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ABSTRACT. We deal with the problem of minimizing the expectation of a real valued
random function over the weakly Pareto or Pareto set associated with a Stochastic Multi-
Objective Optimization Problem (SMOP) whose objectives are expectations of random
functions. Assuming that the closed form of these expectations is difficult to obtain, we
apply the Sample Average Approximation method (SAA-N, where N is the sample size) in
order to approach this problem.

We prove that the Hausdorff-Pompeiu distance between the SAA-N weakly Pareto
sets and the true weakly Pareto set converges to zero almost surely as N goes to infinity,
assuming that all the objectives of our (SMOP) are strictly convex. Then we show that
every cluster point of any sequence of SAA-N optimal solutions (N=1,2,. . . ) is almost
surely a true optimal solution.

To handle also the nonconvex case, we assume that the real objective to be minimized
over the Pareto set depends on the expectations of the objectives of the (SMOP), i.e. we
optimize over the outcome space of the (SMOP). Then, whithout any convexity hypothesis,
we obtain the same type of results for the Pareto sets in the outcome spaces. Thus we show
that the sequence of SAA-N optimal values (N=1,2 ...) converges almost surely to the true
optimal value.
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1. INTRODUCTION

Multi-Objective Optimization Problems (MOP) have become a major area of interest in
Optimization and in Operation Research since Kuhn-Tucker’s results (1951), even though
the genesis of this theory goes back to Pareto (1906) who was inspired by Edgeworth’s
indifference curves.

In a (MOP) we deal with several conflicting objectives. The solution set (called Pareto
or efficient set) consists of the feasible solutions which ensure some sort of equilibrium
amongst the objectives. To be more precise, consider the vector function g = (g1, g2, . . . , gr)
defined from S into Rr (where S is an arbitrary nonempty set). For the

(MOP ) min
x∈S

g(x),

a point x∗ ∈ S is said to be
• Pareto solution iff there is no element x ∈ S satisfying ∀j ∈ {1, . . . , r} gj(x) ≤
gj(x∗) and ∃j0 ∈ {1, . . . , r} gj0(x) < gj0(x∗),

• weakly Pareto solution iff there is no element x ∈ S satisfying ∀j ∈ {1, . . . , r} gj(x) <
gj(x∗).
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That is to say, Pareto solutions are such that none of the objectives values can be im-
proved further without deteriorating another, and weakly Pareto solutions are such that it
is impossible to strictly improve simultaneously all the objectives values.

However, the Pareto set is often very large (may be infinite, and even unbounded), and
technically speaking each Pareto solution is acceptable. The natural question that arises
is: how to choose one solution? One possible answer is to optimize a scalar (real valued)
function g0 over the Pareto set associated with (MOP), i.e. to consider the problem

min
x∈E

g0(x)

where E is the set of Pareto (or weakly Pareto) solutions associated with (MOP). For in-
stance, production planning (see e.g. [5]) and portfolio management (see e.g. [41]) are
practical areas where this problem arises. In general, this problem of optimizing over a
Pareto set is an useful tool for a decision maker who wants to choose one solution over
the embarrassing and very large Pareto set. Also, for numerical computation, solving this
problem one may avoid generate all the Pareto set, and thus significantly reduce the com-
putation time. A particular but important case of this problem is given by the situation
when the scalar function to be optimized over the Pareto set depends on the objectives of
the (MOP). In other word we optimize over the outcome space of the (MOP). This is the
case when a decision maker wants to know the range (maximum and minimum value) of
one (or more) objective over the Pareto set.

This problem of optimizing a scalar objective over the Pareto set has been intensively
studied the last decades beginning with Philip’s paper [44], and continued by many authors
in [1, 5, 11, 12, 13, 17, 23, 24, 25, 31, 34, 35] (see ref. [48] for an extensive bibliography).

Some generalization to semivectorial bilevel optimization problems have been presented
in [18, 26, 2, 49, 28, 19, 20].

The particular problem of optimizing a scalar function over the outcome space of a
(MOP) has been studied in [6, 7, 8, 9, 40].

In all theses papers, the Pareto set is associated with a deterministic (MOP), not with
a Stochastic Multi-Objective Optimization Problem (SMOP). In the deterministic case,
optimizing a real valued function over the Pareto set is already very difficult due to the fact
that the Pareto set is not described explicitly, and is not convex even in the linear case.

Uncertainty is inherent in most real cases, where observed phenomena are disturbed
by random perturbations. Even if the presence of random vectors in optimization models
complicates the mathematics governing them, it is very important to take into account this
uncertainty in order to calibrate models at best.

In our paper we study the problem of optimizing the expectation of a scalar random
function over a Pareto set associated with a Stochastic Multi-Objective Optimization Prob-
lem, and our study seems to be the first attempt to deal with this kind of problem.

