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ABSTRACT – We generalize the first and second kind Chebyshev polynomials by

using the concepts and the operational formalism of the Hermite polynomials of the

Kampé de Fériet type. We will see how it is possible to derive integral representations

for these generalized Chebyshev polynomials. Finally we will use these results to state

several relations for Gegenbauer polynomials.
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1 Introduction

It is well known that the explicit form of the second kind Chebyshev polynomials

[1] reads

Un(x) =
[n
2 ]∑

k=0

(−1)k(n− k)!(2x)n−2k

k!(n− 2k)!
. (1.1)

In a previous paper [2] we have stated for these polynomials an integral

representation of the type:

Un(x) =
1
n!

∫ +∞

0

e−ttnHn

(
2x,−1

t

)
dt , (1.2)

where:

Hn(x, y) = n!
[n
2 ]∑

k=0

ykxn−2k

k!(n− 2k)!
(1.3)

are the two-variable Hermite polynomials of Kampé de Fériet [3], [4] type, with

generating function given by the formula

exp
(
xt + yt2

)
=

+∞∑
n=0

tn

n!
Hn(x, y) .
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It is also possible to state a different representation for the second kind

Chebyshev polynomials Un(x) by rearranging the argument of the Hn(x, y)

polynomials. In fact, by noting that

tnHn

(
2x,−1

t

)
= n! tn

[n
2 ]∑

k=0

(−1)k(2x)n−2k

tkk!(n− 2k)!
=

= n!
[n
2 ]∑

k=0

(−1)ktk(2xt)n−2k

k!(n− 2k)!
= Hn(2xt,−t)

and, from the fact that

(n− k)! =
∫ +∞

0

e−ttn−kdt ,

we can immediately conclude with

Un(x) =
1
n!

∫ +∞

0

e−tHn(2xt,−t)dt . (1.4)

The use of the above integral representations for the second kind Chebyshev

polynomials can be used to introduce further generalized polynomial sets, in-

cluding the two-variable Chebyshev polynomials [5] and the two-variable Gegen-

bauer polynomials.

2 Two-variable generalized Chebyshev polyno-

mials

Before to proceed, we premise some relevant operational relations involving the

generalized Hermite polynomials.

Proposition 1 – The polynomials Hm(x, y) solve the following partial differ-

ential equation:
∂2

∂x2
Hm(x, y) =

∂

∂y
Hm(x, y) . (2.1)

Proof – By deriving, separately with respect to x and to y, in the (1.3), we

obtain:

∂

∂x
Hm(x, y) = mHm−1(x, y) , (2.2)

∂

∂y
Hm(x, y) = Hm−2(x, y) .
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From the first of the above relations, by deriving again with respect to x

and by noting the second relation in (2.2), we end up with the (2.1).

The above results help us to derive the important operational rule.

In fact, by considering the differential equation (2.1) as a linear ordinary one

in the variable y and by noting that Hn(x, 0) = xn, we can immediately state

that

Hn(x, y) = ey ∂2

∂x2 xn . (2.3)

Proposition 2 – The two-variable Hermite polynomials satisfy the following

relation (
x + 2y

∂

∂x

)n

(1) =
n∑

s=0

(2y)s

(
n

s

)
Hn(x, y)

∂s

∂xs
(1) . (2.4)

Proof – By multiplying the l.h.s. of the above equation by tn

n! and then summing

up, we find:
+∞∑
n=0

tn

n!

(
x + 2y

∂

∂x

)n

= et(x+2y ∂
∂x )(1) . (2.5)

To develop the exponential in the r.h.s. of the (2.5) we need to apply the

Weyl identity and then we have to calculate the commutator of the two opera-

tors: [
tx, t2y

∂

∂x

]
= −2t2y

which help us to write:

+∞∑
n=0

tn

n!

(
x + 2y

∂

∂x

)n

= ext+yt2e2ty ∂
∂x (1) .

After expanding and manipulating the r.h.s. of the previous relation and by

equating the like t powers we find immediately the (2.4).

