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Abstract Assigning and scheduling vehicle routes in a stochastic time-
dependent environment is a crucial management problem. The assumption
that in a real-life environment everything goes according to an a priori de-
termined static schedule is unrealistic. Our methodology builds on earlier
work in which the traffic congestion is captured based on queueing theory
in an analytical way and applied to the V RP problem. In this paper, we
introduce the variability in the traffic flows into the model. This allows for
an evaluation of the routes based on the uncertainty involved. Different ex-
periments show that the risk taking/avoiding behaviour of the planner can
be taken into account during optimization. As more weight is contributed
to the variability component, the resulting optimal route will take a slightly
longer travel time, but be more reliable. We propose to evaluate the solu-
tion quality in terms of the 95th-percentile of the travel time distribution
(assumed lognormal) as this measure captures well the trade-off between
the average travel time and its variance.

Keywords: vehicle routing, time-dependent travel times, travel time reli-
ability

1 Introduction

Most traffic networks in Europe face high utilization levels, and conse-
quently, congestion occurs. For a sufficiently high utilization, the smallest
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stochastic events (both in arrival processes or service processes) cause wait-
ing, which in the case of traffic systems, materialize in lower speeds. As
speeds change, travel times vary for a given distance. As such, all trans-
portation problems which intend to minimize total time used, are subject
to these physical considerations of congestion. Consequently, the road traf-
fic conditions and its resulting variability can not be ignored in order to
carry out a good quality route optimization. Uncertainty about the traffic
conditions represented in travel times is a pervasive aspect of routing and
scheduling, especially in a just-in-time environment or in highly congested
regions like Europe. As the cost impact due to this uncertainty can be sub-
stantial, risk sensitive planners may want to evaluate to what extent their
routes and schedules are risky in terms of travel times. Indeed, a slightly
longer route in terms of expected travel time might be more interesting for
a planner if the associated variance is considerably smaller. In this paper,
the V RP problem considered deals with stochastic time-dependent travel
times. In a real-life environment the travel times on an individual link are
stochastic in nature. Due to weather conditions, car accidents, congestion,
time and spatial fluctuations of traffic flows can be observed. The key issue
considered in this paper is then the variability of the travel times which we
consider to be a good approximation of travel time reliability.

In Van Woensel et al. (2008), a dynamic vehicle routing problem with
time-dependent travel times due to traffic congestion was presented. The
approach developed introduced the traffic congestion component modeled
using a queueing approach to traffic flows. Explicitly making use of the
time-dependent congestion results in routes that are (considerably) shorter
in terms of travel time. Moreover, a first rough expression for the variance
of the travel time was obtained.

The main contributions of this paper are:

1. We extend the objective function of a V RP with time-dependent travel
times with a variability component. As such, we control for the degree of
travel time variability during the optimization. We show that extending
the objective function with this extra information about the stochastic
travel time distribution provides better results when considering the reli-
ability of travel times. Depending on environmental and road conditions
as well as the risk taking behavior of the planner, these improvements
can be substantial.

2. The reduction of the travel time variability may come at the cost of an
increase of the expected travel time. To evaluate a solution, we use the
95th-percentile of the travel time distribution (assumed lognormal) as a
quality measure. Using this measure, the solution quality improves, if
the increase in expected travel time results in a lower travel time asso-
ciated with the 95th-percentile of its distribution. Results show that the
reliability improves as more weight is given to the variance component
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during optimization. Different environmental and road conditions are
compared and evaluated using this quality measure.

3. The trade-off between expected travel time and standard deviation of
the travel time and the resulting quality measurement is demonstrated
using an Arena simulation. The simulation also validates the underlying
assumption that the travel time over an entire tour is well approximated
by a lognormal one.

This paper is organized as follows: in Section 2, the literature background
on our V RP variant is presented, followed by a formal description of the
V RP , the objective function and the time-dependency implementation in
Section 3. Experimental results on solution quality are presented in Section
4. Finally, conclusions and future research are presented in Section 5.

