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Abstract. The phenomenon of infrequent price changes has troubled
economists for decades. Intuitively one feels that for most price-setters
there exists a range of inaction, i.e. a substantial measure of the states
of the world, within which they do not wish to modify prevailing prices.
However, basic economics tells us that when marginal costs change it
is rational to change prices, too. Economists wishing to maintain ra-
tionality of price-setters resorted to fixed price adjustment costs as an
explanation for price rigidity. In this paper we propose an alternative ex-
planation, without recourse to any sort of physical adjustment cost, by
putting strategic interaction into the center-stage of our analysis. Price-
making is treated as a repeated oligopoly game. The traditional analysis
of these games cannot pinpoint any equilibrium as a reasonable ”solu-
tion” of the strategic situation. Thus there is genuine strategic uncer-
tainty, a situation where decision-makers are uncertain of the strategies
of other decision-makers. Hesitation may lead to inaction. To model this
situation we follow the style of agent-based models, by modelling firms
that change their pricing strategies following an evolutionary algorithm.
Our results are promising. In addition to reproducing the known negative
relationship between price rigidity and the level of general inflation, our
model exhibits several features observed in real data. Moreover, most
prices fall into the theoretical ”range” without explicitly building this
property into strategies.

1 Introduction

Everyday observations tell us that some prices are changing almost continuously.
Financial asset prices, of foreign exchange or of stocks, are obvious examples for
each of us. While most people do not buy ”commodities” regularly, it is also
well-known that the prices of crude oil, gold, or grain behave similarly. On the
other hand most prices we meet in shops or kiosks seem familiar, we expect that
they do not change from one day to another.

Infrequent price or wage (the price of labor) changes have troubled macroe-
conomists. According to the prevailing wisdom this fact is behind the ability of
monetary policy to affect (significantly) real - as opposed to merely nominal -
variables. It is perhaps less in evidence but the ”no change in prices” phenomenon
is a concern for competition offices, too, as it may signal collusion.



Intuitively one feels that for most price-setters there exists a range of in-
action, i.e. a substantial ”measure of states of the world” where they do not
wish to modify prevailing prices. However, basic economics tells us that at least
when marginal costs change it is rational to change prices, too, even in not fully
competitive markets. (The case of demand changes is not so obvious. Outside of
perfect competition variation in the price elasticity of demand should result in
price changes rather than just variation in the level of demand, at least in the
traditional analysis.) However, many prices do not even react to clearly visible
marginal cost variations, in macroeconomics the perhaps most salient example
of this is the PPP puzzle (see Rogoff 1996), i.e the observation that there are
large variations across currencies in purchasing power parity induced by nominal
exchange rate changes. (An alternative formulation of this puzzle is the positive
comovement of nominal and real exchange rates.)

Economists wishing to maintain rationality of price-setters resorted to fixed
price adjustment costs (menu costs) as an explanation for price rigidity. The fixed
adjustment costs story is plausible, but only partly. The everyday reprinting
of an elegant menu for a restaurant is really not an easily digestible option.
However, what about meal prices written on a blackboard at the entrance? Or
what about magazine prices, one of the foremost examples of unreasonably strong
price inflexibility? Here printing a different price on each new edition would not
entail even a negligible extra cost.

It must be the case that the rigidity of prices has more than one reasons. In
this paper we propose an alternative explanation, without recourse to any sort
of physical adjustment cost. We put strategic interaction into center-stage in our
analysis. While repeated oligopolistic pricing games can produce ”collusive” equi-
libria with rigid prices in peculiar circumstances (see Athey-Bagwell-Sanchirico
2010), we focus on the possible role of strategic uncertainty.

The main idea of the approach can be summarized as follows. Price-making is
a repeated game, firms usually act in markets where there exist identifiable com-
petitors. The traditional analysis of these games cannot pinpoint any equilibrium
as a reasonable ”solution” of the strategic situation. Thus there is genuine strate-
gic uncertainty, a situation where decision-makers are uncertain of the strategies
of other decision-makers. Strategic uncertainty may cause hesitation: if I cut the
price would it be interpreted as a signal for a ”price-war”? or if I raise the price
would it be followed by others, or shall I lose market-share? Hesitation may lead
to inaction, as we all know too well. To model this situation we follow the style
of agent-based models. Agent-based models can accommodate a wider range of
”environments” than the traditional approaches (see below in detail). The def-
inition of strategies is a common problem to all approaches, but in this respect
agent-based models can exhibit larger flexibility, too. A significant difference is
that whereas traditional approaches rely on either full rationality and an equi-
librium concept, or a specific form of bounded rationality and an equilibrium
concept, agent-based models must assume something about learning.

