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Abstract

Assigning and scheduling vehicle routes in a stochastic time-dependent
environment is a crucial management problem. The assumption that in a
real-life environment everything goes according to an a priori determined
static schedule is unrealistic. Our methodology builds on earlier work in
which the traffic congestion is captured based on queueing theory in an
analytical way and applied to the VRP problem. In this paper, we in-
troduce the variability in the traffic flows into the model. This allows for
an evaluation of the routes based on the uncertainty involved. Different
experiments show that the risk taking/avoiding behaviour of the planner
can be taken into account during optimization. As more weight is con-
tributed to the variability component, the resulting optimal route will be
slightly slower, but more reliable. The solution quality in terms of the
95th-percentile of the travel time distribution (assumed lognormal) will
also improve.

Key words: vehicle routing, stochastic time-dependent travel times,
travel time reliability

1 Introduction

Most traffic networks in Europe face high utilization levels, and consequently,
congestion occurs. For a sufficiently high utilization, the smallest stochastic
events (both in arrival processes or service processes) cause waiting, which in
the case of traffic systems, materialize in lower speeds. As speeds changes, travel
times vary for a given distance. As such, all transportation problems which in-
tend to minimize total time used, are subject to these physical considerations of
congestion. Consequently, the road traffic conditions and its resulting variabil-
ity can not be ignored in order to carry out a good quality route optimization.
Uncertainty about the traffic conditions represented in travel times is a perva-
sive aspect of routing and scheduling, especially in a just-in-time environment
or in highly congested regions like Europe. As the cost impact due to this uncer-
tainty can be substantial, risk sensitive planners may want to evaluate to what
extent their routes and schedules are risky in terms of travel times. Indeed, a
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slightly longer route in terms of expected travel time might be more interesting
for a planner if the associated variance is considerably smaller. Depending on
the specific risk profile of the planner (risk averse, neutral or seeking), the re-
sulting route could be substantially different. In this paper, the VRP problem
considered deals with stochastic time-dependent travel times. In a real-life en-
vironment the travel times on an individual link are stochastic in nature. Due
to weather conditions, car accidents, congestion, time and spatial fluctuations
of traffic flows can be observed. The key issue considered in this paper is then
the variability of the travel times which we consider to be a good approximation
of travel time reliability.

This paper builds upon a number of previous papers. More specifically, we
report here on the next step of research as presented in Van Woensel et al.
([42]) and Van Woensel et al. ([41]). In [41], a dynamic vehicle routing prob-
lem with time-dependent travel times due to traffic congestion was presented.
The approach developed introduced the traffic congestion component modeled
using a queueing approach to traffic flows. Explicitly making use of the time-
dependent congestion results in routes that are (considerably) shorter in terms
of travel time. Additionally, it was observed that a higher number of time
zones, improves the solution quality. Moreover, this effect is even magnified if
one considers different road types. The authors also found that adapting the
starting times for a solution has a significant effect on the obtained solution
quality. Finally, [41] found that the extra calculation time needed, is significant
for larger datasets but certainly worthwhile as the solution quality improved
considerably. In Van Woensel et al. ([42]), both the static and the dynamic
Vehicle Routing Problem (VRP) were solved using Ant Colony Optimization.
Results for a large number of datasets showed that the total travel times can be
improved significantly when explicitly taking into account congestion during the
optimization. Moreover, a first rough expression for the variance of the travel
time was obtained. Adding this expression into the objective function showed
the possible advantage of considering the variance. This last observation is the
starting point of the current paper on-hand. In this paper, we show how the
distribution of the travel times on an individual link can be used to reduce the
travel time variability. It is shown that, in addition to the mean, using the
variance and the entire distribution of the travel times, better results in terms
of travel time reliability are obtained.

The main contributions of the paper are:

1. Assuming a lognormal distribution for the speeds, we obtain an improved
expression of the standard deviation compared to the rough expression
reported in [42]. This new expression for the variance is evaluated against
simulation and is shown to be a good approximation.

2. We introduce the newly obtained variability component in the objective
function of our tabu search implementation. As such, we control for the
degree of travel time variability during the optimization. We use this
expression to optimize the VRP with time-dependent travel times taking
into account the expected travel time and the standard deviation of the
travel time. We show that extending the objective function with this
extra information about the stochastic travel time distribution provides
better results when considering the reliability of travel times. Depending
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on environmental and road conditions as well as the risk taking behavior
of the planner, these improvements are substantial.

3. The reduction of the travel time variability may come at the cost of an in-
crease of the expected travel time. To evaluate a solution, we use the 95th-
percentile of the travel time distribution as a quality measure. Using this
measure, the solution quality improved, if the increase in expected travel
time resulted in a lower travel time associated with the 95th-percentile
of its distribution. Results show that the reliability improves as more
weight is given to the variance component during optimization. Different
environmental and road conditions are compared and evaluated using this
quality measure.

This paper is organized as follows: in Section 2, the literature background
on our VRP variant is presented, followed by a formal description of the VRP
and the objective function in Section 3. Section 4 is devoted to deriving an
expression for the expected travel time and the variance of the travel times.
Experimental results on solution quality are presented in Section 5. Finally,
conclusions and future research are presented in Section 6.

2 Literature review

Stochastic Vehicle Routing

Travel times between any two customers are a stochastic process related to
traffic congestion. Depending on the time of the day the traffic network will
face a different level of congestion. The number of vehicles, the road capacity,
road conditions, weather conditions, etc. influence the speed of the vehicles.
There has been limited research on solving the VRP problem in the face of
stochastic time-dependent travel times. One of the first approaches (Malan-
draki and Daskin [31]) treated the travel time between two customers as a
function of distance and the time of the day (if this temporal component causes
more travel time variation than travel time variation due to accidents, weather
conditions,etc.), resulting in a piecewise constant distribution of the travel time.
Although they only incorporate the temporal component of traffic density vari-
ability, they acknowledge the importance of the traffic density variability due
to accidents, weather conditions and other random events. However, the FIFO
principle is not necessarily satisfied (Ichoua et al. [23]).

Ichoua et al. [23] introduced a model that guarantees that if two vehicles
leave the same location for the same destination (along the same path), the one
that leaves first will never arrive later than the other. This is satisfied by working
with step-like speed distributions and adjusting the travel speed whenever the
vehicle crosses the boundary between two consecutive time periods. To reduce
computational run times, they limited the number of time slices to three. The
speed differences are then modeled using correction factors on the weights of
the links. Donati et al. [6] extended this line of research by indicating the
importance of optimizing the starting time in addition to optimizing the routes
in a time-dependent environment. They show that the degree of feasibility
(defined as not violating a time constraint) and optimality decreases for the
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best solutions for the constant speed model when they are used in a time-
dependent context with increasing variability of the traffic conditions. Similar
results were also observed by Haghani and Jung [18]. In contrast with Ichoua
et al. (Ichoua et al. [23]) they present the travel time as a continuous function
that can accept any kind of travel time variation. In their real time approach,
Haghani and Jung [18] propose to adjust the vehicle routes at certain times
in the planning period to take new demands and new traffic information into
account. They classify links into three types and each link type has two types
of traffic flow characteristics. At any time during a day, the link travel speed is
calculated based on the design speed of the link and the ratio of the travel speed
to the design speed for that link type at that time. Travel times between the
nodes are calculated using a time-dependent shortest path algorithm and are
input to the vehicle routing problem algorithm. An important conclusion states
that if the uncertainty in travel time forecasting increases, the dynamic routing
strategy becomes increasingly superior. Uncertainty of travel time forecasting
is inserted in 12 cases, in which they change the percentage of links that can
change and the gap of that change. No information is provided on how to assess
the uncertainty of the travel time forecasting.

