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Maximizing the Fundamental 
Natural Frequency of Triangular 
Composite Plates 
While many advances were made in the analysis of composite structures, it is gener­
ally recognized that the design of composite structures must be studied further in 
order to take full advantage of the mechanical properties of these materials. This 
study is concerned with maximizing the fundamental natural frequency of triangular, 
symmetrically laminated composite plates. The natural frequencies and mode shapes 
of composite plates of general triangular planform are determined using the Rayleigh-
Ritz method. The plate constitutive equations are written in terms of stiffness invari­
ants and nondimensional lamination parameters. Point supports are introduced in 
the formulation using the method of Lagrange multipliers. This formulation allows 
studying the free vibration of a wide range of triangular composite plates with any 
support condition along the edges and point supports. The boundary conditions are 
enforced at a number of points along the boundary. The effects of geometry, material 
properties and lamination on the natural frequencies of the plate are investigated. 

With this stiffness invariant formulation, the effects of lamination are described by 
a finite number of parameters regardless of the number of plies in the laminate. We 
then determine the lay-up that will maximize the fundamental natural frequency of 
the plate. It is shown that the optimum design is relatively insensitive to the material 
properties for the commonly used material systems. Results are presented for several 

Introduction 

Early studies on the vibrations of triangular plates were re­
viewed by Leissa (1969, 1977, 1981, 1987). Recently, Gorman 
(1986) presented an extensive study of free vibrations of iso­
tropic right triangular plates with combinations of clamped and 
simply supported boundary conditions. A method of superposi­
tion, previously developed by Gorman, was utilized and, later, 
Gorman (1989a) used the same method to study the free vibra­
tion of isosceles, simply supported, triangular plates. Gorman 
(1989b) also studied right triangular plates with one free edge 
using his superposition technique. A comprehensive analysis of 
free vibration of right triangular isotropic plates, considering 
all combinations of boundary conditions was presented by Kim 
and Dickinson (1990). The Rayleigh-Ritz method with simple 
polynomial approximation functions was used. Application to 
orthotropic plates was illustrated by one example. Bhat (1987) 
used the Rayleigh-Ritz method with orthogonal polynomials to 
determine the natural frequencies of isotropic triangular plates 
of general planform. The Rayleigh-Ritz method was also ap­
plied to isotropic triangular plates of general shapes by Kim and 
Dickinson (1992). Extensive results are provided for isosceles 
plates with many combinations of boundary conditions. Plates 
of other planforms and orthotropic plates are also considered. 
The free vibration of right triangular and equilateral triangular 
plates with various support conditions along the edges was also 
studied by Singh and Chakraverty (1992). More recently, 
Leissa and Jaber (1992) presented a comprehensive study of 
the free vibration of completely free, isotropic, triangular plates. 
While in all the studies mentioned above the classical plate 
theory is used, Kitipomchai et al. (1993) analyzed the free 
vibration of isosceles triangular plates using the Mindlin shear 
deformable plate theory. 
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The Study of free vibration of laminated composite plates of 
triangular shapes has received little attention. Malhotra et al. 
(1989) used the finite element method to find the natural fre­
quencies of single layer composite plates of isosceles triangular 
planform. Three sets of boundary conditions were considered. 
Liew, Lam, and Chow (1989) used the Rayleigh-Ritz method 
with orthogonal approximation functions to determine the natu­
ral vibration frequencies of right triangular single layer compos­
ite plates. Four combinations of boundary conditions were con­
sidered and the effect of fiber orientation was considered. Lam, 
Liew, and Chow (1990) also considered the free vibration of 
right triangular, single layer, composite plates using the Ray­
leigh-Ritz method and orthogonal polynomial approximation 
functions. The same combinations of boundary conditions as in 
Liew, Lam, and Chow (1989) were considered and mode shapes 
are presented for special cases. 

The present investigation into the optimization of vibrating 
triangular plates has three objectives. The first objective is to 
develop a general approach for determining the natural frequen­
cies and mode shapes of triangular plates of arbitrary planform 
and support conditions. Then, the constitutive equations will be 
written in terms of a finite number of lamination parameters in 
order to determine which lay-up will maximize the fundamental 
natural frequency. Finally, examples will be presented to verify 
the validity of the present formulation and to show sample 
results. 