In Sect. 2 we give a short survey of the price rigidity literature, followed
by some notes on agent-based modelling applied to economics problems. In the



following section we theoretically motivate our approach, and in Sect. 4 the
agent-based oligopoly model is set up, and the learning algorithm is discussed.
Section 5 presents the baseline scenario, while Sect. 6 offers sensitivity analyses.
The concluding section summarizes, pointing out paths to further research.

2 Literature Survey

2.1 The Rigidity of Prices

Price rigidity is basic ingredient of new keynesian macroeconomic models. New-
Keynesian Phillips curves are derived from individual profit maximization, whereby
prices are set by monoplistically competitive firms that face costs of price ad-
justment. Several types of price adjustment costs models have been proposed in
the literature. The aggregate implications of these models are similar, though in
no case identical. (See for example Roberts 1995.) Researchers have frequently
shown a lack of concern for looking for the ”right” pricing model, as long as the
implications seemed to be in line with macroeconomic data, and one should say,
a priori beliefs.

However, in the last decade a series of systematic studies was launched to
find out from microdata how firms “in reality” set their prices. (This litera-
ture is surveyed in Mackowiak-Smets 2008.) One of the studies (Fabiani et al.
2007) was conducted by nine Eurosystem central banks, through standardized
surveys. It covered more than 11,000 firms. Of the conslusion we cite only a few
pertinent to our paper. First: ”The results, robust across countries, show that
firms operate in monopolistically competitive markets, where prices are mostly
set following markup rules ...” Though the authors talk of ”monopolistically
competitive markets”, we believe that the evidence cannot really distinguish be-
tween ”monopolistic competition” and oligopoly. What is important for us is the
prevalence of markup rules. Second: ”Price stickiness is mainly driven by cus-
tomer relationships – explicit and implicit contracts – and coordination failure.”
We do not address customer relationship, but emphasize ”coordination failure”.
Indirectly this sentence vindicates our claim with respect to oligopolistic compe-
tition. To wit: there is no reason for coordination in monopolisitc competition.
This is the source of price rigidity we wish to make sense of in this study. The mi-
croeconomic research has in general had a dim conclusion for adjustment costs
models: each of them seems to be irreconcilable with some salient features of
microdata. Third: ”Firms facing high competitive pressures review their prices
more frequently.” We interpret this finding that it means that more firms, other
things being equal, would care less for solving the coordination problem, and,
therefore, would review (and possibly change) their prices more frequently. It is
an interesting question to ask what makes prices change if anything. Papers that
have addressed this issue usually found that cost changes are more likely to be
responsible for price change than variation in demand. (See Bils-Klenow 2004.)

As a response to the failure of adjustment cost models to account for the
microeconomic evidence Rotemberg (2010) proposed an alternative in the be-
havioral economics style. Essentially Rotemberg tried to make intelligible the



concept of fair pricing. His analytical result is that a concern for fairness (partly
because customers can be offended by unfair behavior by firms) can cause price
rigidity.

Recent research has yielded quantitative results as well. Several authors
calculated price-rigidity statistics for different time-periods, and areas. On a
consumer-price data base for the US Klenow-Krystov (2008) obtained that 36 %
of all prices are changed in every month, and that the mean duration of prices is
6.9 months. More substantial price rigidity was found by Dhyne et al. (2005) for
the Euroregion. The respective statistics are 15 %, and 13 months. For a higher
inflation country Bauer (2008) examined Hungarian retail food prices, and he
found 25 %, and 3.8 months. With broader coverage also for Hungary Gabriel
and Reiff (2008) reached estimates of 21.5 %, and of 8 months. These studies
have found substantial heterogeneity across sectors, and as expected, a negative
relationship between the level of overall inflation and the degree of price rigidity.