As indicated by Ichoua et al. [23] the literature on time-dependency in a
VRP context is limited. Stochastic and time-dependent travel times are more
extensively operated on in shortest path analysis (e.g. Hall [19], Fu and Rilett
[8], Gao and Chabini [9], [10] and He et al. [20]). He et al. [20] indicates that
although mean and variance contain the most important information about path
travel time, finding the single route with expected shortest travel time is not
appropriate for routing of planners who are not risk neutral in their behavior.
The entire travel time distribution contributes to the routing choice. Chen et
al. [5] propose to using the standard deviation and the 90th percentile travel
time in addition to the mean to measure service quality.

Stochastic travel times are introduced in the vehicle routing problem by
Laporte et al. [30]. Following Gendreau et al. [12] a stochastic VRP arises
whenever some elements of the problem are random. A stochastic model is
usually modeled in two stages. In the first stage, a planned a priori route is
determined, followed by a realization of the random variables. In the second
stage, a recourse or corrective action is then applied to the solution of the
first stage. The cost/saving generated through the recourse may have to be
considered when designing the first stage solution. Kenyon and Morton ([26])
developed two models to tackle the stochastic V RP with random travel and
service times with distribution assumed to be known. The first minimizes the
expected completion time and the second maximizes the probability that the
operation is complete before a preset target time T . After the routes have been
constructed in the first phase, the actual travel times of those routes based on
realizations of the random travel and service times are computed.

Modeling Traffic

Based on traffic counts, analytical queueing models model the behavior of traffic
flows as a function of the most relevant physical and geographical determinants
(i.e. free flow speed, maximum road capacity,variability due to the weather,
etc.). The travel times can then be modeled much more realistically using these
speeds (i.e. expressed in kilometer per hour) and are directly related to the
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physical characteristics and the geographical location on the arc.
An empirical validation of the queueing approach as well as parameter fine-

tuning is provided in Van Woensel and Vandaele [43] and validation based on
simulation results is provided in Van Woensel et al. [44]. As the distribution of
the speeds is calculated based on traffic counts using queueing models in which
parameters can be finetuned as to represent current environmental conditions
best, the link and consequently road travel time distributions can be modeled
much more realistically. More specifically, the stochastic nature of travel times
is captured using queueing theory applied to traffic flows (Vandaele et al. [36];
Van Woensel [39]). By making use of this analytical approach the necessary data
to model congestion (i.e. traffic flow and some queueing parameters to capture
road conditions) is limited which opens the door for real-life applications.

It must be noted that several other queueing models have been proposed
in the literature, all aiming at improving traffic flow modeling accuracy and
flexibility (see e.g. Jain and MacGregor Smith [25], Heidemann [21]). For a
detailed discussion refer to Van Woensel [39].

3 Problem formulation

Formally, the routing problem considered can be represented by a complete
directed graph G = (V, A) where V = {0, 1, . . . , n} is a set of nodes representing
the depot (0) and the customers (1, . . . , n), and A = {(i, j)|i, j ∈ V } the set
of directed links. For each customer, a fixed non-negative demand qi is given
(q0 = 0). The aim is then to find routes with shortest travel time where the
following conditions hold (Laporte [29]): Every customer is visited exactly once
by exactly one vehicle; all vehicle routes start and end at the single depot
every vehicle route has a total demand not exceeding the maximum vehicle
capacity Q. Define a solution as a set S with m routes R1, . . . , Rm where
Rr = (0, r1, r2, . . . , 0) and each vertex i ≥ 1 belongs to exactly one route. For
the ease of notation, write i ∈ Rr if the node is part of the route Rr and
write (i, j) ∈ Rr if i and j are two consecutive nodes of Rr. T̃ t0

ij is defined as the
stochastic travel time needed to cover the distance between (i, j) leaving vertex i
at time t0. E(T̃ t0

ij ) and SD(T̃ t0
ij ) are defined as the mean and standard deviation

of the travel time distribution on link (i, j) at starting time t0. The basic
objective function which needs to be minimized is similar to the one presented
in Gendreau et al. [11] though expressed in terms of travel times:

F1(S) =

m
∑

r=1

∑

(i,j)∈Rr

E(T̃ t0
ij ) + γ

∑

r

[

∑

i∈Rr

qi − Q

]+

(1)

where [x]+ = max(0, x) and γ is a positive parameter. If the solution is feasible
the second part of eq. (1) reduces to zero. On the other hand, if the solution is
infeasible with respect to capacity a penalty proportional to γ is added. Starting
from this basic objective function extra variables describing the uncertainty due
to variable travel times will be introduced gradually.

Indeed, only taking into account the expected travel times ignores the risk
profile of the planner. Note that the proposed approach is similar to mean-
variance analysis used in financial planning of portfolios ([4], [17]). In this
literature, it is argued that risk can be associated with the included variance

5



term (Mulvey et al. [32]). An extension of F1(S) thus involves adding the
standard deviation (SD) of the travel times, resulting in F2(S).

F2(S) = F1(S) + β SD(
∑

r

∑

(i,j)∈Rr

T̃ t0
ij ) (2)

where β is a positive parameter. Higher risk averseness will be reflected in an
increase of the parameter β resulting in more weight attributed to the standard
deviation in the objective function. The higher β, the less sensitive the solu-
tions are to variability in the data, as such controlling the degree of travel time
reliability.

4 The travel time distribution

In our time-dependent model, time is discretized into P time zones of equal
length △p with a different travel speed distribution associated with each time
zone p (1 ≤ p ≤ P ). We first discuss the distribution of the travel times. Those
speed distributions are modeled in an analytical way using queueing models.
Second, an analytical expression for the expected link travel time E(T̃ t0

ij ) is
presented. Finally, we derive an expression for the variance of the travel times
on a given link V ar(T̃ t0

ij ), as such introducing an analytical expression for the
travel time reliability.

4.1 The distribution of travel times

One of the earliest studies explicitly dealing with the travel speed distribution is
that of Berry and Belmont [3] who looked into the distribution of the measured
speed of a vehicle as it crosses a particular point on the highway. Such speed
distributions were found to be normally distributed. Travel times, taken as
the reciprocal of speed, are shown to be also roughly normal, although slightly
skewed indicating that a lognormal distribution might be interesting as an al-
ternative (Kharoufeh and Gautam [27]). Other empirical results (Taniguchi et
al. [35] and Kwon et al. [28]) show that there is always a certain minimum time
needed to cover the distance (i.e. it is impossible to traverse the distance in a
time shorter than this minimum time). After this minimum, the probability in-
creases rapidly to a maximum after which the probability slowly decreases with
a long tail (i.e. skewed to the right). Due to these characteristics, Taniguchi
et al. [35] proposed to use a lognormal distribution rather than a normal dis-
tribution. More recently, empirical research on the speed distribution and the
resulting travel times are in line with these conclusions (Van Woensel [39]).
The subsequent analysis assumes the lognormal distribution, but note that the
analysis also holds for other distributions (Papoulis [33]).

4.2 The expected travel time

In Van Woensel et al. [42] and [41], it was shown that the expected total travel
time needed to go from i to j starting on time t0 (E(T̃ t0

ij )) equals

E(T̃ t0
ij ) = ϕ△p + k△p + φ△p (3)
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with t0 situated in the first time zone. The link travel time is thus the sum of
the fraction of travel time still available in the first time zone, given by ϕ△p
with ϕ the fraction parameter (0 ≤ ϕ ≤ 1); the duration of the k intermediate
time zones passed: k△p; and the fraction of the travel time in the last time
zone, given by φ△p, with φ the fraction parameter (0 ≤ φ ≤ 1). k is implicitely
defined as a random integer variable. In what follows, we propose the use of
the stochastic variable k̃t0

ij , with E(k̃t0
ij ) and kt0

ij the mean value respectively a
random realization of the distribution of the number of time zones needed to
to cover the distance between (i, j) leaving vertex i at time t0. The expected
travel time thus becomes

E(T̃ t0
ij ) = E(k̃t0

ij )△p (4)

In our model the starting time is a variable that needs to be optimized since
it has a substantial impact on the expected travel times as periods with high
congestion can be (partially) avoided (Van Woensel et al. [41]). The distance
between any i and j is a known constant. In a time-dependent context the
speed on a given link changes over time. The main point in the model is that
the speed changes when the boundary between two consecutive time zones is
crossed (see also Ichoua et al. [23]). The speed is a new variable that is obtained
using queueing models for traffic flows. From the queueing models in Vandaele
et al. [36] and Heidemann [21] it follows that the speed in any time zone can
be calculated by dividing the length of the road segment (1/kj) (kj is the jam

density parameter) by the total time in the system (W ) : s =
1/kj

W . The
total time in the system W is a function of the flow q. The major strength
of using the queueing models, is that given the flow q, the speed can easily be
obtained in an analytical way. The flow is a parameter that can be determined
empirically, allowing to determine realistic velocity profiles as a function of time.
Results showed that the developed queueing models can be used to model traffic
flows quite accurately (Van Woensel and Vandaele [43]). For a more detailed
discussion of the queueing models and their results, the interested reader is
referred to Vandaele et al. [36] and Van Woensel et al. [40].