The above result gives us another important operational rule for the gen-

eralized Hermite polynomials. By using in fact the identity stated in equation

(2.3), we have

ey ∂2

∂x2 xn =
n∑

s=0

(2y)s

(
n

s

)
Hn(x, y)

∂s

∂xs
(1) (2.6)

and by noting that the r.h.s. of the above relation is not zero only for s = 0, we

can immediately obtain

ey ∂2

∂x2 xn =
(

x + 2y
∂

∂x

)n

. (2.7)
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Finally, we can state

Proposition 3 – The Hermite polynomials Hn(x, y) solve the following differ-

ential equation:

2y
∂2

∂x2
Hn(x, y) + x

∂

∂x
Hn(x, y) = nHn(x, y) (2.8)

Proof – By using the results derived from the Proposition 2, we can easily find

that (
x + 2y

∂

∂x

)
Hn(x, y) = Hn+1(x, y) (2.9)

and from the first of the recurrence relations stated in (2.2):

∂

∂x
Hn(x, y) = nHn−1(x, y)

we have: (
x + 2y

∂

∂x

)(
∂

∂x

)
Hn(x, y) = nHn(x, y) (2.10)

which is the thesis.

From this statement can be also derived an important recurrence relation.

By exploiting, in fact, the relation (2.9), we obtain:

Hn+1(x, y) = xHn(x, y) + 2y
∂

∂x
Hn(x, y) (2.11)

and then we can conclude with

Hn+1(x, y) = xHn(x, y) + 2nyHn−1(x, y). (2.12)

Definition 1 – Let x, y real variables and let α a real parameter, we say

generalized Chebyshev polynomials of second kind, the polynomials defined by

the following relation:

Un(x, y; α) =
1
n!

∫ +∞

0

e−αtHn(2xt,−yt)dt. (2.13)

By using the recurrence relations relevant to the two-variable Hermite poly-

nomials, proved above, we can state the following

Proposition 4 – The generalized Chebyshev polynomials Un(x, y; α) satisfy

the following recurrence relations

∂

∂y
Un(x, y;α) =

∂

∂α
Un−2(x, y; α) (2.14)

∂

∂x
Un(x, y;α) = −2

∂

∂α
Un−1(x, y;α).
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Proof – By deriving respect to y in the relation (2.13), we get:

∂

∂y
Un(x, y; α) =

1
n!

∫ +∞

0

e−αt ∂

∂y
Hn(2xt,−yt)dt

and since:
∂

∂y
Hn(2xt,−yt) = (−t)n(n− 1)Hn−2(2xt,−yt)

we obtain:

∂

∂y
Un(x, y;α) =

1
n!

∫ +∞

0

e−αt(−t)n(n− 1)Hn−2(2xt,−yt)dt

which gives the first of the (2.14).

The second relation can be obtained in the same way, by noting that:

∂

∂x
Hn(2xt,−yt) = (−2t)nHn−1(2xt,−yt).

Proposition 5 – The generalized Chebyshev polynomials Un(x, y; α) satisfy

the follow Cauchy problem:




∂2

∂x2
Un(x, y; α) = −4

∂2

∂α∂y
Un(x, y; α)

Un(x, 0;α) =
(2x)n

αn+1
.

(2.15)

Proof – By deriving with respect to x in the second identity of (2.14), we find:

∂2

∂x2
Un(x, y;α) = −4

∂

∂α

(
∂

∂α
Un−2(x, y; α)

)

and then, since:
∂

∂α
Un−2(x, y; α) =

∂

∂y
Un(x, y;α)

we obtain:
∂2

∂x2
Un(x, y; α) = −4

∂2

∂α∂y
Un(x, y; α). (2.16)

By setting y = 0 in the relation (2.13), we have:

Un(x, 0; α) =
1
n!

∫ +∞

0

e−αtHn(2xt, 0)dt

and since

Hn(2xt, 0) = (2xt)n
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we find

Un(x, 0; α) =
(2x)n

n!

∫ +∞

0

e−αttndt

that is

Un(x, 0; α) =
(2x)n

αn+1
. (2.17)

The partial differential equation, stated in (2.16), can be viewed as a first

order ordinary differential equation for the variable y; and then by using the

initial condition founded through the (2.17), we can state the solution:

Un(x, y; α) = e
y
4
bD−1

α
∂2

∂x2
(2x)n

αn+1
, (2.18)

which completely prove the proposition.

The symbol D̂−1
x denotes the inverse of the derivative, defined by

D̂−1
x f(x) =

∫ x

0

f(ξ) dξ .

We have introduced the generalized Chebyshev polynomials Un(x, y; α) by

using a different integral form of the standard second kind Chebyshev polyno-

mials, defined in the equation (2.13).