2 Literature review

Stochastic Vehicle Routing

Travel times between any two customers are a stochastic process related
to traffic congestion. Depending on the time of the day the traffic network
will face a different level of congestion. The number of vehicles, the road
capacity, road conditions, weather conditions, etc. influence the speed of the
vehicles. There has been limited research on solving the V RP problem in the
face of stochastic time-dependent travel times. One of the first approaches
(Malandraki and Daskin, 1992) treated the travel time between two cus-
tomers as a function of distance and the time of the day (if this temporal
component causes more travel time variation than travel time variation due
to accidents, weather conditions,etc.), resulting in a piecewise constant dis-
tribution of the travel time. Although they only incorporate the temporal
component of traffic density variability, they acknowledge the importance
of the traffic density variability due to accidents, weather conditions and
other random events. However, the FIFO principle is not necessarily satis-
fied (Ichoua et al., 2003).

Ichoua et al. (2003) introduced a model that guarantees that if two vehi-
cles leave the same location for the same destination (along the same path),
the one that leaves first will never arrive later than the other. This is satis-
fied by working with step-like speed distributions and adjusting the travel
speed whenever the vehicle crosses the boundary between two consecutive
time periods. To reduce computational run times, they limited the number
of time slices to three. The speed differences are then modeled using cor-
rection factors on the weights of the links. Donati et al. (2003) extended
this line of research by indicating the importance of optimizing the starting
time in addition to optimizing the routes in a time-dependent environment.
They show that the degree of feasibility (defined as not violating a time
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constraint) and optimality decreases for the best solutions for the constant
speed model when they are used in a time-dependent context with increas-
ing variability of the traffic conditions. Similar results were also observed by
Haghani and Jung (2005). In contrast with Ichoua et al. (2003) they present
the travel time as a continuous function that can accept any kind of travel
time variation. In their real time approach, (Haghani and Jung, 2005) pro-
pose to adjust the vehicle routes at certain times in the planning period to
take new demands and new traffic information into account. They classify
links into three types and each link type has two types of traffic flow charac-
teristics. At any time during a day, the link travel speed is calculated based
on the design speed of the link and the ratio of the travel speed to the design
speed for that link type at that time. Travel times between the nodes are
calculated using a time-dependent shortest path algorithm and are input to
the vehicle routing problem algorithm. An important conclusion states that
if the uncertainty in travel time forecasting increases, the dynamic routing
strategy becomes increasingly superior. Uncertainty of travel time forecast-
ing is inserted in 12 cases, in which they change the percentage of links that
can change and the gap of that change. No information is provided on how
to assess the uncertainty of the travel time forecasting.

As indicated by Ichoua et al. (2003) the literature on time-dependency
in a V RP context is limited. Stochastic and time-dependent travel times
are more extensively operated on in shortest path analysis (e.g. Hall (1986),
Fu and Rilett (1998), Gao and Chabini (2002), Gao and Chabini (2006)
and He et al. (2005)). He et al. (2005) indicates that although mean and
variance contain the most important information about path travel time,
finding the single route with expected shortest travel time is not appropriate
for routing of planners who are not risk neutral in their behavior. The entire
travel time distribution contributes to the routing choice. Chen et al. (2003)
propose to using the standard deviation and the 90th percentile travel time
in addition to the mean to measure service quality.

Stochastic travel times are introduced in the vehicle routing problem by
Laporte et al. (1992). Following Gendreau et al. (1996a) a stochastic V RP

arises whenever some elements of the problem are random. A stochastic
model is usually modeled in two stages. In the first stage, a planned a priori
route is determined, followed by a realization of the random variables. In
the second stage, a recourse or corrective action is then applied to the
solution of the first stage. The cost/saving generated through the recourse
may have to be considered when designing the first stage solution. Kenyon
and Morton (2003) developed two models to tackle the stochastic V RP with
random travel and service times with distribution assumed to be known. The
first minimizes the expected completion time and the second maximizes the
probability that the operation is complete before a preset target time T .
After the routes have been constructed in the first phase, the actual travel
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times of those routes based on realizations of the random travel and service
times are computed.