4.3 The variance of the travel time

In this section, we obtain an expression for the variance of the travel time over
an entire link V ar(T̃ t0

ij ). This is not trivial since every time a boundary between
two time consecutive zones is crossed, not only the average speed changes, but
also the entire speed distribution. Each time zone p has a speed distribution
s̃p

ij with different mean and variance. However, to determine the exact number
of time zones needed to go from i to j, we derive the changes in speed in the
remaining time zones only from the change in speed in the first time zone. We
assume that on a given link the disturbance of speed in every time zone has the
same magnitude and direction as the disturbance of speed in the first time zone
(e.g. if we were able to drive 10 km/h faster than expected in the first time
zone, we will be able to drive 10 km/h faster during the entire trip). We denote
this as assumption of equal absolute disturbance of speed. This assumption is
valid to the extent that deviations from the mean are mainly caused by global
road conditions e.g. slower speeds due to heavy rain.

A graphical representation is provided in Figure 1. The lower line represents
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Figure 1: Under assumption of equal absolute disturbance of speeds, the new
arrival time at j can be determined setting A = B.

the speed distribution when driving at average speed E(s̃ij). Driving at those
average speeds, leaving customer i at time t0, we arrive at customer j at time
t0 + E(k̃t0

ij )△p (= t0,E(k̃ij)
). The stochastic variable k̃t0

ij is dependent on the

realization of the stochastic speed variable on that link in every time zone ∈
[t0, t0,E(k̃ij)

]. Under assumption of equal absolute disturbance of speed, the

speed distribution will be characterized by an upward (downward) shift if the
random realization of the speed in the first time zone is higher (lower) than
the mean speed. In Figure 1 the situation is presented in which we are able
to drive faster than expected (st0

ij > E(s̃t0
ij )). In this case, we might expect to

arrive at customer j at a time sooner than t0,E(k̃ij)
(i.e. t0,kij

< t0,E(k̃ij)
). Since

the distance and the starting time remains the same, it now becomes possible
to predict when we will arrive at customer j (i.e. the cross-hatched areas in
Figure 1 are identical). The difference in time zones crossed △k̃t0

ij (defined as

kt0
ij - E(k̃t0

ij )) is thus a function of the difference in speed △s̃t0
ij between the

realization of the speed and the mean speed (st0
ij -E(s̃t0

ij )). Formally, this yields:

△k̃t0
ij = α△s̃t0

ij

where α is expected to have a negative sign, since an increase in speed will reduce
the total time traveled. As the variance of the speed distributions will be larger,
the variance of the number of times zones needed to cover the distance between
the two customers will be larger and hence the variance of the link travel time.

V ar(△k̃t0
ij ) = V ar(α△s̃t0

ij )

= α2V ar(△s̃t0
ij )
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Since V ar(k̃t0
ij ) = V ar(k̃t0

ij + constant), this yields:

V ar(k̃t0
ij ) = α2V ar(s̃t0

ij ) (5)

From eq. (4), the variance of the travel time on a given link is as given by:

V ar(T̃ t0
ij ) = △p2V ar(k̃t0

ij )

= △p2α2V ar(s̃t0
ij )

From Figure 1 we know that A = B, which allows us to derive an expression
for α

k
t0
ij

∑

p=E(k̃
t0
ij

)

E(s̃
t0,p

ij )△p +

k
t0
ij

∑

p=1

△s̃
t0,p

ij △p = 0

where
∑k

t0
ij

p=E(k̃
t0
ij

)
E(s̃

t0,p

ij )△p can be either positive or negative. We assume

∀p ∈ [E(k̃t0
ij ), kt0

ij ] that the speed is the same as the final speed. i.e. E(s̃
t0,p

ij ) =

E(s̃
t0,E(k̃ij )

ij ). The equation now reduces to:

(kt0
ij − E(k̃t0

ij ))E(s̃
t0,E(k̃ij )

ij )△p +

k
t0
ij

∑

p=1

△s̃
t0,p

ij △p ≃ 0 (6)

Because the distance remains unaltered, a higher speed induces a smaller amount
of time to cover that distance. Evidently, the starting point remains the same.
Starting from eq. (6), α can be calculated as follows :






(kt0

ij − E(k̃t0
ij ))E(s̃

t0,E(k̃ij )

ij ) +

k
t0
ij

∑

p=1

△s̃
t0,p

ij






△p ≃ 0

Under the assumption of equal absolute disturbance of speed, it follows :

∀p ∈ [1, kt0
ij ] : △s̃

t0,p

ij = △s̃t0
ij

This results in :

(kt0
ij − E(k̃t0

ij ))E(s̃
t0,E(k̃ij )

ij ) + kt0
ij△s̃t0

ij ≃ 0

Since △k̃t0
ij = kt0

ij − E(k̃t0
ij )

△k̃t0
ij E(s̃

t0,E(k̃ij )

ij ) + (△k̃t0
ij + E(k̃t0

ij ))△s̃t0
ij ≃ 0

Solving for △k̃t0
ij yields :

△k̃t0
ij ≃

−E(k̃t0
ij )△s̃t0

ij

E(s̃
t0,E(k̃ij )

ij ) + △s̃t0
ij

≃ −
E(k̃t0

ij )

s
t0,E(k̃ij )

ij

△s̃t0
ij
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So α can be written as:

α ≃ −
E(k̃t0

ij )

s
t0,E(k̃ij )

ij

(7)

As expected, α has a negative sign, indicating that an increase in speed will re-
duce the total travel time. The average number of time zones is in the nominator
and the realization of the final speed in the denominator.

Recalling eq. (5), we now need to find an expression for V ar(s̃t0
ij ). Since

s =
1/kj

W (Section 4.2), this yields :

V ar(s̃t0
ij ) = V ar(

1

kjW̃
t0
ij

)

=
1

(kj)2
V ar(

1

W̃ t0
ij

)

Starting from a lognormal distribution for W̃ t0
ij , we can show [33] :

f 1

W̃
t0
ij

(
1

W̃ t0
ij

) =
1

σ 1

W̃
t0
ij

√
2π

e

−(ln( 1
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ij

)−η)2

2σ2 ;
1

W̃ t0
ij

≥ 0
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
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
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ij

+1
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)
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W̃
t0
ij

) = c2
W̃

t0
ij

E( 1

W̃
t0
ij

)
2

c2
1

W̃
t0
ij

= c2
W̃

t0
ij

=
V ar(W̃

t0
ij

)

[E(W̃
t0
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)]2

Eventually determining the change in speed in the first time zone :

V ar(s̃t0
ij ) =

1

k2
j

c2
W̃

t0
ij

[
c2
W̃

t0
ij

+ 1

E(W̃ t0
ij )

]2 (8)

Hence using the queueing approach to traffic flow, we are able to derive a closed
form approximation for the variance of the travel time as follows :

V ar(T̃ t0
ij ) ≃ △p2α2

k2
j

c2
W̃

t0
ij

[
c2
W̃

t0
ij

+ 1

E(W̃ t0
ij )

]2 (9)