If the expected value functions can be computed directly, the problem becomes a deter-
ministic one. But in most cases, the closed form of the expected values is very difficult to
obtain. This is the case which will be considered in this paper. In order to give approxima-
tions, we apply the well-known Sample Average Approximation (SAA-N, where N is the
sample size) method. Under reasonable and suitable assumptions, we show that the (SAA-
N weakly Pareto sets or SAA-N Pareto sets image) converge in the Hausdorff-Pompeiu
distance sense to their true counterparts. Moreover, we show that the sequence of SAA-N
optimal values converges to the true optimal value as the sample size increase.

Some results in (SMOP) using SAA-N method have been recently obtained by Fliege
and Xu in [30] using a smoothing infinity norm scalarization approach to solve the SAA-N
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problems. Roughly speaking, the paper [30] proves that approximate Pareto solutions of
the SAA-N problems tend to some approximate solution of the true problem. However this
approach is not sufficient for our problem because it shows only that the deviation between
the Pareto sets associated with the SAA-N problems and the true Pareto set tends to zero,
hence it is possible to have true Pareto solutions which are not limits of SAA-N solutions.
Optimizing a real function over the Pareto set requires that the Hausdorff-Pompeiu distance
between these sets tends to zero, what is the main concern of our research.

Our paper is organized as follows.
In section 2, we introduce the problem under consideration. We consider two instances

of the same problem. Firstly we consider the problem of optimizing the expectation of
a real function over the Pareto set in the decision space. Secondly we consider that the
real function to be optimized depends on the expectations of the objectives of (SMOP),
therefore we optimize over the Pareto set in the outcome space.

In section 3, we present the basic definitions and the facts necessary for the development
of our paper.

In section 4 we consider the problem of optimizing the expectation of a real function
over the weakly Pareto set in the decision space. First, we show that the deviation of the
SAA-N weakly Pareto sets from the true weakly Pareto set tends to zero almost surely
as the sample size N goes to infinity. In order to show that the deviation in the other
direction tends to zero, we need to assume that the (SMOP) is strictly convex . Thus,
using some Set Valued Analysis tools and some Stability results, in Theorem 4.2 we show
that the sequence of SAA-N weakly Pareto sets tends to the true weakly Pareto set in
the Hausdorff-Pompeiu distance sense (which is equivalent in our framework to Painlevé-
Kuratowski convergence). Moreover, we show that every cluster point of any sequence
of SAA-N optimal solutions (N=1,2,. . . ) is almost surely a true optimal solution. Hence,
the sequence of SAA-N optimal values converges with probability one to the true optimal
value (Theorem 4.3).

In the next section, in order to handle the nonconvex case, we need to work in the out-
come space. This means that the real function to be optimized depends on the expectations
of the objectives of (SMOP). Moreover, in this setting our real function is optimized over
the image in the outcome space of the Pareto set. Using also some results of Set Valued
Analysis and Stability, we show that the SAA-N images of Pareto sets tends almost surely
in the Hausdorff-Pompeiu distance sense to the true Pareto set image. Thus we show that
the sequence of SAA-N optimal values converges almost surely to the true optimal value
(Theorem 5.2).

In section 6, using MATLAB7, we present some numerical results for an illustrative
example with a (SMOP) given by a Bi-Objective Stochastic Optimization Problem.

2. PROBLEM STATEMENT

Let us briefly introduce the two problems under consideration. The first one, denoted
by (D) will be studied in the Decision space (see section 4). This problem is to minimize
the expectation of a scalar random function over the weakly Pareto set associated with a
Stochastic Multi-Objective Optimization Problem. Note that the function to be minimized
over the Pareto set may be independent of other objectives. That is to say,

(D) min
x∈Ew

E

[
F 0
(
x, ξ(·)

)]
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where ξ : Ω→ R
d is a random vector defined on some probability space (Ω,F,P), x ∈ Rn

is a deterministic vector, E
[
F 0
(
x, ξ(·)

)]
is, for each x ∈ Rn, the expectation of the scalar

random variable ω 7→ F 0(x, ξ(ω)), andEw is the set of weakly Pareto solutions associated
with the following Stochastic Multi-Objective Optimization Problem

(SMOP ) min
x∈S

E

[
F
(
x, ξ(·)

)]
where the feasible set S ⊂ Rn. The objectives are given by

R
n × Ω 3

(
x, ω

)
7→ F

(
x, ξ(ω)

)
=
(
F 1
(
x, ξ(ω)

)
, . . . , F r

(
x, ξ(ω)

))
∈ Rr,

where F i : Rn × Rd → R, i = 1, . . . , r.
For problem (D) we need to assume that (SMOP) is strictly convex (see section 4 for

details).

The second problem, (O), will be studied in the Outcome space (see section 5). This
means that the scalar function to be minimized over the Pareto set associated with (SMOP)
depends on the expectations of the objectives. That is to say,

(O) min
x∈E

f
(
E

[
F
(
x, ξ(·)

)])
where f : Rr → R is a scalar deterministic continuous function and E is the set of Pareto
solutions associated with the Stochastic Multi-Objective Optimization Problem (SMOP)
defined above.

But in this special case we do not need any convexity assumption.

In the sequel, when we talk about the true problem, we will refer to problem (D) or
problem (O).