By using the same procedure, it is possible to obtain similar integral repre-

sentations for the first kind Chebyshev polynomials. In fact, since their explicit

form is:

Tn(x) =
n

2

[n
2 ]∑

k=0

(−1)k(n− k − 1)!(2x)n−2k

k!(n− 2k)!
, (2.19)

we can immediately derive that

Tn(x) =
1

2(n− 1)!

∫ +∞

0

e−ttn−1Hn

(
2x,−1

t

)
dt . (2.20)

We have also introduced [1] a Chebyshev-like polynomials by using the

method of integral representation:

Wn(x) =
2

(n + 1)!

∫ +∞

0

e−ttn+1Hn

(
2x,−1

t

)
dt . (2.21)

We can now generalize the above Chebyshev polynomials.

Definition 2 – Let x, y real variables and let α a real parameter, we define the

following three polynomials sets:

Un(x, y;α) =
1
n!

∫ +∞

0

e−αttnHn

(
2x,−y

t

)
dt , (2.22)
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Tn(x, y; α) =
1

2(n− 1)!

∫ +∞

0

e−αttn−1Hn

(
2x,−y

t

)
dt , (2.23)

and:

Wn(x, y;α) =
1

(n + 1)!

∫ +∞

0

e−αttn+1Hn

(
2x,−y

t

)
dt . (2.24)

Proposition 6 – The generalized Chebyshev polynomials satisfy the following

recurrence relations

∂

∂α
Un(x, y;α) = −1

2
(n + 1)Wn(x, y;α) (2.25)

∂

∂α
Tn(x, y;α) = −n

2
Un(x, y; α).

Proof – By deriving with respect to α in the relation (2.13), we find:

∂

∂α
Un(x, y; α) = − 1

n!

∫ +∞

0

e−αttn+1Hn

(
2x,−y

t

)
dt

and then the first of equations (2.25), immediately, follows.

In the same way by following a similar procedure by using the identity (2.23),

we have:

∂

∂α
Tn(x, y;α) = − 1

2(n− 1)!

∫ +∞

0

e−αttnHn

(
2x,−y

t

)
dt

and then the thesis.

3 Generalized Gegenbauer polynomials

It is worth noting that the Chebyshev polynomials can be viewed as a particular

case of the Gegenbauer polynomials.

Definition 3 – Let x and µ real variables, we say n − th order Gegenbauer

polynomials, the polynomials defined by the follow relation:

C(µ)
n (x) =

1
Γ(µ)

[n
2 ]∑

k=0

(−1)k(2x)n−2kΓ (n− k + µ)
k!(n− 2k)!

(3.1)

where Γ(µ) is the Euler function.

By recalling the integral representation of the above Euler function:

Γ(µ) =
∫ +∞

0

e−ttµ−1dt (3.2)
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and by using the same arguments exploited for the Chebyshev case, we can state

the integral representation for the Gegenbauer polynomials

C(µ)
n (x) =

1
n!Γ(µ)

∫ +∞

0

e−ttn+µ−1Hn

(
2x,−1

t

)
dt . (3.3)

We can also generalized the Gegenbauer polynomials by using their integral

representation.

Definition 4 – Let x, y real variables and let α a real parameter, we say general-

ized Gegenbauer polynomials, the polynomials defined by the following relation:

C(µ)
n (x, y; α) =

1
n!Γ(µ)

∫ +∞

0

e−αttn+µ−1Hn

(
2x,−y

t

)
dt. (3.4)

The above integral representation is a very flexible tool; in fact it can be

exploited to derive interesting relations regarding the Gegenbauer polynomials

and also the Chebyshev polynomials [6].

Proposition 7 – Let ξ ∈ R, such that |ξ| < 1, µ 6= 0. The generating function

of the polynomials C
(µ)
n (x, y;α) is given by:

+∞∑
n=0

ξnC(µ)
n (x, y; α) =

1
[α− 2xξ + yξ2]µ

. (3.5)

Proof – By multiplying both sides of the identity (3.4), by ξn and by summing

up over n, we get:

+∞∑
n=0

ξnC(µ)
n (x, y; α) =

∫ +∞

0

+∞∑
n=0

ξntn

n!Γ(µ)
e−αttµ−1Hn

(
2x,−y

t

)
dt

and by noting that:

+∞∑
n=0

(ξt)n

n!
Hn

(
2x,−y

t

)
= exp

[
ξ (2xt) + ξ2(−yt)

]

we can write:
+∞∑
n=0

ξnC(µ)
n (x, y;α) =

∫ +∞

0

1
Γ(µ)

e−αteξ(2xt)+ξ2(−yt)tµ−1dt. (3.6)

Finally, by integrating over t , by using the integral representation of the

Euler function, we obtain the thesis.