General Formulation 

The transverse motion of symmetrically laminated plates is 
completely uncoupled from the in-plane motion and, according 
to the classical small deflection plate theory, the free vibration 
of such plates is governed by the equation of motion (Vinson 
and Sierakowski, 1987) 

where p is the mass of the plate per unit area, w is the transverse 

Journal of Vibration and Acoustics APRIL 1996, Vol. 1 1 8 / 1 4 1 

Copyright © 1996 by ASMEDownloaded From: https://vibrationacoustics.asmedigitalcollection.asme.org on 06/30/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



c 1 
Fig. 1 Triangular plates: (a) physical plane, (b) nondimensionalized 

displacement, and M,^, M ,̂ and M,^ are the moment resultants 
which are related to the plate curvatures as 

[M] = WUK) 

or more explicitly by 

M, 
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The Dy's in Eq. (3) are the bending stiffnesses of the plate. 
Multiplying Eq. (1) by a test function v, integrating over fi, the 
domain occupied by the plate, and using the Gauss divergence 
theorem, the following variational eigenvalue problem is ob­
tained 

I {K}''[D]{K}dQ = Lo^ I pvwdQ, (4) 

where {/?} = [-v^^x, "'".yy, ~'^^.xy\ and u) is the natural fre­
quency. The test function v must satisfy the essential boundary 
conditions of the problem. This weak formulation (Eq. 4) corre­
sponds to the minimum of the quadratic functional 

I{w) IIJ" '[D]{K]dQ. - — f pw^dn 
2 Jn 

(5) 

where the first term represents the maximum strain energy and 
the second term the maximum kinetic energy. 

In this investigation, triangular plates with one edge along 
the X-axis (Fig. 1) will be considered. An N-tevm approximation 
for the transverse displacement is taken as 

WN = 1, Cj4>jix, y) (6) 

where the c /s are constants to be determined and the approxi­
mation functions (f>j satisfy the essential (or displacement) 
boundary conditions along the edge y = 0. Using polynomial 
approximation functions 

4>j(x,y) (7) 

where m a 0 and n starts from 0, 1, or 2 depending on whether 
the edge y = 0 is free, simply supported or clamped. These 
approximation functions (Eq. 7) satisfy the essential boundary 
conditions along the edge y = 0; and can be used to study plates 
that are free along the other three edges. Polynomial functions 
that satisfy all essential boundary conditions can easily be 
found. However, as mentioned in Leissa (1987), they will nec­
essarily be more complex and will make the evaluation of the 
mass and stiffness coefficients more difficult. Here, the func­
tions given by Eq. (7) will be used, and the boundary conditions 
along the other two edges will be enforced at discrete points 
using the Lagrange Multiplier method. Requiring that the dis­
placement or the slope normal to the boundary vanish at a 
number of points amounts to imposing p constraint equations 

gk(Xk, yd = 0 k = I (8) 

where gkixt, yic) = w(Xk, y^) when the displacement at point k 
is constrained, and gkix^, y^) = id/dn)w{Xk, yt) when the slope 
in the direction of n, the normal to the boundary, is forced to 
vanish. The modified functional for the problem is given by 

n (w , X.) = I{w) + S hgkixk, yk) (9) 

where I(w) is the functional given in Eq. (5) , and the K '̂s are 
the Lagrange multipliers which can be grouped in the vector X. 
If w is replaced by WN, the following eigenvalue problem is 
obtained 

K KM 

0 feh"i::]fe} "»' 
The matrix K„ has dimension (N X p) and each column corre­
sponds to one of the constraints being enforced. For example, 
if constraint k is w(Xk, yk) = 0, then K^ii, k) = (l>i(xi„ y^). 
This yields the (N + p) X (N + p) eigenvalue problem where 
the stiffness and mass matrices are given by 

Kij = {Du4>l,xx4>j.XX + D22<t>i.yy4>],i 
Jn 

i,xx<i>i,yy + 4'i.yy't'j,xx) + ^D(^(pi^xy4^i,xy 

+ 2Z)l6(<A/,xt<^j,;ty + <t>l,xy(t'j.xx) + 2D26((l>i.yy(t>J,xy 

+ <^i.xy<t>J.yy)]dVl ( 1 1 ) 