The purpose of the next section is to rigorously define these two problems, and to give
some definitions and usefull results.

3. PRELIMINARIES

Definition 3.1. Let (Ω,F) and (Rd,Bd) be measurable spaces, where Bd is the Rd Borel
σ−field. A mapping ξ : (Ω,F) → (Rd,Bd) is said to be measurable with respect to F

and Bd if for any Borel set B ∈ Bd, its inverse image ξ−1(B) := {ω ∈ Ω : ξ(ω) ∈ B} is
F-measurable.

A measurable mapping ξ(·) from a probability space (Ω,F,P) into Rd is called a ran-
dom vector. Note that the mapping ξ(·) generates the probability measure Pξ(B) :=
P(ξ−1(B)) on (Rd,Bd).

The smallest closed set Ξ ⊂ R
d such that Pξ(Ξ) = 1 is called the support of measure

Pξ. We can view the space (Ξ,BΞ) equipped with probability measure Pξ as a probability
space, where BΞ is the trace of Bd on Ξ. This probability space provides all relevant
probabilistic information about the considered random vector.

Definition 3.2. Let ξ : (Ω,F,P) → (Ξ,BΞ,Pξ) be a random vector and consider a
function g : Rn × Ξ → R. We say that g is a random function if for every fixed x ∈ Rn,
the function ξ 7→ g(x, ξ) is BΞ/B1- measurable. For every fixed ξ ∈ Ξ we have that
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R
n 3 x 7→ g(x, ξ) is a real valued deterministic function. Note that for a random function
R
n × Ξ 3 (x, η) 7→ g(x, η), we can define the corresponding expected value function
Eξ[g(x, ·)] =

∫
Ξ

g(x, η)dPξ(η).

Remark 3.1. If the distribution of a random function is known, we can compute directly
its expectation. Hence we consider the case where Eξ[g(x, ·)] is very difficult to assess,
and we turn to approximations such as the Sample Average Approximation method, where
the expected value function is approximated by its empirical mean.

Consider an independent identically distributed (i.i.d.) sequence (ξk)k∈N∗ of random
vectors defined on the same probability space (Ω,F,P), and having the same distribution
Pξ on (Ξ,BΞ) as the random vector ξ. I.e., for each k ≥ 1, ξk : (Ω,F,P)→ (Ξ,BΞ,Pξ)
is a random vector supported by Ξ.

Let us set Ξ̃ =
∞∏
N=1

Ξ and let B̃ = ⊗∞N=1BΞ denotes the smallest σ-algebra on Ξ̃

generated by all sets of the form B1 × B2 × · · · × BN × Ξ × Ξ × . . . , Bk ∈ BΞ, k =
1, . . . , N, N = 1, 2, . . . .
The next Theorem is from General Measure Theory, and can be considered as a non trivial
extension of Fubini’s Theorem ([37, Theorem 10.4]) :

Theorem 3.1. There exists a unique probability P̃ξ on (Ξ̃, B̃) such that

P̃ξ(B1×B2×· · ·×BN ×Ξ×Ξ× . . . ) =
N∏
k=1

Pξ(Bk) for allN = 1, 2, . . . andBk ∈ BΞ

for all k = 1, . . . , N .

For each ranfom function g : Rn × Ξ → R, x ∈ Rn, N ∈ N∗(where N∗ denote the set
of positive integers), let ĝN (x, ·) denote the following N-approximation

ĝN (x, ·) : (Ξ̃, B̃, P̃ξ)→ R(1)

ξ̃ = (ξ1, ξ2, . . . ) 7→
1
N

N∑
k=1

g(x, ξk)

Definition 3.3. For each N ∈ N
∗, x ∈ R

n, the mapping ξ̃ 7→ ĝN (x, ξ̃) is called a
N−Sample Average Approximation (SAA-N) function.

Remark 3.2. The random process ξ̃ can be viewed as a mapping from (Ω̃, F̃, P̃) and taking
values in (Ξ̃, B̃, P̃ξ). Note that the probability space (Ω̃, F̃, P̃) can be constructed in a
similar way as we did before for (Ξ̃, B̃, P̃ξ).

Let ξ : (Ω,F,P) → (Ξ,BΞ,Pξ) be a fixed random vector. Our (SMOP ) can be
rewritten as follows.

(SMOP ) min
x∈S

Eξ

[
F
(
x, ·
)]

Recall that the feasible set S ⊂ Rn and the vector objective is given by

R
n × Ξ 3

(
x, ξ
)
7→ F

(
x, ξ
)

=
(
F 1
(
x, ξ
)
, . . . , F r

(
x, ξ
))
∈ Rr

Let us reformulate the true stochastic problems under consideration.

(D) min
x∈Ew

Eξ

[
F 0
(
x, ·
)]
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where F 0 : Rn × Ξ → R is a scalar random function and Ew is the weakly Pareto set
associated with (SMOP ).