Modeling Traffic

Based on traffic counts, analytical queueing models model the behavior of
traffic flows as a function of the most relevant physical and geographical
determinants (i.e. free flow speed, maximum road capacity,variability due
to the weather, etc.). The travel times can then be modeled much more
realistically using these speeds (i.e. expressed in kilometer per hour) and are
directly related to the physical characteristics and the geographical location
on the arc.

An empirical validation of the queueing approach as well as parameter
finetuning is provided in Van Woensel and Vandaele (2006) and validation
based on simulation results is provided in Van Woensel et al. (2006). As the
distribution of the speeds is calculated based on traffic counts using queue-
ing models in which parameters can be finetuned as to represent current
environmental conditions best, the link and consequently road travel time
distributions can be modeled much more realistically. More specifically, the
stochastic nature of travel times is captured using queueing theory applied
to traffic flows (Vandaele et al. (2000) and Van Woensel (2003)). By making
use of this analytical approach the necessary data to model congestion (i.e.
traffic flow and some queueing parameters to capture road conditions) is
limited which opens the door for real-life applications.

It must be noted that several other queueing models have been proposed
in the literature, all aiming at improving traffic flow modeling accuracy
and flexibility (see e.g. Jain and MacGregor Smith (1997) and Heidemann
(1996)). For a detailed discussion refer to Van Woensel (2003).

3 Problem formulation

Formally, the routing problem considered can be represented by a complete
directed graph G = (V, A) where V = {0, 1, . . . , n} is a set of nodes repre-
senting the depot (0) and the customers (1, . . . , n), and A = {(i, j)|i, j ∈ V }
the set of directed links. For each customer, a fixed non-negative demand qi

is given (q0 = 0). The aim is then to find routes with shortest travel time
where the following conditions hold (Laporte, 1992): Every customer is vis-
ited exactly once by exactly one vehicle; all vehicle routes start and end at
the single depot; every vehicle route has a total demand not exceeding the
maximum vehicle capacity Q.

The basic objective function which needs to be minimized is similar to
the one presented in (Gendreau et al., 1994) though expressed in terms of
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travel times. It is the sum of the expected travel time of all routes in each
subtour and the excess capacity in each subtour. If the solution is infeasi-
ble with respect to capacity a penalty proportional to the excess capacity
is added. Only taking into account the expected travel times ignores the
risk profile of the planner. Note that the proposed approach is similar to
mean-variance analysis used in financial planning of portfolios (Best and
Grauer (1991) and Grauer and Hakansson (1993)). In this literature, it is
argued that risk can be associated with the included variance term (Mulvey
et al., 1995). An extension of the objective function thus involves adding the
standard deviation (SD) of the travel times, where the weight of the latter
component is controlled by a positive parameter β. Higher risk averseness
will be reflected in an increase of the parameter β resulting in more weight
attributed to the standard deviation in the objective function. The higher
β, the less sensitive the solutions are to variability in the data, as such
controlling the degree of travel time reliability.

In our time-dependent model, time is discretized into P time zones of
equal length △p with a different travel speed distribution associated with
each time zone p (1 ≤ p ≤ P ). One of the earliest studies explicitly dealing
with the travel speed distribution is that of (Berry and Belmont, 1951) who
looked into the distribution of the measured speed of a vehicle as it crosses
a particular point on the highway. Such speed distributions were found to
be normally distributed. Travel times, taken as the reciprocal of speed, are
shown to be also roughly normal, although slightly skewed indicating that
a lognormal distribution might be interesting as an alternative (Kharoufeh
and Gautam, 2004). Other empirical results (Taniguchi et al. (2001) and
Kwon et al. (2000)) show that there is always a certain minimum time
needed to cover the distance (i.e. it is impossible to traverse the distance in a
time shorter than this minimum time). After this minimum, the probability
increases rapidly to a maximum after which the probability slowly decreases
with a long tail (i.e. skewed to the right). Due to these characteristics,
Taniguchi et al. (2001) proposed to use a lognormal distribution rather
than a normal distribution.