Eichenbaum, Jaimovich and Rebelo (2008) analysed the price and cost data
of a large American chain store retailer. They found substantial rigidity for
”reference” prices, remaining unchanged on average for a year. Actual prices
are moving more, but this flexibility must be a feature of the concrete market
segment, and must not concern us here. What is important for us is the finding
that reference prices are adjusted whenever they differ significantly from a target
price defined as average cost times a ”required” markup. The authors calculate
the tolerance level as 20 %. Below we will model exactly this type of pricing
strategy.

2.2 Agent-based Modelling

Agent-based models have been used for some time in economics. General surveys
are available, such as Tesfatsion (2001, 2006), LeBaron (2006), or see Heath-Hill-
Ciarallo (2009) from the methodological point of view. All of these approaches
share a bounded rationality philosophy, wherein agents apply strategies that
do not maximize necessarily anything, and are limited in their understanding
of their environment. Their decisions are also ”computable”, excluding thereby
behaviours unrealizable by a computer. Agent-based models are simulated, which
implies that the interaction of the agents is also well-defined and computable, not
admitting, for instance, equilibrium prices that merely satisfy certain conditions
but even the modeller could not calculate them.

We are especially interested in agent-based models that allow for an endoge-
neous updating of strategies, which is usually styled as learning. Learning models
have also a long history in economics, see for a survey Evans-Honkapohja (1999).
Learning, specifically, in the agent-based setting was reviewed by Brenner (2006)
and Duffy (2006). Though many approaches to learning exist one of them draw
particular attention in economics applications: evolutionary learning. (For a sur-
vey see Arifovic 2000). One can classify as of evolutionary learning algorithms
the genetic algorithm, genetic programming, the classifier systems. We opted for
this general approach on the ground that it has proved to be relatively successful
in several economic applications.



Oligopolistic markets have been studied by agent-based modelling. Midgley et
al. (1997) is an example that addresses the problem from an operations-research
perspective. The paper whose approach is the closest to ours is Chen-Mi (2000).
Here the authors explore the ”ecology” generated by evolutionary learning in
repeated oligopoly games. Their focus is on the ”cooperation vs price wars”
issue, they constrain the set of feasible prices to high (cooperative) and low
(punishing). Thus their findings are irrelevant to the issue of price rigidity.

3 Motivation: A Symmetric Pricing Game

There are I (i = 1, ...I) firms, p = (pi, p−i) is the price vector. The per-period
profit functions are given:

πi(x, pi, p−i)

The profit functions are identical, for all i, and with identical prices they can
be written as π(x, p), where x is a state exogenous to the market.

Let pN (x) the static symmetric unique Nash-equilibrium price vector at x,
and πN (x) the associated payoff. Let us suppose also that the best reply functions
are increasing in competitors’ prices.

Let

V N (xt) = πN (xt) + βEtπ
N (xt+1) + β2Etπ

N (xt+2) + ...βnEtπ
N (xt+n) + ...

be the dynamic Nash-payoff at xt.
The state vector for an individual firm is (xt, pt−1). The strategy (pN (xt)) is

a subgame perfect equilibrium in this game, and can serve as a reference point
(the worst equilibrium) for the oligopolists.

If the firms can always tacitly collude they can implement the first best collu-
sive strategy (pCFB(xt)) that maximizes industry (and per firm) profits at each
instant. Depending on β repeated game theory establishes whether (pCFB(xt))
can be made the outcome of a subgame perfect equilibrium or not. Also it is
a normal feature of repeated games that many outcomes between (pN (xt)) and
(pCFB(xt)) are also available as subgame perfect equilibrium paths, depending
on beliefs and out of equilbrium strategies.

Suppose there exists a specific subgame perfect equilibrium, that involves a
region of inaction, i.e. circumstances under which prices are not changed, despite
changes in xt. The basic intuition is the following: at each instant (period) there
exists a highest implementable collusive price pCt > pN (xt), which, if chosen by
all firms, gives each a higher payoff than the Nash-payoff. This price, which we
will call for simplicity the collusive price, is not necessarily the same as pCFB(xt),
and must be determined endogenously. The prevailing prices (pt−1) can fall into
three regions.