(O) min
x∈E

f
(
Eξ

[
F
(
x, ·
)])

where f : Rr → R is a scalar deterministic continuous function and E is the Pareto set
associated with (SMOP ).

Note that all considered random functions are supposed to be BΞ-measurable and Pξ-
integrable.

In the sequel, for y, z ∈ Rr, y ≤ z means yj ≤ zj for all j = 1, . . . , r and y < z means
yj < zj for all j = 1, . . . , r.

Let us introduce the following assumptions:

(H0) S is a nonempty compact subset of Rn.

(H1) the i.i.d property holds for the random process ξ̃ ∈ Ξ̃.

(H2) ∀j = 0, . . . , r, x 7→ F j(x, ξ) is finite valued and continuous on S for a.e. ξ ∈ Ξ.

(H3) ∀j = 0, . . . , r, F j is dominated by an integrable function Kj , i.e.

Eξ

[
Kj(·)

]
<∞∣∣F j(x, ξ)∣∣ ≤ Kj(ξ), for all x ∈ S and for a.e. ξ ∈ Ξ

(H4) S is convex.

(H5) ∀j = 1, . . . , r, x 7→ F j(x, ξ) is strictly convex on S a.e. on Ξ.

We will specify at each time we need to use some or all of these assumptions.

The main objective of this paper is to provide solutions to the true problems ((D) and
(O)) through approximations. To do so, consider the following SAA-N functions.

F̂ 0
N : Rn × (Ξ̃, B̃, P̃ξ)→ R

(x, ξ̃) = (x, ξ1, ξ2, . . . ) 7→ F̂ 0
N (x, ξ̃) :=

1
N

N∑
k=1

F 0(x, ξk)(2)

F̂N : Rn × (Ξ̃, B̃, P̃ξ)→ R
r

(x, ξ̃) = (x, ξ1, ξ2, . . . ) 7→ F̂N (x, ξ̃) :=
1
N

N∑
k=1

(
F 1(x, ξk), . . . , F r(x, ξk)

)
,(3)

where the probability space (Ξ̃, B̃, P̃ξ) and the random process ξ̃ = (ξ1, ξ2, . . . ) have been
introduced above.

Remark 3.3. By (H2), for all j = 0, . . . , r there exists a set Aj ⊂ Ξ with Pξ(Aj) = 0
such that, ∀ξ ∈ Ξ \ Aj , x 7→ F j(x, ξ) is continuous on S. Letting A = ∪rj=1A

j , we get
∀ξ ∈ Ξ \A, x 7→ F (x, ξ) is continuous on S, and Pξ(A) = 0.
Letting Ã = ∪N∈N∗ A× · · · ×A︸ ︷︷ ︸

N

×Ξ× Ξ . . . , we have that P̃ξ(Ã) = 0, and the mapping

x 7→ F̂N (x, ξ̃) is continuous on S for all N ∈ N∗ and for all ξ̃ ∈ Ξ̃ \ Ã.
The same rule obviously holds for F̂ 0

N setting Ã0 = ∪N∈N∗ A0 × · · · ×A0︸ ︷︷ ︸
N

×Ξ× Ξ . . . .
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Definition 3.4. For each N ∈ N
∗ and ξ̃ ∈ Ξ̃, we denote by EwN (ξ̃) (resp. EN (ξ̃)) the

weakly-Pareto (resp. Pareto) set associated with the N−Sample Average Approximation
Multi-Objective Optimization Problem (SAA-N MOP) min

x∈S
F̂N (x, ξ̃), where x 7→ F̂N (x, ξ̃)

is a vector valued SAA-N function.

For each N ∈ N∗ and ξ̃ ∈ Ξ̃, consider the following problems :

(DN (ξ̃)) min
x∈EwN (ξ̃)

F̂ 0
N (x, ξ̃)

(ON (ξ̃)) min
x∈EN (ξ̃)

f(F̂N (x, ξ̃))

where EwN (ξ̃) (resp. EN (ξ̃)) is the weakly Pareto (resp. Pareto) set associated with the
(SAA-N MOP)

(4) min
x∈S

F̂N (x, ξ̃)

The scalar SAA-N function F̂ 0
N is defined by (2), and F̂N is a Rr valued SAA-N func-

tion defined by (3).
In the sequel we will call (DN (ξ̃)) (resp. (ON (ξ̃))) (N ∈ N∗, ξ̃ ∈ Ξ̃) the SAA-N problem.
Under some reasonable assumptions, we will show that the solutions and/or optimal values
of SAA-N problems for sufficiently largeN are approximate solutions and/or approximate
optimal values to the true problem (D) (resp. (O)).

By the Uniform Law of Large Number (ULLN) [47, Theorem 7.48], under (H0, H1, H2, H3),
we obtain immediately the two following results.