Mij = I pi^i^jdQ, 
Jn 

(12) 

The eigenvalues and eigenvectors are obtained from Eq. (10) 
using the inverse iteration method (Bathe, 1982). The calcula­
tions are simplified after nondimensionalizing as shown in Fig. 
1. To evaluate the elements of the stiffness and mass matrices 
defined by Eqs. (11, 12), integrals of the form 

F{a, p) fMr (x'ydx' ]dy' (13) 

where the powers a and 0 depend on the approximation func­
tions used and the order of their derivatives in Eqs. (11, 12). 
The result 
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Table 1 Natural frequencies of isotropic FCF right triangular plates n 

b/a 

1.0 

1.5 

2.0 

2.5 

3.0 

* 
6x6 

* 
6x6 
6x8 

* 
6x6 
6x8 

* 
6x6 
6x8 

* 
6x6 
6x8 

n, 
6.168 
6.168 

2.876 
2.876 
2.875 

1.656 
1.656 
1.656 

1.074 
1.076 
1.073 

.7514 

.7515 

.7510 

^2 

23.46 
23.46 

12.11 
12.11 
12.10 

7.111 
7.111 
7.109 

4.634 
4.640 
4.632 

3.248 
3.248 
3.247 

n. 
32.69 
32.69 

17.82 
17.82 
17.82 

12.35 
12.35 
12.35 

9.449 
9.490 
9.444 

7.570 
7.571 
7.566 

S)4 

56.18 
56.18 

29.66 
29.66 
29.66 

17.42 
17.42 
17.41 

11.36 
11.37 
11.35 

8.040 
8.040 
8.034 

n. 
76.53 
76.53 

42.76 
42.76 
42.75 

29.24 
29.24 
29.20 

20.58 
21.53 
20.57 

14.59 
14.94 
14.59 

% 

100.1 
100.1 

55.98 
56.86 
55.95 

33.30 
34.01 
33.27 

23.37 
23.71 
23.31 

18.50 
18.52 
18.47 

• Kim, C. S., and Dickinson, S. M. (1990). 

Fia, /?) = "I E 
-11=0 

a + ]\ (c - 1)^ 

q ) /3 + q+ I 

a + /3 + 2_ 
( « + 1) (14) 

allows one to evaluate the mass and stiffness matrices exactly. 
The bending stiffnesses in Eq. (3) can be written as 

(15) 

where h is the thickness of the laminate. The stiffness invariants 
are defined as 
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(16) 

[211 + 2(e,2 + 2Q^) + e,: 

U2 = [fill - 2221/2 

U, = [fin - 2(2,2 + 2266) + 222]/4 

U, = [Qn + 2(2,2 - 2266) + 222]/4 

Us = [2u - 22,2 + 222]/4 

(Fukunaga, 1986, 1990; Fukunaga and Chou, 1988; Fukunaga 
and Vanderplaats, 1991), where the Qy's are the reduced stiff­
nesses of a lamina which can be calculated knowing the engi­
neering constants £,, E2, ^,2, G,2 for the material system used. 
The lamination parameters are defined as 

1'^ fl+h/2 

g = — z' cos 2ddz, 
n J-I h/2 

hl2 _ 12 r*'"' 

rt J-1112 

>- _ 12 r'" 

h' J-hl: 

12 r""-
n J-hi2 

z^ cos^ 26*^2, 

z^ sin 26dz, 

sin 29 cos 2edz 

where 9, the fiber orientation with respect to the x axis, is a 
function of z as it changes from ply to ply. For generally lami­
nated plates, a maximum of twelve parameters are needed to 
describe the effect of lamination, but since we are considering 
only symmetric laminates, only the four parameters in Eq. (17) 
are needed. It can be shown that - 1 s 9̂ < 1 and ^l s ^o ^ 
1 so that, for all laminates, the bending rigidities £),,, D22, Dn 
and D(,(, depend only on the two parameters 9̂ and ^,0 which 
vary in the domain between the parabola ^,0 = ^l and the line 
!̂ ,o = 1. Each symmetric angle-ply laminate is represented by 
a point on the parabola, cross-ply laminates are represented by 
a point on the line ^,0 = 1. The advantages of using this stiffness 
invariant formulation are that the effect of laminate thickness, 
lay-up and material properties are separated, Eq. (15), and only 
4 parameters are required to describe all symmetric laminates 
regardless of the number of plies. 