As there is no closed expression for the variance of the waiting time, one needs to
rely on approximations. These approximations have already proven their value
and usability in production management (Vandaele [37]; Whitt [38]; and others).
The variance of the total time in the system W̃ , will be obtained using the two
moment approximations from Whitt [38]. Whitt describes an approximation
for the variance of the waiting time for the case when expected waiting time
is known (either exact or approximated). The approximation has the following

general form in every time zone p: V ar
(

W̃ p
)

≃
[

W̃ p
q

]2

c2
W̃ p

q

+ c2
sk

2
j s2

f , with:
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c2
W̃ p

q

the squared coefficient of variation of the waiting times, cs the coefficient

of variation of the service times and sf the free flow speed (see Whitt [38]).
To calculate the variance of the travel time over an entire route, it is assumed

that there are no overflow effects over the different time zones, i.e. the covariance
component is assumed to be zero. Therefore,

V ar(
∑

r

∑

(i,j)∈Rr

T̃ t0
ij ) =

∑

r

∑

(i,j)∈Rr

V ar(T̃ t0
ij )

It can be shown that the convolution of k lognormal distributions is again (ap-
proximative) lognormal (Beaulieu and Xie [2]). We assumed a lognormal dis-
tribution of the travel time, but the analysis could also be applied if another
distribution were chosen. Simulation results in Section 5 show that the travel
time distribution over an entire tour is again well approximated by a lognormal
one.

5 Experimental results

In this section, we first described the Tabu Search implementation and the used
congestion information. We then extend the objective function with the stan-
dard deviation of the travel times. Depending on the road and environmental
conditions, more substantial gain in terms of travel time reliability is found by
contributing more weight to this component during optimization. The decrease
in variability is offset by an increase in expected travel time, therefore, we in-
troduce the 95th-percentile of the travel time distribution as a solution quality
measure. We show that contributing more weight to the standard deviation
during optimization improves the 95th-percentile of its distribution. Finally, an
ARENA [24] based simulation is provided which confirms the results.

5.1 Implementation

In this section, a solution strategy for the VRP as described in section 2 based
on local search is proposed, Aarts and Lenstra [1]. In this paper Tabu Search,
first proposed by Glover ([15] and [16]), is used to generate solutions as it has
a number of advantages : general applicability of the approach, flexibility for
taking into account specific constraints in real cases and ease of implementa-
tion (Pirlot [34]). For this Tabu Search implementation the following references
where used as a basis: Gendreau et al. [11] and [13]; Hertz et al. [22] and Van
Woensel et al. [41]. The first important change made to this basic algorithm
consists of replacing distance by travel time. The main change consist of ex-
tending the basic objective function with the standard deviation of the route
travel time (eq. (2)). To explicitly account for the time-dependent nature of
the problem, the swap neighborhood is extended to include time shifts so as
to evaluate the effect of the start time on the total travel time. In case of im-
provement, the starting time of the associated tour is updated. The rationale
behind this optimization is that a truck can decide to leave earlier or later to
avoid periods of (anticipated) high congestion.

As we start from the flow on a road segment and transform it into speed,
we need to explain the setting of the queueing model parameters to do so. The
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flow on a road segment is assumed given as well as the free flow speed (sf ).
The remaining queueing parameters (ca ∈ [0, 1], cs ∈ [0, 1] and kj) are to be
set properly. Given an empirical dataset, they can be tuned to represent the
relevant environment conditions as close as possible (Van Woensel and Vandaele
[43]). As this is not the objective here, we choose cs = ca and set them both to
0.99 if we want to represent weather conditions that cause a large variability of
speeds or set them to 0.75 if the weather conditions are better. The jam density
kj will be set such that during rush hours the resulting speed is substantially
lower than during off peak periods for a given observed flow q. As we see in
Figures 2 and 3, a kj of 40 for a free flow of 120 km/h results in a reasonable
speed profile as well when there is a congested flow during the entire day (Figure
2: Congested flow) or when there is only heavy congestion during the morning
and evening peak hours (Figure 3: Rush-hour flow).

20 40 60 80 100 120 140
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90
95
100
105
110
115

speed

Figure 2: Speeds per time zone with kj 40, free flow 120 km/h and congested
flows (almost) during the entire day.
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Figure 3: Speeds per time zone with kj 40, free flow 120 km/h and 2 heavy
congested peak hour flows.

Since the performance of Tabu Search is dependent on the quality and char-
acteristics of the initial solution, we constructed two initial solutions to verify
the robustness of the solution arrived at by our tabu search model. The ini-
tial tour is either built by going to the closest customer or by using the sweep
algorithm of Gillet and Miller [14], inserting depots at the end to construct a
feasible tour.
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5.2 Including the variance in the cost function

The values presented so far are based on expected travel times, meaning that
we found a route that is on average better than another route. The underlying
assumption is that the planner is risk neutral in his planning behavior, i.e. the
planner does not care about the risk involved. Ignoring the associated variance
of the travel time could be very costly since the variance could be unacceptably
large from a managerial or planning point of view. Indeed, one might prefer to
have a route that is on average slightly worse, but has a reduced variance, as
such increasing the reliability of the predicted arrival times at all destinations.
Depending on the risk profile a different route will be chosen. By adjusting the
parameter β in the objective function, the planner can easily insert his personal
risk profile. Higher values for this parameter indicate a risk avoiding preference
of the planner and will result in routes that have more reliable travel times.
From Table 1 it follows that the probability that the travel time is smaller than
the travel time at TTβ (defined as E(TT )+βSD(TT )) increases as β increases.
In addition, the tail of the distribution at the right of TTβ also contributes to
the total mass of the distribution. The higher β, the less mass there is left that
contributes to the total mass of the distribution. For instance, for dataset 32k5
from Augerat, the optimal route has a travel time distribution with σ (scale
parameter of the lognormal travel time distribution) = 0.376. When β = 2.0,
95.73 % of the population of travel times is below TTβ. The remaining 4.27 %
however still contributes 8.93 % of the total mass (Finkel [7]). Therefore, we
will examine β-values up to 3.0, where the remaining mass is about 3 % for this
set.

β β=0.0 β=0.5 β=1.0 β=1.5 β=2.0 β=2.5 β=3.0

p(TT < TTβ) (%) 57.45 74.58 85.61 92.11 95.73 97.71 98.77
mass(TT > TTβ) (%) 57.45 38.76 24.59 15.00 8.93 5.25 3.06

Table 1: Probability for TT < TTβ and associated remaining mass in the tail
of the travel time distribution for different β-values when σ (scale parameter of
the lognormal travel time distribution) = 0.376.

The values in Table 2 indicate the relative decline of the standard devia-
tion of the total travel time of the newly constructed route (with associated β)
compared to the standard deviation of the travel time found by a minimization
with β = 0. The values are an average over all datasets (the detailed tables
are included in Appendix A). For instance, the standard deviation of the total
travel time reduces with 3.30% on average over all datasets when the flow is
congested during the entire day, ca=0.99 and setting β = 0.5. As the weight
to the standard deviation of the travel time adopts higher values, the standard
deviation of the associated best route continues to decrease, regardless of the
environmental and road conditions. The best improvement however is obtained
by increasing the value of β from 0 to 0.5, whereas the additional improvement
of further steps reduces in magnitude. It is thus crucially important to include
the variability of the travel times in the objective function. Better improvements
will be expected when the road conditions are bad (ca=0.99). If road condi-
tions are bad, the speed will fluctuate more, which makes it more difficult to
predict when we will complete a tour as opposed to better road conditions. By
introducing this uncertainty factor in objective function, better improvement
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will be expected when road conditions are bad. If the flow is congested during
the entire day, the improvement is also more substantial as compared to a flow
which is characterized by two rush-hours. This is due to the fact that between
the two congestion periods, drivers are able to uphold free flow speed, which
evidently is associated with less variability.