Proposition 8 – The generalized second kind Chebyshev polynomials and the

generalized Gegenbauer polynomials satisfy the following recurrence relation:
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(−1)m ∂m

∂αm
Un(x, y; α) = m!C(m+1)

n (x, y; α). (3.7)

Proof – By deriving with respect to α in the relation (2.22), m-times, we get:

∂m

∂αm
Un(x, y; α) =

(−1)m

n!

∫ +∞

0

e−αttn+mHn

(
2x,−y

t

)
dt.

The r.h.s. of the above identity can be written in the form:

(−1)m

n!

∫ +∞

0

e−αttn+mHn

(
2x,−y

t

)
dt =

(−1)mm!
n!m!

∫ +∞

0

e−αttn+mHn

(
2x,−y

t

)
dt

and then the thesis follows.

By using the recurrence relations related to the Hermite polynomials stated

in Proposition 3, it is easy to note that:
[
(2x) +

(
−y

t

) ∂

∂x

]
Hn

(
2x,−y

t

)
= Hn+1

(
2x,−y

t

)
(3.8)

which can be used to derive the following results:

Theorem 1 – The generalized Gegenbauer polynomials C
(µ)
n (x, y; α) satisfy the

recurrence relations:

n + 1
2µ

C
(µ)
n+1(x, y; α) = xC(µ+1)

n (x, y; α)− yC
(µ+1)
n−1 (x, y; α) (3.9)

and:
∂

∂y
C(µ)

n (x, y;α) = −µC
(µ+1)
n−2 (x, y;α). (3.10)

Proof – By using the relation (3.8), we can write the generalized Gegenbauer

polynomial of order n + 1, in the form:

C
(µ)
n+1(x, y;α) = (3.11)

=
1

(n + 1)!Γ(µ)

∫ +∞

0

e−αttn+µ

[
(2x) +

(
−y

t

) ∂

∂x

]
Hn

(
2x,−y

t

)
dt.

After exploiting the r.h.s of the above identity, we get:

C
(µ)
n+1(x, y;α) = (3.12)

=
1

(n + 1)!Γ(µ)

[∫ +∞

0

e−αttn+µ(2x)Hn

(
2x,−y

t

)
dt

−
∫ +∞

0

e−αttn−1+µy(2n)Hn−1

(
2x,−y

t

)
dt

]
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and then:

C
(µ)
n+1(x, y;α) = (3.13)

=
2x

(n + 1)!Γ(µ)

∫ +∞

0

e−αttn+µHn

(
2x,−y

t

)
dt

− 2yn

(n + 1)!Γ(µ)

∫ +∞

0

e−αttn−1+µHn−1

(
2x,−y

t

)
dt.

We can rearrange the above relation in the form:

n + 1
2

C
(µ)
n+1(x, y; α) =

= x
1

n!Γ(µ)

∫ +∞

0

e−αttn+µHn

(
2x,−y

t

)
dt

− y
1

(n− 1)!Γ(µ)

∫ +∞

0

e−αttn−1+µHn−1

(
2x,−y

t

)
dt

and finally:
n + 1
2µ

C
(µ)
n+1(x, y; α) =

= x
1

n!Γ(µ + 1)

∫ +∞

0

e−αttn+µHn

(
2x,−y

t

)
dt

− y
1

(n− 1)!Γ(µ + 1)

∫ +∞

0

e−αttn−1+µHn−1

(
2x,−y

t

)
dt

which proves the (3.9).

To show the recurrence relation in the (3.10), it is important to note that:

∂

∂y
Hn

(
2x,−y

t

)
= −n(n− 1)

t
Hn−2

(
2x,−y

t

)
. (3.14)

In fact, by deriving respect to y in equation (3.4), we get:

∂

∂y
C(µ)

n (x, y; α) =
1

n!Γ(µ)

∫ +∞

0

e−αttn+µ−1 ∂

∂y
Hn

(
2x,−y

t

)
dt

and by using the (3.14), we can write:

∂

∂y
C(µ)

n (x, y; α) = −n(n− 1)
n!Γ(µ)

∫ +∞

0

e−αttn−2+µHn−2

(
2x,−y

t

)
dt

which immediately gives the thesis.
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(1978), 295–327.

[6] H.W. Srivastava, H.L. Manocha, A treatise on generating functions, Wiley,

New York, 1984.

11