Proposition 3.1. For any j = 0, . . . , r, the expected value function x 7→ Eξ

[
F j(x, ·)

]
is

finite valued and continuous on S. Moreover,

P̃ξ

({
ξ̃ ∈ Ξ̃

∣∣∣ ∀ε > 0, ∃N(ε, ξ̃) ∈ N∗ :

∀N ≥ N(ε, ξ̃), max
0≤j≤r

sup
x∈S

∣∣∣F̂ jN (x, ξ̃)− Eξ
[
F j(x, ·)

]∣∣∣ ≤ ε}) = 1

Lemma 3.1. For each convergent sequence (xN )N∈N∗ in S, let x be its limit. Then x ∈ S
and

P̃ξ

({
ξ̃ ∈ Ξ̃

∣∣∣∀j = 0, . . . , r, lim
N→∞

F̂ jN (xN , ξ̃) = Eξ[F j(x, ·)]
})

= 1

Remark 3.4. By Proposition 3.1, there exists a set B̃ ⊂ Ξ̃ with P̃ξ(B̃) = 0 such that
for each fixed ξ̃ ∈ Ξ̃ \ B̃, F̂N (·, ξ̃) converges to Eξ[F (·, ·)] uniformly on S. For the same
reasons, there exists B̃0 ⊂ Ξ̃ with P̃ξ(B̃0) = 0 such that for each fixed ξ̃ ∈ Ξ̃\B̃0, F̂ 0

N (·, ξ̃)
converges to Eξ[F 0(·, ·)] uniformly on S.

Definition 3.5. Let A,B ⊂ Rn be two nonempty bounded sets.

(1) We denote by d(x,B) := inf
x′∈B

‖x− x′‖ the distance from x ∈ Rn to B,

where ‖·‖ stands for the Euclidian norm.

(2) We denote D(A,B) := sup
x∈A

d(x,B) the deviation of the set A from the set B.

(3) Finally, we denote H(A,B) := max(D(A,B),D(B,A)) the Hausdorff-Pompeiu

distance between the set A and the set B.
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Remark 3.5. Note that in general H is a pseudometric. If we consider the set of all
nonempty and compact subsets of Rn, H becomes a metric. Also, for two nonempty
bounded sets A and B, the Hausdorff-Pompeiu distance vanishes if and only if A and
B have the same closure.

Lemma 3.2. Under (H0, H1, H2, H3), for almost all ξ̃ in Ξ̃, the Hausdorff-Pompeiu dis-
tance between F̂N (S, ξ̃) and Eξ[F (S, ·)] tends to zero as N tends to infinity, i.e.

P̃ξ

({
ξ̃ ∈ Ξ̃

∣∣∣ lim
N→∞

H

(
F̂N (S, ξ̃),Eξ[F (S, ·)]

)
= 0
})

= 1

Proof. By Remark 3.4, there exists a set B̃ ⊂ Ξ̃ with P̃ξ(B̃) = 0 such that for each fixed
ξ̃ ∈ Ξ̃ \ B̃, F̂N (·, ξ̃) converges to Eξ[F (·, ·)] uniformly on S. Moreover, (Remark 3.3),
∀N ∈ N∗,∀ξ̃ ∈ Ξ̃ \ Ã, x 7→ F̂N (x, ξ̃) is continuous on S

Let us prove P̃ξ
({
ξ̃ ∈ Ξ̃

∣∣∣ lim
N→∞

D

(
F̂N (S, ξ̃),Eξ[F (S, ·)]

)
= 0

})
= 1. Arguing

by contradiction, there exists a set D̃ ⊂ Ξ̃ with P̃ξ(D̃) > 0 such that for each fixed

ξ̃ ∈ D̃, D
(
F̂N (S, ξ̃),Eξ[F (S, ·)]

)
6→ 0. Let ξ̃ ∈ (Ξ̃ \ (Ã ∪ B̃)) ∩ D̃ be fixed. Obviously

P̃ξ((Ξ̃ \ (Ã ∪ B̃)) ∩ D̃) > 0 and then (Ξ̃ \ (Ã ∪ B̃)) ∩ D̃ 6= ∅.

Since ξ̃ ∈ D̃, there exist ε > 0 and a strictly increasing mapping φ : N→ N such that,
∀k ≥ 1,D

(
F̂φ(k)(S, ξ̃),Eξ[F (S, ·)]

)
> ε. By Definition 3.5 (2), there exists yφ(k) in

F̂φ(k)(S, ξ̃) such that, for all y in Eξ[F (S, ·)], and all k ≥, d(yφ(k), y) > ε.

Moreover, there exists (xφ(k))k≥1 such that yφ(k) = F̂N (xφ(k), ξ̃) (all k). By the com-
pactness of S, there exists a strictly increasing mapping ϕ : N→ N such that xφ(ϕ(k)) → x
and x ∈ S.

Since ξ̃ /∈ (Ã ∪ B̃), by Proposition 3.1 and Lemma 3.1, we have yφ(ϕ(k)) → ỹ and
ỹ ∈ Eξ[F (S, ·)].

Then, for each fixed ξ̃ ∈ (Ξ̃\ (Ã∪ B̃))∩D̃, we have a contradiction, hence P̃ξ(D̃) = 0.