Test situation β=0.5 β=1.0 β=1.5 β=2.0 β=2.5 β=3.0
congested flow, ca=0.99 -3.30 -4.18 -4.72 -5.17 -5.40 -5.56
congested flow, ca=0.75 -1.61 -2.18 -2.52 -2.75 -3.14 -3.47
rush-hour flow, ca=0.99 -3.17 -3.83 -4.20 -4.55 -4.71 -5.04
rush-hour flow, ca=0.75 -1.45 -2.05 -2.50 -2.95 -3.32 -3.46

Table 2: Impact of β on reduction of the standard deviation (%) when comparing
to the standard deviation of the travel time with β = 0.

In Van Woensel et al. [41] it has been shown that for the VRP with time-
dependent travel times modeled using queueing theory, the extra computational
effort due to the increased amount of information in eq. (1) is significant, but
certainly worthwhile. The computational effort to extend the objective function
with the standard deviation of the travel times is of the same magnitude of the
computational effort without this extra information. Of course, the standard
deviation of the travel times has always been calculated, but when β = 0 it
is not used during optimization. It has been calculated to provide the planner
with an indication of how risky his route with shortest expected total travel time
is. Computation times range between 60 and 2000 seconds. The computational
effort is not a function of β, but is related to the size of the set. The starting
solution for each new β value is the best solution from the previous β value.
The rationale behind it is that the planner most likely will be interested in the
route with shortest expected travel time. If the associated standard deviation
is too large from his managerial point of view, he then could start from this
solution to optimize it in terms of standard deviation as well.

5.3 The 95th-percentile as a quality measure

The reduction of the standard deviation comes at a certain cost, i.e. a likely
increase of the average travel time. To check whether this cost is acceptable, we
propose the use of the 95th-percentile as a quality measure assuming a lognormal
distribution for the travel time. The 95th-percentile combines the expected total
travel time and variance of total travel time into a single number. Figure 4
illustrates that if the 95th-percentile of the solution with worse average travel
time, but better standard deviation (Distribution 2) is lower than the one with
best average travel time (Distribution 1), we have nevertheless managed to
improve solution quality. Indeed, this would mean that in 95% of all cases
solution 2 would result in a shorter total travel time than solution 1.

This can also be derived from our test cases. The impact of β on the im-
provement in the 95th-percentile can be observed in Table 3. The travel time
associated with the 95th-percentile decreases when more weight (higher β) is
given to the standard deviation in the objective function. The best improvement
is observed in the first step, regardless of the test situation. The additional im-
provement of higher β values reduces in magnitude. This means that although
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Figure 4: Impact of 95th-percentile on solution quality (Lognormal distribution)

the average travel time will become larger with increasing β, the total travel
time will be better in 95% of all cases but with decreasing importance. If the
road condition are good (low ca), the relative improvement of the travel time
of the 95th-percentile is more substantial for the congested flow throughout the
day compared to a flow with two rush-hours for equal β values. On the other
hand, if road conditions are bad, the best relative improvement are observed
for the two rush-hour flow. The variance of the travel time will be larger if the
flow is congested throughout the day compared to the 2 rush-hour flow. Indeed,
if we recall eq. (9) a larger variance of the travel time will be observed when
more time zones are crossed (due to lower speed) or when α is high (higher
average number of time zones crossed and lower speed). As the variance of the
travel time will be larger for the congested flow, allowing some weight to this
component will result in solutions where the relative improvement will be more
substantial compared to the 2 rush-hour flow. From Table 4 we see that squared
coefficient of variation of the travel times is higher for the congested flow, re-
gardless of the road conditions. This conclusion is in line with what can be
expected from a theoretical point of view. Furthermore, if weather conditions
are good, the squared coefficient of the travel times of the two flow types are of
the same magnitude. Therefore, since the standard deviation of the travel times
of the congested flow is higher for the congested flow, better improvements can
be expected for this flow type with increasing β. The squared coefficient of
the travel times for the flow with two rush-hours is larger than the congested
flow. This means that for the flow with two rush-hours the standard deviation
is relatively large compared to the mean. Adding some weight to it will thus
result in better relative better results.

In Table 5, the gain in travel time (in minutes) of the 95th-percentile is pre-
sented in minutes for the test cases when comparing β = 3 with β = 0. For
instance, the gain over all Augerat sets for the congested flow with ca=0.99 is
on average 88.32 minutes. The minimum improvement for that test situation is
15.58 minutes and the maximum improvement is almost 3 hours (166.32 min-
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Test situation β=0.5 β=1.0 β=1.5 β=2.0 β=2.5 β=3.0
congested flow, ca=0.99 -1.32 -1.62 -1.75 -1.94 -1.97 -1.99
congested flow, ca=0.75 -0.62 -0.82 -0.94 -0.98 -1.12 -1.16
rush-hour flow, ca=0.99 -1.38 -1.66 -1.79 -1.90 -1.99 -2.07
rush-hour flow, ca=0.75 -0.52 -0.72 -0.84 -0.91 -1.06 -1.07

Table 3: Impact of β on improvement of the 95th-percentile (%) when comparing
the 95th-percentile with β = 0 (lognormal distribution).

Test situation β=0.0 β=0.5 β=1.0 β=1.5 β=2.0 β=2.5 β=3.0
congested flow, ca=0.99 0.110 0.103 0.101 0.100 0.099 0.098 0.098
congested flow, ca=0.75 0.038 0.037 0.037 0.036 0.036 0.036 0.036
rush-hour flow, ca=0.99 0.113 0.106 0.104 0.103 0.102 0.102 0.101
rush-hour flow, ca=0.75 0.038 0.037 0.037 0.036 0.036 0.036 0.036

Table 4: Squared coefficient of variation of the travel times for given test situa-
tion and β values.

utes). It is clear that the reduction of the standard deviation of the travel time
is substantial enough to overcome the increase in average travel time. Extending
the objective function to account for the travel time variability provides results
with better overall reliability, especially when road conditions are bad (high ca).
More detailed results for a congested flow with ca=0.99 can be found in Table
A.1.

Test situation Average Minimum Maximum
congested flow, ca=0.99 88.32 15.58 166.32
congested flow, ca=0.75 35.11 6.90 93.57
rush-hour flow, ca=0.99 81.61 15.85 259.98
rush-hour flow, ca=0.75 32.26 0.33 68.10

Table 5: Improvement (in minutes) of the 95th-percentile of the tour travel time
when comparing the optimal routes with β = 3 and β = 0.

5.4 Simulation results

To validate the approximations used when building the variance estimating
model presented above, we constructed a simulation in ARENA [24] in which
we reconstructed the route as a sequence of lognormal distributions (represent-
ing the links) with mean and standard deviation as obtained through queueing
theory (see section 4). For set 32k5, 3001 trucks completed the tour and their
travel times have been plotted in Figure 5. Results indicate that the resulting
tour travel time is indeed lognormally distributed (there clearly is a long tail to
the right). In addition, the plotted results are close to the theoretical tour travel
time distribution. The travel time associated with the 95th-percentile is 2205.5
minutes (Figure 5, Table 6), which corresponds with what we expect from the
theoretic travel time distribution (2262.71 minutes, based on Table A.2.

The positive impact in terms of travel time reliability of optimizing the
V RP when allowing more weight to the standard deviation is approved by the

16



0

10

20

30

40

50

60

70

80

90

400 800 1200 1600 2000 2400 2800 3200 3600 4000 4400

Travel Time (minutes)

n
u

m
b

e
r

o
f

o
b

se
r
v

a
ti

o
n

s

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

C
u

m
u

la
ti

v
e

n
u

m
b

e
r

o
f

o
b

se
r
v

a
ti

o
n

s
(%

)

Figure 5: Travel time distributions of set 32k5 with congested flow and ca=0.99.
Results following a simulation with ARENA are plotted together with the ex-
pected lognormal distribution (parameters derived from Tabu Search solution).

simulation results provided in Table 6. The best solutions of a Tabu Search
optimization with β-values ∈ {0.; 3.0} are reconstructed in ARENA. For each
set the average travel time increases and the standard deviation of the travel
time decreases, this way increasing the travel time reliability. The decrease in
the standard deviation is substantial enough to improve the solution quality
(better travel time associated with the 95th-percentile). β-values ∈ {0.; 3.0} are
two extreme situations. The planner can use any value in between regarding
his own risk avoiding behavior. From a planning point of view, it is better to
have more predictability in the routing than a potentially faster route. The
uncertainty about that eventual arrival time will be avoided as the planner
wishes to plan as close to reality as possible.