Results 
Boundary conditions along the edges are designated by three 

letters, starting with the left side, the bottom side {y — 0) , and 
the right side. Letters C, S, F stand for clamped, simply sup­
ported, and free boundary conditions. In this study, results are 
presented in nondimensional form so that the densities of the 
materials are not needed. The first six natural frequencies of 
FCF, right triangular {c = 0) , isotropic plates (i/ = .3) are in 
good agreement with the results given by Kim et al. (1990) for 
a wide range of aspect ratios (Table 1). The second column in 
Table 1 gives the source of the results. Those obtained in this 
study are denoted by two numbers indicating the number of 
terms in the displacement approximation. The first number is 
the number of terms in the x direction and the second number 
is the number of terms in the y direction. For example, 6 x 8 
indicates that a 48 term approximation is used and, for a FCF 
plate, m and n in Eq. (7) vary from 0 to 5 and from 2 to 9, 
respectively. CFF, right triangular plates (c = 0) made out 
of unidirectional graphite-epoxy with fibers oriented in the x-
direction, were also considered by Kim and Dickinson (1990). 
Nondimensional bending stiffnesses were given as 

DnIH = 10.548, D22IH = 0.6002, 

DJH = 0.16806, D66/i^ = 0.41597, (18) 

and the present results (Table 2) agree well with those in Kim 
and Dickinson (1990). The boundary conditions on the edge x 
= 0 are satisfied taking approximation functions, Eq. (7), with 
m > 2 and, since the edge y = 0 is free, n starting from 0. The 
free vibration of graphite-epoxy, FCF, isosceles (c = 0.5), 
triangular plates with fibers oriented in the x-direction were 
studied by Kim and Dickinson (1992). In that case also, with 
the stiffnesses given by Eqs. (18), the present results (Table 

Table 2 Natural frequencies of graphite-epoxy CFF right triangular (c 
= 0) plates n = ma^plHY" 

b/a 

1.0 

1/3 

3 

Source 

* 
6x6 
8x6 

f 

6x6 

* 
6x6 
9x6 

0, 

16.78 
16.78 
16.78 

20.31 
20.31 

14.18 
14,19 
14.18 

O2 

41.72 
41.72 
41.71 

80.22 
80.23 

23.28 
23.61 
23.28 

O3 

83.58 
84.58 
83.44 

114.2 
114,2 

34.44 
37.76 
34.55 

% 

95.08 
95.13 
94.78 

202.8 
202.8 

48.36 
60.86 
48.80 

% 

137.0 
140.0 
136.9 

277.4 
277.4 

69.40 
81.39 
71.92 

^6 

173.2 
183.4 
173.7 

386.6 
386.6 

81.54 
100.7 
81.11 

(17) Kim, C. S., and Dickinson, S. M. (1990). 
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Table 3 Natural frequencies of graphite-epoxy, cantilever (FCF), isos­
celes (c = .5), triangular plates O = (oa'{p/Hy" 