1. pt−1 < pN (xt). Here firms can successfully collude and jump to the col-
lusive price, pCt . The reason is that all of them have to move ”upwards”, and



no one equivocates with respect to others’ behaviour, or others’ beliefs about
others’ behaviour.

2. pN (xt) < pt−1 < pCt . This is the region of inaction. Each firm’s myopic
best response to the prevailing prices is to decrease its own price (going closer
to the Nash-price), whereas collective rationality would dictate a coordinated
increase in prices. Uncertainty engenders inaction since: if I increase the price
unilaterally I will lose, and if I decrease the price I’m afraid it will result in a
price war, ending up in Nash-behaviour.

3. pCt < pt−1. Successful collusion again, as both myopic individual rational-
ity, and cooperative wisdom calls for decreasing the prices.

The problem formulated in this way admits of the application of dynamic
programming. Therefore, if pN (xt) < pt−1 < pCt then pt = pt−1, and the value
function:

V (xt, pt−1) = π(xt, pt−1) + βEtV (xt+1, pt).

If pt−1 < pN (xt) or pCt < pt−1then pt = pCt ,where

pCt = arg max
pt

(π(xt, pt) + βEtV (xt+1, pt)),

and

V (xt, pt−1) = max
pt

(π(xt, pt) + βEtV (xt+1, pt)).

To turn the hypothesized strategy into a subgame perfect equilibrium one may
assume that any deviation from the prescribed course of action by anyone would
make all firms to play myopic Nash (the worst equilibrium) forever onwards.
Subgame perfection entails the following incentive compatibility constraints:

V (xt, pt−1) > max
pi

(π(xt, pi, p−i,t) + βEtV
N (xt+1)),

i.e. no firm can win by deviating from cooperation now, assuming that deviation
would result in Nash-behavior from t+ 1 on.

By making specific assumptions about the process generating xt, and on the
profit function it may be possible to prove the existence of this sort of subgame
equilibrum. However, even if it were done, there would be no reason to believe in
the argument as an ”equilibrium selection device”, since the disturbing variety
of other equilibria would still exist. Therefore, we turn to agent-based modelling
as an alternative approach.

4 Oligopoly Pricing by Boundedly Rational Agents

4.1 The Agent-based Model

Time consists of periods (t = 0, 1, ...). At the beginning of any period each of
N firms sets a single price (pit) for their own differentiated good. The vector of



prices is denoted by pt. Firms have constant marginal and average costs (cit),
which are stochastic. The vector of marginal costs is denoted by ct. Below we
analyze several specifications for the marginal cost processes. Market demand is
characterized by a logit demand system (see Anderson-de Palma 1992)

Dit = K
exp(−pitυ )∑N

j=1 exp(−pjtυ ) + exp(Vυ )
.

Here K is the number of potential buyers, i.e the size of the market. The pa-
rameter υ > 0 can be interpreted as the degree of differentiation. The role of
exp(Vυ )(> 0) is to make the optimal collusive price finite. Otherwise total de-
mand would be equal to K whatever pt is. To save space in the description below
we set K = 1, and υ = 1, but in the sensitivity exercises we will treat the general
case.

These data define in every period a Bertrand-Chamberlin oligopoly game
with constant marginal cost functions, and logit demand. Then there exists
a mapping p0(ct) determining the static Nash-equilbrium of the one-period
oligopoly game. If costs are common (cit = cjt) for all pairs i, j ∈ {1, ...N},
and each t, then Anderson-de Palma (1992) established the following relation-
ship:

p0t = ct +
1

1− 1
N+exp(p0t+V )

.

Though there does not exist an explicit solution, this equation is easy to solve
numerically.

On the other hand one can derive the following relationship for the optimal
(static) collusive price (p∗(ct)):

N exp(−p∗t ) = exp(V )(p∗t − ct − 1).

By rearranging the two formulas one gets

p0t = ct + 1 +
1

N − 1 + exp(p0t + V )
.

and

p∗t = ct + 1 +
N

exp(p∗t + V )
.

Then it can be seen that for N = 1 (monopoly), the Nash-equilibrium and
collusive prices are the same, as expected. In addition these formulas exhibit
that as N increases the noncooperative price monotonically decreases, whereas
the collusive price monotonically increases.