In our model the speed in each time zone is obtained by applying queue-
ing theory to traffic flows. For a discussion of the queueing model, the in-
terested reader is referred to Vandaele et al. (2000), Heidemann (1996) and
Van Woensel et al. (2001).

It can be shown that the convolution of k lognormal distributions is
again (approximative) lognormal (Beaulieu and Xie, 2004). We assumed a
lognormal distribution of the travel time, but the analysis could also be
applied if another distribution were chosen. Simulation results in Section
4 show that the travel time distribution over an entire tour is again well
approximated by a lognormal one.
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4 Experimental results

In this section, we first described the Tabu Search implementation and the
used congestion information. We then extend the objective function with
the standard deviation of the travel times. Depending on the road and
environmental conditions, more substantial gain in terms of travel time
reliability is found by contributing more weight to this component during
optimization. The decrease in variability is offset by an increase in expected
travel time, therefore, we introduce the 95th-percentile of the travel time
distribution as a solution quality measure. We show that contributing more
weight to the standard deviation during optimization improves the 95th-
percentile of its distribution. Finally, an Arena (Rockwell Software Inc.,
2005) based simulation is provided, which confirms the results.

4.1 Implementation

In this paper Tabu Search, first proposed by Glover (1989) and Glover
(1990), is used to generate solutions as it has a number of advantages: gen-
eral applicability of the approach, flexibility for taking into account specific
constraints in real cases and ease of implementation (Pirlot, 1996). For this
Tabu Search implementation the following references where used as a basis:
Gendreau et al. (1994), Gendreau et al. (1996b), Hertz et al. (2000) and
Van Woensel et al. (2008).

The first important change made to this basic algorithm consists of
replacing distance by travel time. The main change consist of extending
the basic objective function with the standard deviation of the route travel
time. The objective function thus becomes E(T̃ T )+βSD(T̃ T ), with E(T̃ T )
(SD(T̃ T )) the expected travel time (standard deviation of the travel time)
and β a positive parameter to account for the risk averseness of the planner.
Given an empirical dataset, they can be tuned to represent the relevant
environment conditions as close as possible (Van Woensel and Vandaele,
2006). For the subsequent analysis, we use a speed profile with a congested
flow during the entire day and one with heavy congestion only during the
morning and evening peak hours.

As we start from the flow on a road segment and transform it into speed,
we need to explain the setting of the queueing model parameters to do so.
The flow on a road segment is assumed given as well as the free flow speed
(sf ). The remaining queueing parameters (ca ∈ [0, 1], cs ∈ [0, 1] and kj)
are to be set properly. Given an empirical dataset, they can be tuned to
represent the relevant environment conditions as close as possible ((Van
Woensel and Vandaele, 2006)). As this is not the objective here, we choose
cs = ca and set them both to 0.99 if we want to represent weather conditions
that cause a large variability of speeds or set them to 0.75 if the weather
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conditions are better. The jam density kj will be set such that during rush
hours the resulting speed is substantially lower than during off peak periods
for a given observed flow q. As we see in Figures 1 and 2, a kj of 40 for a free
flow of 120 km/h results in a reasonable speed profile both when there is
a congested flow during the entire day (Figure 1: Congested flow) as when
there is only heavy congestion during the morning and evening peak hours
(Figure 2: Rush-hour flow).

