is also hard to solve
ergy is converted to heat. Because the heat generation is non-the ITTEC problem by traditional numerical methods when the
uniform, it produces non-uniform deformations in disks. These sliding speed is below the critical speed. Zagrodzki [6] has de
deformations affect the contact pressure distribution, which, in veloped transient modal analysis method(TMA) to solve the IT-
turn, further affects the temperature distribution. Hence, a feed- TEC problem for the whole speed range. In the TMA method,
back process is established. When a particular sliding speed,the transient nodal temperatures are expressed in modal coort
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nates, corresponding to the eigenfunctions of the corretipg
homogeneous(unloaded) problem. However, for the largkesc
ITTEC problem, this method is time-consuming, too.

To overcome this difficulty, we propose a new method
based on the asymptotic waveform evaluation(AWE) [7,8]sTh
method is referred to as fast speed expansion(FSE). With the
known eigenvalues and eigenfunctions at a limited number of
sparsely speeds, the FSE techniqgue employs an efficient algo

ri is the radial coordinate for thiéh node,f is the friction coeffi-
cient, andP; are nodal contact forces, which is a linear function
of the nodal temperature®,, and the external nodal forces,
—i.e.

P. = AOm+ GF, (6)

rithm to interpolate and expand the eigenfunctions andreige WhereA, G are matrices which can be obtained using a routine
values over a speed band. Consequently, the FSE method carfinite element discretization of the thermoelastic problem

greatly reduce the transient problem computational timdray
matically reducing the number of full eigenvalue solutioas
quired.

2 FORMULATION
2.1 Finite Element Discretization
The temperature field can be expanded by the Fourier series

T(r,o,zt) = i Re[6m(r,zt)el™)] (1)
m=0

wheremis the wave numbers. The temperature field must satisfy

the heat conduction equation
B _ BB =
< )0 (G o) =0
2)

whereKP, pP andc? are the thermal conductivity, density and
specific heat of materifd, respectively, andis the angular ve-
locity in the chosen frame of the reference. As long as no in-
termittent contact is experienced in the circumfereniia@ation,

the thermoelastic contact problem for each wave numbebwill
independent. Thus, we obtain the matrix form by applying the
finite element method to Eqgn. (2)

LLom 1ofT 9T
ror r2og? 9z

%T

or?

oT oT

MOm+ (C+ jmuM,) Om~+gc =0, (3)

whereOp, andq. are the vectors of nodal temperatures and nodal
heat sources, respectively. The nodal heat souggesO at all
nodes, except the ones on the contact interface due tofradti
heat generation

gc = fwRP,, (4)
where

Rji =ridj; , (5)

Substituting Eqn. (4) and Egn. (6) into Egn. (3), we then
have
Om—BOm=F, )
2.2 Transient Modal Analysis(TMA) Mehod
If the sliding speed is constant, the TMA method permits
us to write the solution of Egn. (7) as an integral of the possi

bly time varying external loads(t) and the eigenvalues of the
corresponding homogeneous equat@y— BO,, = 0,

t
Om(t) =V exp(At)V10m(0) + /O VexplA (t— 1)V IE (T) dt .
(8
If the sliding speed varies, we need to discretize the glidpeed
in the time domain. During each small time step, the sliding
speed can be regarded as constant and solution (8) can be e
ployed for each time step.

Om(tj) = Vjexp(AjAt) V1O (1) + (9)
At

ViexplAj (At — 1) ViR (T)dt, j=1..M,

where

At =tj—tj_1 (20)
andVj, A\j are respectively the eigenvector matrix and the diag-
onal eigenvalue matrix d@j, at sliding speed;.

2.3 Fast Speed Expansion (FSE) Method

Eqgn. (9) requires to solve the full eigenvalue problem for
each matrix8;, which makes the TMA method extremely time-
consuming for the large-scale problem. However, the commput
tion time can be dramatically reduced by interpolating thies
tion to the eigenvalue problem, using FSE method. The eiger
value equation of the matri is

(11)
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Expanding the matrices in Egn. (11) as Taylor series over the
speed domain in the vicinity of some speaag] we obtain

B(w) =Bo+Bi(w—wo)+... +Br(w—wo)" (12
A (W) = Ao+Ag (W—wp) + ...+ An (00— wp)" (13)
X (W) = Xo+ X1 (W—wp) + ...+ Xn(w—0x0)" . (14)