This model would be suitable in a non-inflationary environment. It is plau-
sible to assume that demand in a partial market depends on prices relative to
the general price level. As we model a partial market inflation should be treated



as an exogenous variable, like marginal costs. The simplest assumption makes
marginal costs and the general price level proportional, i.e.

Pt = κct,

where Pt is the general price level, and κ > 0 is a constant. Thus we have to
reinterpret all prices as nominal prices divided by the general price level. The
modified formulas are as follows

Dit =
exp(−pitPt

)∑N
j=1 exp(−pjtPt

) + exp(V )
.

p0t = ct + Pt +
Pt

N − 1 + exp(
p0t
Pt

+ V )
.

and

p∗t = ct + Pt +
NPt

exp(
p∗t
Pt

+ V )
, .

The non-cooperative and collusive prices will be important benchmarks, but
we will never assume that firms can calculate and apply them.

The firms in our model are boundedly rational agents that do not pretend to
find out what an optimal pricing strategy would be. Optimality would heavily
depend on the reaction of competitors, as well as on the uncertain marginal
costs process. They certainly know their own costs, and have a general world-
view based on the reasoning developed in the previous subsection.

Thus they know that they can ”mark up” costs, in other words in a differ-
entiated oligopoly setting prices can be profitably set above marginal cost, even
if competitors would remorselessly maximize profits. They know also that there
is a remote possibility to collude, and by forming a powerful cartel prices can
be set ”high enough” above marginal costs to achieve maximum profits for the
whole industry. Furthermore, they know that there is an upper limit, even the
omniscient cartel would not set infinitely high prices.

On the other hand they are sceptical, and are aware of strategic uncertainty,
i.e. they are uncertain about how their competitors behave and react. This rea-
soning leads to these firms to formulate pricing strategies in the following way.

1. Start with a target markup range, where the lowest markup is higher than
1.

2. Observe the marginal cost and calculate the target price range.

3. Check whether your latest price falls into the target range or not.

4. If yes, do not change the price.

5. If no, then set the new price at either extreme of the target range.



6. Observe how strategies work in the market over several periods. (Any strat-
egy consists of the target markup range (two parameters),and two binary
decisions: what to do when the target price is above, or below the target
price range.) Then try to imitate successful strategies, or maybe experiment
with a new one.

The change of strategies is based on a specific realization of the genetic
algorithm, a learning mechanism that has been applied in several contexts within,
and, mostly, without economics. In the next subsection to this we will turn.

4.2 The Learning Algorithm

The evolutionary algorithm used in this study has certain specific features. We
call it evolutionary, because in spirit it is very similar to the class of algorithms
surveyed for instance in Arifovic (2000).

The building of an evolutionary algorithm must start with the definition of
strategies. In our case we limit the strategy space to four dimensions:

1. Setting the lower limit of the markup (a real positive number)
2. Setting the upper limit of the markup (a real positive number)
In fact it is more convenient to work with a transformation of the two real

variables: setting a markup target, and a percentage deviation from the markup
target.

3. Action when the prevailing price is below a lower bound for the markup.
It is binary: 0, if the new price be the lower bound, and 1, if the new price be
at the upper bound.

4. Action when the prevailing price is above the upper bound for the
markup. It is binary: 0, if the new price be set at the lower bound, and 1, if the
new price be at the upper bound.

If the prevailing price is between the lower and the upper bounds the price
is not changed.

It must be emphasized that this strategy set is obviously ”much smaller”,
than the set of all feasible strategies. It is also more restricted than the set
of available Markov-strategies. Still, these are not overly simplistic strategies,
either. As we have argued in the previous subsection due reflection can lead
someone to opt for these strategies in an oligopolistic situation with strategic
uncertainty, thus they are far from being naive.

We start with giving arbitrary values for the binary variables for each firm
on the market, and more or less reasonable initial values to the real variables. In
the initial period firms act according to these (almost) random strategies, and
then profits are realized.