100 

b/a 

.25 

1.0 

3.0 

** 
6x4 
8x4 

** 
4x4 
6x6 

** 
4x4 
4x6 
4x8 

n, 
78.82 
78.82 
78.82 

5.503 
5.505 
5.503 

.6145 

.6149 

.6146 

.6146 

^2 

200.1 
200.1 
200.1 

23.81 
23.88 
23.81 

2.666 
2.677 
2.666 
2.666 

Q3 

333.9 
335.3 
334.8 

30.10 
30.15 
30.10 

6.482 
6.668 
6.489 
6.482 

O4 

474.3 
484.4 
475.2 

57.75 
59.15 
57.79 

8.069 
8.110 
8.072 
8.070 

Hj 

560.4 
564.1 
561.5 

76.41 
78.03 
76.44 

11.99 
18.32 
12.46 
12.00 

n* 
806.9 
850.4 
810.5 

106.4 
151.1 
109.4 

19.07 
19.42 
19.08 
19.08 

** Kim, C. S., and Dickinson, S. M. (1992). 

3) are again in good agreement with those previously reported. 
The first six natural frequencies of a SSS, right triangular (c — 
0), isotropic plate are obtained by modeling the simple support 
boundary condition along the hypothenuse by enforcing the zero 
displacement constraint at a finite number of points equally 
spaced along that edge. The zero displacement constraints along 
the X = 0 and y = 0 edges are enforced by taking m and n in 
Eq. (7) to be strictly positive. Results (Table 4) show that good 
agreement with previous results (Kim and Dickinson, 1990) is 
obtained when the constraint is enforced at a large enough 
number of points and when enough terms are taken in the dis­
placement approximation. The number of points p at which the 
zero displacement constraint is enforced along the hypothenuse 
is given in the third column of Table 4. As the number increases, 
so do the natural frequencies, while, as the number of terms in 
the approximation increases, the frequencies decrease. The re­
sults presented in Tables 1-4 validate the basic approach for 
calculating the natural frequencies of triangular plates and show 
that any symmetrically laminated plate can be studied. 

When the number of plies in a laminate becomes larger than 
six, the effect of the bending-twisting coupling terms D,f, and 
D26 becomes negligible (Ashton and Whitney, 1970). In the 
remaining examples to be considered here, only plates with 
many layers will be analyzed. This simplification reduces the 
number of independent parameters required to describe all sym­
metric laminates from four to two (^9, ^10). In the following, 
the elastic properties of graphite-epoxy: E^ = 181 GPa, E2 = 
10.3 GPa, Ui2 = .28, Gi2 = 7.17 GPa, will be used, and the 

Table 4 Natural frequencies of isotropic right triangular (c 
plate U = aia'ip/oy'^ 

0) SSS 

b/a 

1 

2 

3 

Source 

6x6 
6x6 
6x6 
6x6 
6x6 
* 

6x6 
7x7 
« 

5x10 
* 

P 

4 
5 
6 
7 
8 

8 
8 

8 

* Refers to Kim 

n, 
49.230 
49.353 
49,355 
49.356 
49.356 
49.35 

27.78 
27,76 
27.76 

21,85 
21,85 

C. S., 

Q2 

96,834 
99.081 
99.13 
99.140 
99.145 
98.76 

50.58 
50.11 
49.91 

35.61 
35.63 

fij 

123,51 
128.48 
128.98 
129.00 
129.01 
128.4 

77.54 
76.05 
74,85 

51.45 
51.27 

ind Dickinson, S. 

n. 
142.40 
166.61 
171.10 
171.41 
171.55 
169.1 

91.20 
82.73 
81.84 

66,69 
66.73 

M. (1990). 

Q, 

192.50 
186.99 
209.13 
210.24 
210.75 
200.3 

118.34 
112.47 
107.4 

71.14 
71.03 

fi6 

221.93 
230.91 
230.76 
245.33 
242.67 
249.8 

149.17 
136.17 
122.2 

90.80 
92.84 

15 30 45 60 75 

Fiber orientation 

90 

Fig. 2 Natural frequencies of FFF right triangular graphite-epoxy plate 
{a/b = 2) 

frequencies are normalized as SI = wa^ [12(1 — VnV2\)pl 

Figure 2 shows the evolution of the first six natural frequen­
cies of an FFF, angle-ply laminated, right triangular (c = 0, a/ 
b = 2) graphite-epoxy plate with many plies as a function of 
fiber orientation. These results were obtained using an 8 X 8 
displacement approximation. Instances of curve veering and 
curve-crossing can be seen. The first natural frequency reaches 
a maximum with an angle ply laminate with fiber orientation 

•10 

Fig. 3 Variation of first natural frequency of an FFF right triangular 
graphite-epoxy plate {a/b = 2) with lamination parameters 9̂ and (,0 
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Fig. 4 Variation of first natural frequency of a CSF right triangular graph-
ite-epoxy plate (alb = 1) with lamination parameters (g and l̂o 

of ±21 degrees (Fig. 2). Figure 3 shows that, when a large 
range of values for the two lamination parameters are used, the 
maximum does occur very close to the parabola Q = ^JQ. The 
optimal values of the lamination parameters are 9̂ = .75 and 
,̂0 = .57 and the fundamental natural frequency for that layup 

is only 0.08 percent higher than that of the ±21 deg. angle-ply 
laminate. For all practical purposes, the optimum lay-up is an 
angle-ply laminate. 