Average TT Standard Deviation TT 95th-percentile TT

32k5 β= 0.0 1320.87 550.77 2205.5
β= 3.0 1332.51 514.51 2169.5

38k5 β= 0.0 1286.60 480.72 2087.7
β= 3.0 1296.14 471.02 2049.4

80k10 β= 0.0 2701.11 746.35 4007.0
β= 3.0 2720.64 685.73 3972.9

Table 6: Comparing the best routes (through Tabu Search optimization with
respective β-values) for three sets in congested flow with ca=0.99 using ARENA.
Average travel time, standard deviation of the travel time and 95th-percentile
are provided after 3001 trucks completed the best routes.
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6 Conclusions and future research

The capability of taking into account time-dependent travel speeds is extremely
valuable, not only because speed profiles do affect the objective function of
the optimization, but also, as demonstrated above, the best solutions for the
time-independent problem applied in a time-dependent context, are in general
suboptimal. Minimizing the expected travel time however still does not deal
with the true stochastic nature of the travel times. As the real speed is a
realization of a stochatic process, it is equally important to account for the
variability of the speed and thus the travel time uncertainty when planning a
route. This paper aims at obtaining a routing solution that performs well in
the face of the extra complications due to congestion, which eventually leads to
a better solution, i.e. more reliable routes in terms of travel time. These more
realistic solutions have the potential to reduce real operating costs for a broad
range of industries which daily face routing problems.

Applying queueing theory to the VRP -problem allows for an analytical way
to obtain the average speeds and the variance of the speeds in every time zone on
every link. The queueing parameters can be tuned as to represent the current
road and environmental conditions best. Starting from these speed distribu-
tions, the variance of the travel time can easily be obtained and accounted for
during optimization. When including the variance of the travel time, the poten-
tial applications are vast: it gives a manager a powerful tool to incorporate and
take into account congestion uncertainty in his optimization. The higher the
risk averseness of the planner, the more weight is allowed to that factor while
optimizing, as such making the resulting routes more reliable and predictable.
Although the gain in terms of less variability will be offset by a higher average
travel time, the travel time associated with 95th-percentile will improve. Results
and simulation results confirm with these conclusions. Depending on the road
and environmental conditions, this improvement will be more or less substan-
tial. The more the planner desires routes with less variability, the less time and
effort needs to be invested in replanning (in real-time) during the day.

Due to the analytical approach to congestion, the developed approach can
be extended to V RP with (soft or hard) time windows. Hence, combined with
the risk profile discussed above, the manager has a powerful tool not only for
planning and scheduling his vehicle fleet, but on top of that he will be able
to use the model for adequately determining costs and setting his rates at the
individual customer level (e.g. someone with a tight and hard time window will
need to pay more than a customer which is highly flexible in his requirements).
The approach also opens doors for real life simulations in which actual flows
and environment variables can help to determine a better travel time in terms
of average travel time as well as more predictable arrival times.
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Appendix A

set TT95th with β=0.0 TT95th with β=3.0 difference per tour
32k5 2837.73 2764.45 73.28
33k5 2401.07 2372.50 28.57
33k6 2750.17 2734.59 15.58
34k5 2754.68 2716.03 38.65
36k5 2937.06 2851.35 85.71
37k5 2361.80 2340.49 21.31
37k6 3441.23 3348.28 92.95
38k5 2652.30 2581.25 71.05
39k5 2919.02 2798.12 120.90
39k6 2871.41 2797.08 74.33
44k6 3170.43 3075.96 94.47
45k6 3110.56 3043.42 67.14
45k7 3737.10 3641.49 95.61
46k7 3083.80 3026.86 56.94
48k7 3463.91 3357.77 106.14
53k7 3299.89 3217.75 82.14
54k7 3659.22 3501.76 157.46
55k9 3627.42 3551.77 75.65
60k9 4138.39 4018.08 120.31
61k9 3231.38 3129.59 101.79
62k8 3957.55 3791.23 166.32
63k9 4770.79 4657.88 112.91
63k10 4107.71 3942.50 165.21
64k9 4171.21 4089.23 81.98
65k9 3762.25 3620.65 141.60
69k9 3538.78 3477.97 60.81
80k10 4848.35 4772.63 75.72

Table A.1: Improvement (in minutes) of the 95th-percentile of the tour travel
time (TT95th) when comparing β = 3 with β = 0 in congested flow with ca=0.99.
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set β=0.0 β=0.5 β=1.0 β=1.5 β=2.0 β=2.5 β=3.0
E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT)

32 k5 1308.87 509.62 1309.75 494.81 1309.75 494.81 1309.75 494.81 1309.75 494.81 1309.75 494.81 1315.24 483.07
33 k5 1130.72 423.45 1130.97 416.24 1130.97 416.24 1137.49 411.67 1137.49 411.67 1137.49 411.67 1137.49 411.67
33 k6 1289.95 486.74 1290.37 484.89 1290.82 484.31 1290.82 484.31 1290.82 484.31 1298.22 478.79 1298.22 478.79
34 k5 1301.00 484.56 1302.55 471.16 1302.55 471.16 1302.55 471.16 1302.55 471.16 1302.55 471.16 1302.55 471.16
36 k5 1376.40 520.22 1378.06 511.64 1385.02 489.03 1385.02 489.03 1387.35 488.00 1387.35 488.00 1387.35 488.00
37 k5 1169.69 397.37 1170.40 390.20 1170.40 390.03 1170.40 390.03 1170.40 390.03 1170.40 390.03 1170.40 390.03
37 k6 1612.01 609.74 1612.01 609.74 1621.54 576.56 1624.45 574.61 1624.45 574.61 1624.45 574.61 1624.45 574.61
38 k5 1275.30 459.00 1281.84 443.75 1281.84 443.75 1281.84 443.75 1284.35 432.30 1284.35 432.30 1284.35 432.30
39 k5 1412.75 502.09 1398.51 469.07 1404.66 465.00 1404.92 464.40 1404.92 464.40 1404.92 464.40 1404.92 464.40
39 k6 1399.79 490.54 1402.07 482.39 1404.30 464.26 1404.30 464.26 1404.30 464.26 1404.30 464.26 1404.30 464.26
44 k6 1618.05 517.46 1602.69 494.44 1605.05 491.10 1605.05 491.10 1605.05 491.10 1617.00 486.32 1617.00 486.32
45 k6 1577.59 510.99 1582.81 486.54 1582.81 486.54 1582.81 486.54 1582.81 486.54 1593.91 483.17 1593.91 483.17
45 k7 1850.73 628.79 1853.36 613.18 1853.36 613.18 1843.76 612.70 1853.10 597.36 1853.10 597.36 1862.01 593.16
46 k7 1575.34 502.82 1575.19 493.59 1575.19 493.59 1575.21 490.11 1585.51 480.45 1585.51 480.45 1585.51 480.45
48 k7 1759.79 568.04 1761.24 546.72 1761.24 546.72 1771.48 534.62 1766.99 530.26 1766.99 530.26 1766.99 530.26
53 k7 1723.51 525.46 1726.75 505.38 1731.80 500.54 1731.80 500.54 1730.17 495.86 1730.17 495.86 1730.17 495.86
54 k7 1852.56 602.22 1847.29 551.49 1847.29 551.49 1847.29 551.49 1847.29 551.49 1847.29 551.49 1847.29 551.49
55 k9 1814.46 604.32 1817.64 583.56 1817.77 582.98 1824.49 575.76 1824.49 575.76 1824.49 575.76 1824.49 575.76
60 k9 2109.13 676.42 2106.68 672.93 2122.05 640.41 2126.92 631.44 2125.05 631.01 2125.05 631.01 2125.05 631.01
61 k9 1738.52 497.62 1745.23 474.12 1745.33 473.49 1742.62 466.12 1735.04 464.85 1735.04 464.85 1735.04 464.85
62 k8 2075.32 627.41 2066.55 587.70 2069.36 575.17 2069.36 575.17 2070.49 574.26 2070.49 574.26 2081.65 569.86
63 k9 2487.97 760.94 2490.91 724.25 2490.91 724.25 2494.88 721.00 2494.88 721.00 2494.88 721.00 2494.88 721.00
63 k10 2148.47 653.08 2152.90 620.42 2152.90 620.42 2157.79 614.21 2154.51 602.37 2140.52 600.66 2140.52 600.66
64 k9 2203.39 655.94 2194.94 642.94 2195.86 641.34 2208.12 633.27 2208.12 633.27 2225.64 621.17 2226.71 620.84
65 k9 1980.67 593.86 1983.10 556.15 1983.10 556.15 1993.41 546.94 1976.04 548.09 1987.30 544.45 1987.30 544.45
69 k9 1969.75 523.01 1969.91 513.82 1973.78 511.20 1979.24 505.53 1975.15 500.94 1975.15 500.94 1975.15 500.94
80 k10 2678.84 723.17 2675.01 709.02 2675.01 709.02 2682.69 702.65 2690.65 699.26 2687.41 694.83 2702.42 690.07