In period 2 the strategy of each firm possibly undergoes changes, according
to genetic operations. The first operation is selection or reproduction. Selection
requires a measure of fitness. Suppose for now that after period 1 firms can
calculate the fitness of all strategies (not only their own), having a measure
of fitness for each strategy. Then we define the survival probability of the kth
strategy by the Boltzmann-selection criterion as



pkt =
exp( fkt

H )∑I
j=1 exp( fkt

H )
,

where I is the number of firms, fkt is the fitness measure (see on it more later)
of strategy k in period t, and H is the Boltzmann-constant, frequently referred
to as ”temperature”. At high temperatures the selection pressure is low, whereas
at low temperatures it is high (i.e ”only the best can survive”). Notice, that as
it was mentioned survival depends on the relative fitness of a strategy in the
population, thus we model a sort of social learning process. For this purpose, we
use the fitness-proportionate method, also referred to as roulette wheel sampling.
This may result in some strategies being selected several times while others being
dropped.

Thus chance, according to pkt, determines if a strategy survives or not. Then
the surviving strategies may undergo mutation: each of the four elements can
be changed randomly. For the binary variables, there must be given simply a
transition probability (the mutation rate), normally close to zero. On the other
hand for the real variables, in addition to the transition probability, one has to
specify a continuous probability distribution for the mutation. We assume that
it is normal, with mean 0, and variance σ2. Thus here we must only specify the
variance. All mutation parameters are exogenous, they do not change over time.

After disposing of the problem of strategies surviving selection one has to
deal with firms whose previous strategy was dropped after the selection process.
Our approach is to form a convex combination of the old (dropped) strategy, and
one of those that have been selected repeatedly. This operation is not customary
in the literature, one can interpret it as giving a certain individual (and conser-
vative) flavor to the learning process. For the binary variables the weight of the
dropped strategy is zero, for the real variables it is an exogenous parameter.

Now we have to return to the fitness function. An obvious candidate is actual
profits, however, intuitively measuring fitness by a single run of profits would
be unreasonable. Thus we define fitness as the average of profits obtained by a
strategy with exponentially declining weights.

5 The Baseline Scenario

In the following section, we briefly describe the parameters of the model and re-
port their baseline value. Then we describe the results of this benchmark model
which is followed by a sensitivity analysis in which the effect of changes in indi-
vidual parameter values is tested.

5.1 Baseline Parameters

The model has several parameters, some already described in the previous sec-
tions:



1. Number of firms: In the baseline model there are 10 competing firms.
2. Degree of product differentiation(υ): 1 (arbitrary)
3. Scale of demand(K): 1 (arbitrary)
4. V : This is the component of the logit demand system defined above which

is intended to make prices finite. If it is set too low, total demand will be
close to K and collusion will be excessiveliy lucrative. If its value is too high,
pricing will have no effect as the demand of each firm will almost be equal.
In the baseline model its value is −1.5c1.

5. Boltzmann-constant(H): In the baseline model H is set to 1.
6. Fitness function: The weights used to calculate the fitness value of a strat-

egy stem from a geometric series. In the baseline model its quotient is 0.5.
7. Mutation parameters: The mutation rate is 10% for the binary variables,

5% for the others. The standard deviation of the mutation is 0.01 for the
markup target and 0.02 for the deviation from the markup target.

8. Weight of the repeatedly selected strategy: When a strategy is dropped,
it is replaced by the convex combination of itself and a repeatedely selected
strategy. The baseline weight of the latter is 0.55.

9. Inflation environment: The overall annual inflation rate is a normally
distributed random variable with an expected value of 3% and a 1 percentage
point standard deviation.

5.2 Baseline Results

An important expectation for the model was that most of the chosen prices fall
into the theoretical region, between pN and pCFB . Using the parametrization
described above during the 100 test runs all prices satisfied this condition. With
the baseline parameters the average duration of prices is 6.39 months, and its
standard deviation is 2.88.

Another test of the model is to compare its results to actual statistics. We
were able to do this by using the actual inflation data of the 3 different regions
described above as inputs:

Table 1. Inflation data and percentage of prices within the theoretical region

Monthly inflation(%) St. dev. of inflation Percentage of prices
within the theoretical
region

Hungary 0.54 0.69 98.2
USA 0.27 0.36 94.7
Eurozone 0.16 0.20 99.8

The sources of these statistics are Bauer (2008, p.255) for the Hungarian
data, Klenow-Kryvstov (2008, Table 6) for the US data and Dhyne et al. (2005,



p.14) for the European data.