20 40 60 80 100 120 140
timezone

85
90
95
100
105
110
115

speed

Fig. 1. Speeds per time zone with kj 40, free flow 120 km/h and congested flows (almost)
during the entire day.
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Fig. 2. Speeds per time zone with kj 40, free flow 120 km/h and 2 heavy congested peak
hour flows.
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4.2 Impact of the variance component

Minimizing the expected total travel times assumes that the planner is risk
neutral in his planning behavior, i.e. the planner does not care about the
risk involved. Ignoring the associated variance of the travel time could be
very costly since the variance could be unacceptably large from a managerial
or planning point of view. Indeed, one might prefer to have a route that is
on average slightly worse, but has a reduced variance, as such increasing the
reliability of the predicted arrival times at all destinations. Depending on
the risk profile a different route will be chosen. By adjusting the parameter
β in the objective function, the planner can easily insert his personal risk
profile. Higher values for this parameter indicate a risk avoiding preference
of the planner and will result in routes that have more reliable travel times.
From Table 1 it follows that the probability that the travel time is smaller
than the travel time at TTβ (defined as E(T̃ T ) + βSD(T̃ T )) increases as
β increases. In addition, the tail of the distribution to the right of TTβ

contributes to the total mass of the distribution. The higher β, the less
mass there is left that contributes to the total mass of the distribution
((Finkel, 1990)). For instance, for dataset 32k5 from Augerat, the optimal
route has a travel time distribution with σ (scale parameter of the lognormal
travel time distribution) = 0.376 (E(TT): 1308.87 minutes, SD(TT): 509.62
minutes). When β = 2.0, 95.73 % of the population of travel times is below
TTβ. The remaining 4.27 % however still contributes 8.93 % of the total
mass. Therefore, we will examine β-values up to 3.0, where the remaining
mass is about 3 % for this set.

β β=0.0 β=0.5 β=1.0 β=1.5 β=2.0 β=2.5 β=3.0
p(TT < TTβ) (%) 57.45 74.58 85.61 92.11 95.73 97.71 98.77
mass(TT > TTβ) (%) 57.45 38.76 24.59 15.00 8.93 5.25 3.06

Table 1. Probability for TT < TTβ and associated remaining mass in the tail of the
travel time distribution for different β-values when σ (scale parameter of the lognormal
travel time distribution) = 0.376.

The values in Table 2 indicate the relative decline of the standard devia-
tion of the total travel time of the newly constructed route (with associated
β) compared to the standard deviation of the travel time found by a mini-
mization with β = 0. The values are an average over 27 Augerat datasets.
As the weight of the standard deviation of the travel time adopts higher
values, the standard deviation of the associated best route continues to
decrease, regardless of the environmental and road conditions. The best im-
provement however is obtained by increasing the value of β from 0 to 0.5,
whereas the additional improvement of further steps reduces in magnitude.
It is thus crucially important to include the variability of the travel times
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in the objective function. Better improvements will be expected when the
road conditions are bad (ca=0.99, with ca a parameter from the queueing
model). If road conditions are bad, the speed will fluctuate more, which
makes it more difficult to predict when we will complete a tour as opposed
to better road conditions. By introducing this uncertainty factor in the ob-
jective function, larger improvements are expected when road conditions
are bad. If the flow is congested during the entire day, the improvement is
also more substantial as compared to a flow which is characterized by two
rush-hours. This is due to the fact that between the two congestion periods,
drivers are able to uphold free flow speed, which evidently is associated with
less variability.

Test situation β=0.5 β=1.0 β=1.5 β=2.0 β=2.5 β=3.0
congested flow, ca=0.75 -1.61 -2.18 -2.52 -2.75 -3.14 -3.47
rush-hour flow, ca=0.75 -1.45 -2.05 -2.50 -2.95 -3.32 -3.46
congested flow, ca=0.99 -3.30 -4.18 -4.72 -5.17 -5.40 -5.56
rush-hour flow, ca=0.99 -3.17 -3.83 -4.20 -4.55 -4.71 -5.04

Table 2. Impact of β on the standard deviation of the travel time, compared to the
standard deviation of the travel time with β = 0 (%).

4.3 The 95th-percentile as a quality measure

The reduction of the standard deviation comes at a certain cost, i.e. a likely
increase of the average travel time. To check whether this cost is acceptable,
we propose the use of the 95th-percentile as a quality measure assuming a
lognormal distribution for the travel time. The 95th-percentile combines
the expected total travel time and variance of total travel time into a single
number. Figure 3 illustrates that if the 95th-percentile of the solution with
worse average travel time, but better standard deviation (Distribution 2) is
lower than the one with best average travel time (Distribution 1), we have
nevertheless managed to improve solution quality.