Table A.2: Impact of increasing β-values when there is congestion during the entire day and when the weather conditions are bad.
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set β=0.0 β=0.5 β=1.0 β=1.5 β=2.0 β=2.5 β=3.0
E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT)

32 k5 1135.53 268.68 1138.78 255.37 1138.78 255.37 1138.78 255.37 1138.78 255.37 1138.78 255.37 1138.78 255.37
33 k5 971.26 210.93 971.54 209.14 971.54 209.14 971.88 208.42 971.88 208.42 971.88 208.42 971.88 208.42
33 k6 1095.39 246.57 1096.01 244.95 1096.01 244.95 1096.01 244.95 1096.45 244.87 1097.41 243.21 1097.41 243.21
34 k5 1145.11 249.06 1115.37 244.54 1115.37 244.54 1115.75 244.49 1115.75 244.49 1115.75 244.49 1117.20 243.62
36 k5 1212.13 276.10 1208.73 271.54 1205.68 257.85 1206.13 257.54 1206.13 257.54 1206.13 257.54 1206.13 257.54
37 k5 1017.22 208.43 1013.11 206.74 1011.91 206.49 1011.91 206.49 1013.97 204.85 1014.90 204.07 1014.90 204.07
37 k6 1399.09 316.62 1399.94 312.14 1400.19 312.34 1400.90 311.65 1402.60 309.10 1381.35 297.46 1378.32 295.87
38 k5 1097.30 231.06 1094.87 227.70 1094.87 227.70 1097.40 225.38 1097.40 225.38 1097.44 220.56 1097.44 220.56
39 k5 1211.69 252.98 1211.90 249.71 1212.81 248.17 1214.29 247.03 1214.29 247.03 1214.29 247.03 1214.29 247.03
39 k6 1202.06 245.04 1201.99 243.88 1203.24 241.53 1205.50 239.64 1205.50 239.64 1208.37 238.35 1208.37 238.35
44 k6 1392.41 261.12 1392.46 259.33 1391.82 261.02 1393.98 256.77 1387.14 258.41 1388.23 255.38 1388.23 255.38
45 k6 1343.82 254.55 1343.85 253.55 1344.54 253.04 1344.54 253.04 1353.25 247.11 1353.25 247.11 1353.25 247.11
45 k7 1593.02 322.71 1583.00 307.09 1583.00 307.09 1568.16 300.47 1571.94 298.65 1571.94 298.65 1571.97 298.54
46 k7 1358.84 258.39 1358.91 258.16 1353.02 256.98 1353.47 256.17 1353.47 256.17 1355.75 254.07 1355.75 254.07
48 k7 1517.21 287.02 1517.86 278.71 1517.86 278.71 1517.86 278.71 1519.14 277.91 1521.45 276.91 1521.45 276.91
53 k7 1479.76 260.10 1479.76 260.10 1481.77 258.18 1478.62 254.35 1481.27 252.82 1481.27 252.82 1481.27 252.82
54 k7 1598.66 306.19 1589.47 299.06 1589.47 299.06 1589.47 299.06 1589.47 299.06 1589.47 299.06 1592.63 298.20
55 k9 1561.79 300.18 1562.20 295.61 1559.07 291.02 1559.07 291.02 1559.07 291.02 1559.07 291.02 1559.07 291.02
60 k9 1810.80 341.70 1811.85 332.92 1812.02 332.27 1812.37 332.05 1814.61 330.64 1812.19 331.05 1816.56 328.40
61 k9 1482.53 238.98 1482.67 238.67 1483.19 235.77 1483.19 235.77 1483.19 235.77 1483.19 235.77 1480.79 235.41
62 k8 1784.84 321.01 1784.93 317.34 1790.53 308.85 1790.52 306.72 1796.85 301.74 1796.09 302.40 1799.84 301.14
63 k9 2165.44 394.80 2165.87 387.57 2165.87 387.57 2167.06 386.64 2167.06 386.64 2167.14 386.61 2171.07 385.08
63 k10 1864.14 328.21 1865.51 320.98 1866.53 318.63 1866.53 318.63 1866.53 318.63 1866.53 318.63 1877.22 306.94
64 k9 1910.01 339.55 1904.71 329.92 1906.08 327.95 1891.49 332.24 1881.62 333.65 1881.62 333.65 1881.62 333.65
65 k9 1713.51 289.57 1687.07 283.82 1689.01 279.65 1689.06 279.47 1689.06 279.47 1689.06 279.47 1689.06 279.47
69 k9 1679.97 257.76 1673.71 252.81 1673.71 252.69 1673.71 252.69 1673.71 252.69 1673.71 252.69 1673.71 252.69
80 k10 2361.55 379.39 2358.55 376.52 2321.71 377.51 2322.76 373.87 2322.76 373.87 2309.98 369.26 2325.75 360.13

Table A.3: Impact of increasing β-values when there is congestion during the entire day and when the weather conditions are better.
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set β=0.0 β=0.5 β=1.0 β=1.5 β=2.0 β=2.5 β=3.0
E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT)