Figure 4 shows that the fundamental natural frequency of a 
CSF right triangular plate (c = 0) with many plies and an 
aspect ratio of 1 is maximal when an angle-ply laminate is used. 
The variation of the first natural frequency of CSF, angle-ply 
laminated, right triangular plates with lamination angle is shown 
in Fig. 5 for 5 different values of a/b. For very small aspect 
ratios, the optimum lay-up is a unidirectional laminate with 
fibers oriented in the jc-direction. As the aspect ratio increases, 
the optimum orientation angle tends towards ±45 deg. The 
variation of the optimum fiber orientation with aspect ratio is 
shown in Fig. 6. Notice that the optimum fiber orientation for 
boron-epoxy laminates (not shown here) with E, = 209 GPa, 
£2 = 19 GPa, 1̂12 = .21, G12 = 6.4 GPa is identical to that of 
graphite-epoxy laminates. With glass-epoxy laminates, Ei = 
38.6 GPa, £2 = 8.27 GPa, 1/12 = .26, G^ = 4.14 GPa and a 
slight difference is observed as a/b becomes very small. There­
fore, one can conclude that with commonly used material sys­
tems, the optimum fiber orientation is almost the same. Figure 
7 shows the variation of the first natural frequency with fiber 
orientation for angle-ply laminates with 1, 6, 8, and many plies 
for a CSF right-angled triangular plate (c = 0, a/b = 1). These 
results indicate that as the number of plies in the laminate 
become large the effect of the bending-twisting coupling terms 
on the natural frequencies and the optimal design becomes 
small. 

The last example is a graphite-epoxy, isosceles plate (c = 
.5, a/b = 1) that is simply supported along the edge y = 0 and 
has a point support at the opposite comer. Figure 8 indicates 
that, in that case, the optimum lay-up is not an angle-ply lami­
nate even though the maximum is quite close to the parabola 
9̂ = 1̂0. It is to be noticed that, for this example, the first and 

second natural frequencies are equal at the optimum point 
whereas they are distinct for the previous examples. When the 
optimum does not lie on the boundary of the feasible domain 

15 30 45 60 75 

Fiber orientation 
Fig. 5 Variation of the first natural frequency of an angie-ply laminated, 
graphite-epoxy, right triangular CSF piate with fiber orientation 

40-
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•B30-
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Fig. 6 Optimum fiber orientation for CSF right triangular plates as a 
function of aspect ratio 
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Fig. 7 First natural frequency of CSF right triangular angle-ply laminated 
plates as a function of fiber orientation and the number of piles 

in the lamination parameter space, there are many lay-ups with 
the same combination of lamination parameters. 

Conclusions 
A general approach was presented to study the free vibration 

of triangular, symmetrically laminated plates of general plan-
form and support conditions. The Rayleigh-Ritz method with 
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Fig. 8 Variation of first natural frequency of an isosceles triangular 
graphite-epoxy plate {a/b = 1) with lamination parameters ?« and ?,o 

simple polynomial approximation functions is used and addi­
tional displacement constraints are enforced using the method of 
Lagrange multipliers. For all symmetric laminates, the bending 
rigidities of the plate are expressed in terms of four nondimen-
sional lamination parameters. As the number of plies becomes 
large, only two parameters are needed. Four examples are used 
to show the validity of the present formulation by comparison 
with highly accurate results presented by previous investigators. 

With this model, the lamination scheme that will maximize 
the first natural frequency is determined for several examples. 
It is shown that, in most cases, the optimal lay-up is an angle 
ply laminate but, one example is presented to show that this is 
not always the case. The advantage of the present approach is 
that all triangular plates can be optimized and that the optimum 
combination of lamination parameters is determined without 
selecting a particular lamination scheme a-priori. The true opti­
mum can thus be reached and, in some cases, many lay-ups 
will have the same combination of lamination parameters. For 
common material systems the optimal lay-ups has only a weak 
dependence on material properties. 
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