This can also be derived from our test cases. The impact of β on the
improvement in the 95th-percentile can be observed in Table 3. The travel
time associated with the 95th-percentile decreases when more weight (higher
β) is given to the standard deviation in the objective function. The best
improvement is observed in the first step, regardless of the test situation.
The additional improvement of higher β values reduces in magnitude. This
means that although the average travel time will become larger with in-
creasing β, the total travel time will be better in 95% of all cases but with
decreasing importance.

If the road conditions are good (low ca), the relative improvement of
the travel time of the 95th-percentile is more substantial for the congested
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Fig. 3. Impact of 95th-percentile on solution quality (Lognormal distribution)

flow throughout the day compared to a flow with two rush-hours for equal
β values. From Table 4, we see that if weather conditions are good, the
squared coefficient of the travel times of the two flow types are of the same
magnitude. Therefore, since the standard deviation of the travel times is
higher for the congested flow, better improvements can be expected for this
flow type with increasing β.

On the other hand, if road conditions are bad, the best relative improve-
ment is observed for the two rush-hour flow. In bad weather, the squared
coefficient of the travel times for the flow with two rush-hours is larger
than the congested flow (Table 4). This means that for the flow with two
rush-hours the standard deviation is relatively large compared to the mean.
Adding some weight to it will thus result in better relative results.

Test situation β=0.5 β=1.0 β=1.5 β=2.0 β=2.5 β=3.0
congested flow, ca=0.75 -0.62 -0.82 -0.94 -0.98 -1.12 -1.16
rush-hour flow, ca=0.75 -0.52 -0.72 -0.84 -0.91 -1.06 -1.07
congested flow, ca=0.99 -1.32 -1.62 -1.75 -1.94 -1.97 -1.99
rush-hour flow, ca=0.99 -1.38 -1.66 -1.79 -1.90 -1.99 -2.07

Table 3. Impact of β on the 95th-percentile of the travel time, compared to the 95th-
percentile of the travel time with β = 0 (%)(lognormal distribution).

In Table 5, the gain in travel time (in minutes) of the 95th-percentile
is presented for the test cases when comparing β = 3 with β = 0. For in-
stance, the gain over all Augerat sets for the congested flow with ca=0.99
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Test situation β=0.0 β=0.5 β=1.0 β=1.5 β=2.0 β=2.5 β=3.0
congested flow, ca=0.75 0.038 0.037 0.037 0.036 0.036 0.036 0.036
rush-hour flow, ca=0.75 0.038 0.037 0.037 0.036 0.036 0.036 0.036
congested flow, ca=0.99 0.110 0.103 0.101 0.100 0.099 0.098 0.098
rush-hour flow, ca=0.99 0.113 0.106 0.104 0.103 0.102 0.102 0.101

Table 4. Squared coefficient of variation of the travel times for given test situation and
β values.

is on average 88.32 minutes. The minimum improvement for that test sit-
uation is 15.58 minutes and the maximum improvement is almost 3 hours
(166.32 minutes). It is clear that the reduction of the standard deviation of
the travel time is substantial enough to overcome the increase in average
travel time. Extending the objective function to account for the travel time
variability provides results with better overall reliability, especially when
road conditions are bad.

Test situation Average Minimum Maximum
congested flow, ca=0.75 35.11 6.90 93.57
rush-hour flow, ca=0.75 32.26 0.33 68.10
congested flow, ca=0.99 88.32 15.58 166.32
rush-hour flow, ca=0.99 81.61 15.85 259.98

Table 5. Improvement (in minutes) of the 95th-percentile of the tour travel time when
comparing the optimal routes with β = 3 and β = 0.