Now we prove P̃ξ
({
ξ̃ ∈ Ξ̃

∣∣∣ lim
N→∞

D

(
Eξ[F (S, ·)], F̂N (S, ξ̃)

)
= 0

})
= 1. Let ξ̃ ∈

Ξ̃ \ (Ã ∪ B̃) and let y ∈ Eξ[F (S, ·)]. There exists x ∈ S such that y = Eξ[F (x, ·)].
The sequence (yN )N≥1 defined by yN = F̂N (x, ξ̃) converges to y = Eξ[F (x, ·)], hence
d(y, F̂N (S, ξ̃))→ 0 as N → +∞.
Thus the sequence (d(·, F̂N (S, ξ̃)))N≥1 is pointwise convergent on Eξ[F (S, ·)]. On the
other hand, since the function y 7→ d(y, F̂N (S, ξ̃)) is Lipschitz continuous with Lipschitz
constant 1 (each N ), the sequence of functions (d(·, F̂N (S, ξ̃)))N≥1 is equicontinuous
on Rr, hence on the compact set Eξ[F (S, ·)]. Then, from Ascoli-Arzelà Theorem [27],
we have that the sequence of functions (d(·, F̂N (S, ξ̃)))N≥1 converges uniformly to 0 on
Eξ[F (S, ·)]. Hence, D(Eξ[F (S, ·)], F̂N (S, ξ̃))→ 0 as N tends to infinity for a.e. ξ̃ ∈ Ξ̃.

�

We need to recall some basic facts from Set Valued Analysis (see [4, 16, 21, 32, 33, 46]
for details). Let X be a separated topological space, and Y be a metric space.

Let (AN )N∈N be a sequence of subsets of Y . We recall that
• lim inf

N→∞
AN is the set of limits of sequences (yN )N≥1 where yN ∈ AN (each N )
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• lim sup
N→∞

AN is the set of cluster points of sequences (yN )N≥1 where yN ∈ AN

(each N ).

Let Γ be a set valued mapping from X into Y , i.e. a function from X to the power set
of Y (denoted by Γ : X ⇒ Y ). The limit inferior of Γ at x0 ∈ X is defined by

lim inf
x→x0

Γ(x) = {y ∈ Y |∀V neighborhood of y,∃U neighborhood of x0 : ∀x ∈ U\{x0},Γ(x)∩V 6= ∅}

while the limit superior of Γ at x0 ∈ X is defined by

lim sup
x→x0

Γ(x) = {y ∈ Y |∀V neighborhood of y,∀U neighborhood of x0,∃x ∈ U\{x0} : Γ(x)∩V 6= ∅}

Remark 3.6. [32, p. 61] HavingA, (AN )N∈N∗ subsets of Y and takingX = N
∗∪{+∞}

endowed with the topology induced by that of R̄ = R ∪ {−∞,+∞}, if Γ : X ⇒ Y
is the set valued mapping defined by Γ(N) = AN (each N ) and Γ(+∞) = A then
lim inf
N→∞

AN = lim inf
N→∞

Γ(N) and lim sup
N→∞

AN = lim sup
N→∞

Γ(N).

Definition 3.6. Let Γ be a set valued mapping from X into Y . We say that
• Γ is upper continuous (u.c.) at x0 ∈ X if for any open set D ⊂ Y such that

Γ(x0) ⊂ D, there exists a neighborhood U ⊂ X of x0 such that

∀x ∈ U, Γ(x) ⊂ D
• Γ is lower continuous (l.c.) at x0 ∈ X if for any open set D ⊂ Y such that

Γ(x0) ∩D 6= ∅, there exists a neighborhood U ⊂ X of x0 such that

∀x ∈ U, Γ(x) ∩D 6= ∅
• Γ is continuous at x0 ∈ X if Γ is u.c. and l.c. at x0.
• Γ is continuous if Γ is continuous at every x ∈ X .

Proposition 3.2. [32, p. 55] Let Γ : X ⇒ Y and let x0 ∈ X .
If Γ is l.c. at x0 then Γ(x0) ⊂ lim inf

x→x0
Γ(x).

Definition 3.7. Let Γ : X ⇒ Y be a set valued mapping. We say that
• Γ is Hausdorff upper continuous (H-u.c.) at x0 ∈ X if for any ε > 0, there exists

a neighborhood U ⊂ X of x0 such that

∀x ∈ U, Γ(x) ⊂ Γ(x0) +Bε

where Bε denote the open ball of radius ε and center 0.
• Γ is Hausdorff lower continuous (H-l.c.) at x0 ∈ X if for any ε > 0, there exists

a neighborhood U ⊂ X of x0 such that

∀x ∈ U, Γ(x0) ⊂ Γ(x) +Bε

• Γ is Hausdorff continuous at x0 ∈ X if Γ is H-u.c. and H-l.c. at x0.
• Γ is H-continuous if Γ is H-continuous at every x ∈ X .

Remark 3.7. [32, p. 59] Γ is H-u.c. at x0 if and only if limx→x0 D(Γ(x),Γ(x0)) = 0,
and Γ is H-l.c. at x0 if and only if limx→x0 D(Γ(x0),Γ(x)) = 0

Now we recall some usefull property between H-u.c. and u.c. and between H-l.c. and
l.c..