32 k5 1209.10 491.09 1211.69 467.29 1215.05 458.84 1224.05 451.29 1224.05 451.29 1224.05 451.29 1224.05 451.29
33 k5 1023.06 381.46 1023.52 373.43 1024.67 372.34 1024.67 372.34 1024.67 372.34 1018.76 368.71 1018.76 368.71
33 k6 1154.92 451.00 1154.95 435.45 1155.41 434.83 1155.41 434.83 1155.41 434.83 1155.41 434.83 1155.41 434.83
34 k5 1200.86 447.89 1190.34 438.82 1193.64 432.68 1193.64 432.68 1197.92 429.13 1175.60 433.23 1175.60 433.23
36 k5 1311.28 519.92 1315.20 496.51 1316.84 476.54 1305.91 475.45 1305.91 475.45 1305.91 475.46 1307.23 466.82
37 k5 1062.79 367.51 1063.22 360.89 1063.22 360.89 1063.22 360.89 1063.22 360.89 1063.52 361.99 1063.52 361.99
37 k6 1480.21 569.43 1475.61 524.44 1466.38 517.28 1466.38 517.28 1466.38 517.28 1466.38 517.28 1466.38 517.28
38 k5 1154.69 410.38 1155.56 403.96 1157.26 399.15 1157.26 399.15 1159.97 395.21 1159.97 395.21 1164.63 393.48
39 k5 1278.98 456.96 1279.96 442.67 1279.96 442.67 1279.96 442.67 1279.96 442.67 1279.96 442.67 1279.96 442.67
39 k6 1268.14 439.47 1268.73 434.45 1271.99 432.02 1275.79 427.27 1275.79 427.27 1275.79 427.27 1280.26 422.16
44 k6 1474.87 468.45 1456.84 464.64 1456.84 464.64 1459.17 462.76 1459.17 462.76 1459.17 462.76 1459.17 462.76
45 k6 1416.26 458.27 1416.59 447.72 1416.59 447.72 1416.59 447.72 1425.47 441.76 1425.47 441.76 1425.47 441.76
45 k7 1679.00 580.85 1670.93 543.38 1671.28 542.30 1671.28 542.30 1671.28 542.30 1671.28 542.30 1693.81 534.36
46 k7 1431.58 470.80 1426.83 451.31 1426.83 451.31 1426.83 451.31 1426.83 451.31 1426.83 451.31 1426.83 451.31
48 k7 1601.30 543.07 1593.28 507.13 1596.20 500.21 1596.20 500.21 1596.20 500.21 1596.20 500.21 1596.20 500.21
53 k7 1559.86 474.43 1560.41 460.52 1560.41 460.52 1559.82 455.84 1559.82 455.84 1559.82 455.84 1559.82 455.84
54 k7 1679.84 544.59 1681.36 531.12 1684.93 528.06 1686.20 522.73 1683.87 526.54 1683.87 526.54 1683.87 526.54
55 k9 1654.26 551.41 1656.62 519.70 1656.62 519.70 1648.16 522.04 1648.16 522.04 1648.16 522.04 1654.15 498.13
60 k9 1905.26 603.73 1906.31 587.71 1909.48 587.27 1909.78 587.17 1912.15 583.26 1910.64 579.38 1910.64 579.38
61 k9 1553.39 437.76 1554.89 430.21 1554.89 430.21 1554.89 430.21 1554.89 430.21 1560.46 424.52 1560.46 424.52
62 k8 1849.22 582.76 1849.79 556.67 1854.64 542.36 1863.70 531.64 1863.70 531.64 1863.70 531.64 1863.70 531.64
63 k9 2275.69 692.33 2265.39 672.82 2265.39 672.82 2265.39 672.82 2269.73 670.06 2269.73 670.06 2269.73 670.06
63 k10 1956.34 565.01 1957.29 559.69 1934.31 552.99 1934.31 552.99 1934.37 548.89 1934.37 548.89 1934.37 548.89
64 k9 1996.03 609.47 1996.44 602.98 1990.09 593.41 1990.09 593.41 1990.09 593.41 1993.74 591.49 1993.74 591.49
65 k9 1767.59 510.48 1768.36 497.92 1768.36 497.92 1768.36 497.92 1768.36 497.92 1768.36 497.92 1768.36 497.92
69 k9 1810.72 479.38 1805.80 470.87 1805.80 470.87 1807.31 468.95 1790.02 464.84 1790.90 462.23 1790.90 462.23
80 k10 2460.95 731.84 2447.69 704.67 2447.94 704.24 2455.75 681.59 2478.90 648.08 2490.82 635.22 2490.82 635.22

Table A.4: Impact of increasing β-values when there is a morning and evening congestion and when the weather conditions are bad.
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set β=0.0 β=0.5 β=1.0 β=1.5 β=2.0 β=2.5 β=3.0
E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT) E(TT) SD(TT)

32 k5 1098.19 253.85 1099.06 251.42 1099.06 251.42 1099.06 251.42 1099.06 251.42 1099.06 251.42 1099.06 251.42
33 k5 929.56 202.12 929.90 200.22 929.90 200.22 929.99 200.41 929.99 200.41 929.99 200.41 929.99 200.41
33 k6 1055.83 235.83 1055.83 235.83 1055.83 235.83 1055.83 235.83 1055.83 235.83 1056.46 235.51 1056.46 235.51
34 k5 1074.96 236.00 1075.13 235.66 1074.40 234.65 1074.40 234.65 1074.40 234.65 1074.40 234.65 1074.40 234.65
36 k5 1169.61 269.79 1171.29 253.23 1163.65 249.07 1163.65 249.07 1163.65 249.07 1163.65 249.07 1163.65 249.07
37 k5 1007.07 207.26 1007.73 203.63 1007.73 203.63 1007.73 203.63 1007.73 203.63 1006.62 201.02 1006.62 201.02
37 k6 1347.87 303.54 1347.97 301.08 1347.97 301.08 1348.12 282.06 1348.12 282.06 1348.12 282.06 1348.12 282.06
38 k5 1059.99 221.78 1055.67 220.38 1058.08 217.94 1058.08 217.94 1055.05 215.11 1057.56 213.10 1057.56 213.10
39 k5 1191.57 246.85 1191.57 246.85 1168.53 238.13 1168.53 238.13 1168.53 238.13 1168.53 238.13 1169.31 237.93
39 k6 1158.18 235.36 1158.35 234.62 1158.35 234.62 1163.36 230.90 1163.36 230.90 1163.36 230.90 1163.36 230.90
44 k6 1336.76 248.22 1336.76 248.22 1338.20 245.94 1338.20 245.94 1338.20 245.94 1338.20 245.94 1338.20 245.94
45 k6 1296.22 245.01 1296.26 244.92 1296.26 244.92 1303.00 239.07 1303.00 239.07 1303.00 239.07 1303.63 238.82
45 k7 1524.75 301.14 1524.75 301.14 1528.73 295.87 1528.73 295.87 1528.73 295.87 1525.47 292.61 1525.47 292.61
46 k7 1317.46 253.83 1303.27 246.60 1303.27 246.60 1303.35 246.62 1303.35 246.62 1303.35 246.62 1303.88 244.84
48 k7 1475.72 285.97 1469.79 277.09 1470.25 276.29 1470.25 276.29 1473.89 269.00 1464.84 268.52 1462.92 268.34
53 k7 1425.89 255.53 1422.99 247.54 1422.99 247.54 1424.85 245.74 1424.85 245.74 1424.85 245.74 1424.85 245.74
54 k7 1543.82 299.34 1531.01 292.22 1535.67 285.59 1535.67 285.59 1535.67 285.59 1536.03 284.65 1536.03 284.65
55 k9 1503.57 283.37 1503.63 279.63 1503.63 279.63 1503.63 279.63 1503.63 279.63 1508.09 277.94 1508.09 277.94
60 k9 1752.58 334.74 1753.24 319.49 1753.24 319.49 1753.75 319.10 1753.79 319.24 1755.37 315.90 1765.02 308.92
61 k9 1423.89 233.74 1423.91 233.52 1424.35 233.02 1424.35 233.02 1425.47 228.81 1425.47 228.81 1425.47 228.81
62 k8 1702.10 313.64 1691.52 299.21 1691.92 298.20 1691.08 297.31 1691.08 297.31 1697.78 293.93 1703.88 291.81
63 k9 2091.36 371.07 2091.69 367.72 2092.75 365.25 2069.67 363.60 2076.06 356.71 2079.58 354.08 2079.58 354.08
63 k10 1787.76 307.46 1780.89 303.37 1781.08 300.04 1781.41 299.79 1781.41 299.79 1773.87 300.71 1773.87 300.71
64 k9 1837.35 323.25 1828.93 322.04 1828.93 322.04 1829.01 321.97 1829.60 321.70 1824.53 316.38 1824.53 316.38
65 k9 1629.06 279.81 1625.67 276.61 1625.67 276.61 1627.98 275.41 1627.98 275.41 1628.75 274.50 1628.75 274.50
69 k9 1637.35 253.84 1637.24 248.69 1637.24 248.84 1637.24 248.84 1637.24 248.84 1616.36 246.08 1616.46 246.22
80 k10 2224.19 370.38 2221.44 371.72 2226.50 364.06 2226.50 364.06 2252.29 346.53 2252.29 346.53 2252.49 346.37

Table A.5: Impact of increasing β-values when there is a morning and evening congestion and when the weather conditions are better.
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