4.4 Simulation

To validate the approximations used when building the variance estimating
model presented above, we constructed a simulation in (Rockwell Software
Inc., 2005) in which we reconstructed the route as a sequence of lognormal
distributions (representing the links) with mean and standard deviation as
obtained through queueing theory. For set 32k5, 3001 trucks completed the
tour and their travel times have been plotted in Figure 4. Results indicate
that the resulting tour travel time is indeed lognormally distributed (there
clearly is a long tail to the right). In addition, the plotted results are close to
the theoretical tour travel time distribution. The travel time associated with
the 95th-percentile is 2205.5 minutes (Figure 4, Table 6), which corresponds
with what we expect from the theoretic travel time distribution (2262.71
minutes (95th-percentile of lognormal travel time distribution with E(TT):
1308.87 minutes and SD(TT): 509.62 minutes)).

The positive impact in terms of travel time reliability when optimizing
the V RP for a more heavily weighted standard deviation is validated by
the simulation results provided in Table 6. The best solutions of a Tabu
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Fig. 4. Travel time distributions of set 32k5 with congested flow and ca=0.99. Results
following a simulation with ARENA are plotted together with the expected lognormal
distribution (parameters derived from Tabu Search solution).

Search optimization with β values ∈ {0.0; 3.0} are reconstructed in ARENA.
For each set the average travel time increases and the standard deviation
of the travel time decreases, as such increasing the travel time reliability.
The decrease in the standard deviation is substantial enough to improve
the overall solution quality (better travel time associated with the 95th-
percentile). β values ∈ {0.0; 3.0} are two extreme situations. The planner
can use any value in between depending on his own risk avoidance behavior.
From a planning point of view, it is better to have more predictability in the
routing than a potentially faster route. The uncertainty about the actual
arrival time will be avoided as the planner is more risk averse.

Average TT Standard Deviation TT 95th-percentile TT
32k5 β= 0.0 1320.87 550.77 2205.5

β= 3.0 1332.51 514.51 2169.5
38k5 β= 0.0 1286.60 480.72 2087.7

β= 3.0 1296.14 471.02 2049.4
80k10 β= 0.0 2701.11 746.35 4007.0

β= 3.0 2720.64 685.73 3972.9

Table 6. Comparing the best routes (through Tabu Search optimization with respective
β-values) for three sets in congested flow with ca=0.99 using ARENA. Average travel
time, standard deviation of the travel time and 95th-percentile are provided after 3001
trucks completed the best routes.
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5 Conclusions and future research

The capability of taking into account time-dependent travel speeds is ex-
tremely valuable. Minimizing the expected travel time however still does not
deal with the true stochastic nature of the travel times. As the real speed
is a realization of a stochastic process, it is equally important to account
for the variability of the speed and thus the travel time uncertainty when
planning a route. This paper aims at obtaining more reliable routes in terms
of travel time. These more realistic solutions have the potential to reduce
real operating costs for a broad range of industries which face daily routing
problems.

When including the variance of the travel time, the potential applica-
tions are vast: it gives a manager a powerful tool to incorporate and take
into account congestion uncertainty in his optimization. The higher the risk
averseness of the planner, the more weight is allowed to that factor while op-
timizing, as such making the resulting routes more reliable and predictable.
Although the gain in terms of less travel time variability will be offset by a
higher average travel time, the travel time associated with 95th-percentile
will improve. Depending on the road and environmental conditions, this im-
provement will be more or less substantial. These conclusions are confirmed
by independent simulation studies.

It must be noted however, that in some cases the reduction in variabil-
ity will not be substantial enough to compensate for the reduction of the
expected travel time. If for instance the initial route has already a small
travel time distribution (associated with a high speed), than it will be hard
to find a new road/starting time with a better travel time distribution.

As there is not much informaton available on how to model the variance
of the travel times in literature, most analyses are in terms of expected travel
time, we have heuristically determined variances in the analysis presented
in this paper. Hence, we are currently deriving general conditions for the
speed-profiles that guarantee the validity of the conclusions derived here.
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