Proposition 3.3. Let Γ : X ⇒ Y be a set valued mapping, and let x0 ∈ X .
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• If Γ is u.c. at x0 then Γ is H-u.c. at x0.
• If Γ is H-u.c. at x0 and Γ(x0) is compact then Γ is u.c. at x0.
• If Γ is H-l.c. at x0 then Γ is l.c. at x0.
• If Γ is l.c. at x0 and Γ(x0) is compact then Γ is H-l.c. at x0.

Remark 3.8. The last Proposition means if Γ(·) is compact valued, then continuity is
equivalent to Hausdorff-continuity.

Definition 3.8. We say that Γ : X ⇒ Y is

• closed valued if for each x ∈ X , Γ(x) is a closed set in Y .
• closed if Graph(Γ) = {(x, y)|x ∈ X, y ∈ Γ(X)} is closed.
• compact at x ∈ X if for every sequence (xk, yk)k≥1 with xk ∈ X, yk ∈ Γ(xk)

(each k) and xk → x, there exists a strictly increasing mapping φ : N → N such
that yφ(k) → y and y ∈ Γ(x).

Let X = N
∗ ∪ {+∞} endowed with the topology induced by that of R̄. For each fixed

ξ̃ ∈ Ξ̃ we define the following set valued mappings

(5) Γξ̃ : N∗ ∪ {+∞}⇒ R
r, N 7→ F̂N (S, ξ̃)

with Γξ̃(+∞) = Eξ[F (S, ·)], where F̂N (·, ξ̃) has been introduced in (3).

(6) Λξ̃ : N∗ ∪ {+∞}⇒ R
r, N 7→ F̂N (EN (ξ̃), ξ̃)

with Λξ̃(+∞) = Eξ[F (E, ·)].

(7) Υξ̃ : N∗ ∪ {+∞}⇒ R
n, N 7→ EwN (ξ̃)

with Υξ̃(+∞) = Ew.
The following Lemma will be useful in the next Sections.

Lemma 3.3. Under (H0, H1, H2, H3), for almost all ξ̃ ∈ Ξ̃, Γξ̃ : N∗ ∪ {+∞} ⇒ R
r

defined by (5) is continuous at +∞. Moreover, Γξ̃ is compact at +∞.

Proof. Let ξ̃ ∈ Ξ̃ \ (Ã ∪ B̃). By Lemma 3.2 lim
N→∞

H

(
F̂N (S, ξ̃),Eξ[F (S, ·)]

)
= 0 which

means (Remark 3.7) that Γξ̃ is H-continuous at +∞. Moreover, Γξ̃(+∞) is compact.
Hence (Remark 3.8) Γξ̃ is continuous at +∞.
It remains to show that Γξ̃ is compact at +∞. Let (Nk, yk)k≥1 such that Nk → +∞
and yk ∈ Γξ̃(Nk) (each k). Then there exists a sequence (xk)k≥1 in S such that yk =
F̂N (xk, ξ̃) (each k). Since S is compact, there exists φ : N → N strictly increasing
such that xφ(k) → x and x ∈ S. By Lemma 3.1, yφ(k) → y = Eξ[F (x, ·)]. Hence
y ∈ Eξ[F (S, ·)] = Γξ̃(+∞). �

4. RESULTS IN THE DECISION SPACE Rn

In this section, we work with the weakly Pareto sets.

We say that a (MOP) is convex if all its objective functions are convex and its feasible
set is convex. Using the well known Scalarization Theorem for convex (MOP) (see e.g.
[29, Proposition 3.7 and Proposition 3.8], or [38]), we obtain immediately the following.
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Theorem 4.1. Under (H4, H5), we have⋃
λ∈Rr+\{0}

argmin
x∈S

〈λ,Eξ[F (x, ·)]〉 = Ew.

where 〈·, ·〉 denotes the scalar product in Rr.
Moreover, for each N ∈ N∗ and for a.e ξ̃ ∈ Ξ̃, we have⋃

λ∈Rr+\{0}

argmin
x∈S

〈
λ, F̂N (x, ξ̃)

〉
= EwN (ξ̃).

Remark 4.1. By (H5), there exists a set C̃ ⊂ Ξ̃ with P̃ξ(C̃) = 0 such that for each fixed
ξ̃ ∈ Ξ̃ \ C̃, x 7→ F̂N (x, ξ̃) is strictly convex on S.

Proposition 4.1. The set Ew is compact, and for each N ≥ 1, the SAA-N weakly Pareto
sets EwN (ξ̃) is compact a.e. on Ξ̃.