For our problem, the expansion Bf(w) contains only the two
termsBp andB;. Substituting Egn. (12-14) into Eqn. (11) and
matching coefficients for each power @b — wy), we obtain

(éo—)\(ﬂ)xl—i-(él—)\ﬂ))(o =0 (15)
(Bo—Aol) X2+ (Bi—A1l)X1—A2Xo = 0 (16)
(éo—)\o|)X3+ (él—}\ﬂ)Xz—}\zXl—)\gXo =0 (17)

(Bo—Mol) Xn+ (B1—A1l) Xn-1—AsXn 2 —
.~ AnXo = 0. (18)

wherelg andXg are the eigenvalues and eigenvectors of the ma-
trix Bo. Numerical solution shows that the eigenvectors preserve
approximately the same form over a quite wide speed rangs, th
they can be expanded by the only first two terms,

X (w) = Xo+ X1 (0— ) , (19)
where

andX (wy) represents the eigenvectors of the marixv; ). Be-
causeX (w) in Egn. (19) is an approximation, Eqns. (15-18)
cannot be satisfied exactly. The error measures

E1 = (Bo—Aol)X1— (Ml —B1)Xo (21)
Ez = (B1—A1l)X1—A2Xo (22)
Ez = A2X14+A3Xo (23)
En = An-1X1+AnXo (24)

can be minimized by using the least square method upon Egns.
(21-24). From Eqgn. (21), the optimal is found from

0(EjE1)
oA;

= X3 [(Bo—Aol) X1 — (M1l —B1) Xo] =0, (25)

Axismmetry axis External pressure

I

Cast iron

Friction material

Inner radius Outer radius
Frictional contact

Figure 1. Two layers clutch system.

where* means conjugate and transpose. From Eqn. (25), w
obtain

X [(Bo— Aol ) X1+ BaXo
XXo

A=

(26)

and the other coefficients &fw) are obtained in the same way
as

X§ (B1—A1l) X1

Ao = XX (27)
Ao XEX1

A3 = ——209 2

3 XoXo (28)

These results permit us to approximate the eigenvalues ar
eigenfunctions at any speedusing the full eigenvalue solution
at only a limited number of ‘main’ speeds. In particular, veac
use this method to obtain the eigensolution at the ‘minogesis
wj in Egn (9).

3 Results

The FSE method was applied to the two-layer transmissiol
clutch problem shown in Fig.1. The layers are pressed again:
each other by a uniform hydraulic pressure, and the loweepla
is supported by frictionless contact with a rigid plane. THiek-
ness of each layer is 2 mm. The inner radius and the outergadit
are 60 mm and 80 mm, respectively. Sliding friction occurs at
the interface between two layers. The sliding speed is dseck
linearly from 170 r/s to O r/s in a period of 1 second. The magni
tude of the initial perturbation temperature field is fror8°@ to
+40°C.

3.1 Convergence of FSE Method
The ‘exact’ solution to the problem is established by the
TMA method with 160 time steps. To reduce the computationa
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Figure 2. Comparision between the FSE method and the TMA method

effort involved, we applied the FSE method to the same prob-
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Figure 3. Critical speeds with different wave numbers

components in temperature field are found to die out quickly

lem. We solved the full eigenvalue problem at 10 main speeds \yith only mode0 remaining in the end of the transient process

and used interpolation and expansion to approximate theneig
solution at 16 minor speeds in each main speed interval 2 Fig.
compares the evolution of a typical nodal temperature rear t
mid-point of the contact interface by the proposed FSE ntetho
with the TMA method. The predicted temperatures are almost
indistinguishable from those obtained with the TMA methad u
ing 160 time steps. By contrast, significant errors are obthif

the TMA method is used alone with only ten time steps.

3.2 Temperature Field by FSE Method
Fig.3 shows the critical speeds for this clutch problem with
different wave numbers. We notice only when the wave num-

4 CONCLUSIONS

The FSE method employs an efficient algorithm to perform
full eigenvalue solutions only at a limited number of splrse
main speeds, whilst to interpolate and expand the eigetitunsc
and eigenvalues at speeds between these main speeds. -This
ficiently reduces the number of eigenvalue solutions reglio
solve the ITTEC transient problem and results in a significan
reduction in computation time.
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Figure 4. The contour of the temperature field at different time
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