Table 2. Comparison of model results and actual statistics

Percentage of prices changed Average duration
Fact Model’s estimate Fact Model’s estimate

Hungary 24.7 29.8 3.8 3.7
USA 36.1 19.8 6.8 5.7
Eurozone 15.3 12.7 13.0 9.5

As it can be seen in Table 2 which represents the average results of 100
runs, the model’s estimates are realistic. The actual statistics themselves are
only broad averages of substantially different sectorial data.

Moreover, the baseline model behaves realistically in the asymptotic cases of
inflation as well. Firstly, when the inflation rate is 0, total price rigidity arises,
i.e. after in average 255 periods, none of the firms change their price for 5 years.
On the other hand, we tested the algorithm in a hyperinflation environement,
using the Hungarian inflation data of July 1946. The model predicted that in
such an environment firms change prices in every period, as expected.

We also note that in our model no price wars emerge (i.e. there is no quick,
collective fall of prices). It is true even in an artificial setting of initial strategies
in which initial prices are near the collusive price pCFB .

6 Sensitivity Analysis

Table 3. Sensitivity analysis - Number of firms

Number of firms Average duration Standard deviation

5 6.40 3.27

50 6.48 1.39

Somewhat surprisingly increasing the number of firms causes less variability, but
average rigidity is left unaffected.

Table 4. Sensitivity analysis - Scale of demand

Scale of demand Average duration Standard deviation

10 times baseline 5.63 2.18

100 times baseline 3.39 0.80



Large markets invoke less rigidity, i.e. less strategic uncertainty, which is in
accordance with our intuition.

Table 5. Sensitivity analysis - Differentiation

Differentiation Average duration Standard deviation

0.1 times baseline 11.07 6.22

10 times baseline 6.13 2.84

In oligopolistic models less differentiation means more intense competition.
In this agent-based model with strategic uncertainty this translates into more
hesitation, and more price rigidity.

Table 6. Sensitivity analysis - Temperature

Temperature Duration Standard deviation

0.5 6.99 2.98

2 6.61 3.93

Low tempertaure is equivalent to high selection pressure. Apparently selec-
tion pressure affects price rigidity only marginally.

Table 7. Sensitivity analysis - Fitness weights

Fittness weights Average duration Standard deviation

1/3 6.07 2.18

1/10 6.29 2.72

The degree of ”backward looking” seems not highly relevant, which is good,
since this is something we can only experiment with.

Table 8. Sensitivity analysis - Markup mutation rate

Markup mutation rate Average duration Standard deviation

0.01 3.31 1.09

0.1 7.62 2.97

0.2 10.07 4.91

Table 9. Sensitivity analysis - Binary mutation rate

Binary mutation rate Average duration Standard deviation

0.05 5.72 2.04

0.2 7.23 3.35



Increasing both mutation rates clearly raises uncertainty, and, especially,
strategic uncertainty. Our interpretation of the model is confirmed by finding
that higher strategic uncertainy is accompanied with more price rigidity.

7 Conclusions

Our attempt to explain price rigidity by strategic uncertainty of boundedly ra-
tional agents is new in the literature. The oligopoly model in which we tried to
substantiate our claim is standard, but is far from being the simplest possible
setting. The learning algorithm we proposed is founded on solid ground, but we
had to adapt it to our specific problem.

It is quite promising to see that the model produces sensible results, along
several dimensions. First, it reproduces the negative relationship between the
level of overall inflation and price rigidity. Second, most prices fall into the
theoretical ”range” without explicitly building this feature into strategies. Third,
price rigidity statistics are even quantitatively similar to actual data. Fourth, the
sensitivity analysis show that parameter changes that intuitively correspond to
higher strategic uncertainty cause indeed greater inflexibility in prices.

Obviously, this simple model cannot explain all phenomena concerning oligopolis-
tic price setting. Its extension into several directions would test its robustness.
There remains one important feature of data that the model cannot replicate:
price wars. To address this issue should be our next concern.
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