Proof. Let N ∈ N∗ and ξ̃ ∈ Ξ̃ \ Ã. Since x 7→ F̂N (x, ξ̃) is continuous on the closed set
S, it is easy to show that EwN (ξ̃) is closed (see e.g. [12, Theorem 3.1] or [42]). Since it
is a subset of the compact set S, it is compact. The same proof applies for Ew because
x 7→ Eξ

[
F (x, ·)

]
is continuous. �

Proposition 4.2. For each N ≥ 1, the SAA-N weakly Pareto set EwN (ξ̃) 6= ∅ a.e. on Ξ̃,
and Ew 6= ∅ as well.

Proof. Let N ≥ 1. Since S is compact and x 7→ F̂N (x, ξ̃) is continuous on S for almost
every ξ̃ ∈ Ξ̃, the first conclusion follows easily by Theorem 4.1 and Weierstrass’ Theorem.
In the same way we obtain Ew 6= ∅. �

Now we state the main result of this section.

Theorem 4.2. Under (H0, H1, H2, H3, H4, H5), for almost all ξ̃ in Ξ̃, the Hausdorff-
Pompeiu distance between the SAA-N weakly Pareto setsEwN (ξ̃) and the true weakly Pareto
set Ew tends to zero as N tends to infinity, i.e.

P̃ξ

({
ξ̃ ∈ Ξ̃

∣∣∣ lim
N→∞

H

(
EwN (ξ̃), Ew

)
= 0
})

= 1

The proof of the Theorem is an immediate consequence of the following two Lemmas.

Lemma 4.1. Under (H0, H1, H2, H3), for almost all ξ̃ in Ξ̃, the deviation of the SAA-N
weakly Pareto sets EwN (ξ̃) from the true weakly Pareto set Ew tends to zero as N tends to
infinity. In other words,

P̃ξ

({
ξ̃ ∈ Ξ̃

∣∣∣ lim
N→∞

D

(
EwN (ξ̃), Ew

)
= 0
})

= 1

Proof. Let ξ̃ ∈ Ξ̃ \ (Ã ∪ B̃) be fixed. Then, for each fixed N ∈ N
∗, the set EwN (ξ̃) is

nonempty by Proposition 4.2, and it is compact by Proposition 4.1.
The set-valued mapping Γξ̃ (introduced in (5)) is continuous at +∞ (Lemma 3.3) and
Γξ̃(+∞) is compact (Proposition 4.1). By [42, Theorem 4.3] it follows that the set-valued
mapping Υξ̃ (introduced in (7)) is u.c. at +∞. Hence (Proposition 3.3) Υξ̃ is H-u.c. at
+∞. Remark 3.7 leads to the conclusion. �
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Lemma 4.2. Under (H0, H1, H2, H3, H4, H5), for almost all ξ̃ in Ξ̃, the deviation of the
true weakly Pareto set Ew from the SAA-N weakly Pareto sets EwN (ξ̃) tends to zero as N
tends to infinity, i.e

P̃ξ

({
ξ̃ ∈ Ξ̃

∣∣∣ lim
N→∞

D

(
Ew, EwN (ξ̃)

)
= 0
})

= 1

Proof. Let ξ̃ ∈ Ξ̃ \ (Ã ∪ B̃ ∪ C̃) be fixed, where C̃ has been introduced in Remark 4.1.
Let x̂ ∈ Ew. By the Scalarization Theorem 4.1, there exists λ ∈ R

r
+ \ {0} such that

x̂ ∈ argmin
x∈S

〈λ,Eξ[F (x, ·)]〉.
Now, consider for each N ∈ N∗ an element

(8) xN ∈ argmin
x∈S

〈
λ, F̂N (x, ξ̃)

〉
which is possible since the last set is nonempty according to Weierstrass’ Theorem. Thus
we obtain a sequence (xN ) such that xN ∈ EwN (ξ̃) according to the Scalarization Theorem.
Since (xN ) lies in the compact set S, there exists a strictly increasing mapping φ : N→ N

such that lim
k
xφ(k) = x̃, and x̃ ∈ S. By (8), xφ(k) ∈ argmin

x∈S

〈
λ, F̂φ(k)(x, ξ̃)

〉
∀k ≥ 1 and

then

(9)
〈
λ, F̂φ(k)(xφ(k), ξ̃)

〉
≤
〈
λ, F̂φ(k)(x̂, ξ̃)

〉
Since x̂ ∈ argmin

x∈S
〈λ,Eξ[F (x, ·)]〉, taking the limit in (9) implies

〈λ,Eξ[F (x̃, ·)]〉 = 〈λ,Eξ[F (x̂, ·)]〉
By the strict convexity hypothesis, x̃ = x̂.
Since in a compact space a sequence having a unique cluster point converges, we obtain
that lim

N
xN = x̂.

We have shown d(x̂, EwN (ξ̃))→ 0 as N → +∞ for all x̂ ∈ Ew.
SinceEw is compact, using Ascoli-Arzelà Theorem as in Lemma 3.2, we easily get that

D(Ew, EwN (ξ̃))→ 0 as N tends to infinity for a.e. ξ̃ ∈ Ξ̃. �

Let ξ̃ ∈ Ξ̃ be fixed and consider the set-valued mapping

(10) Σξ̃ : N∗ ∪ {+∞}⇒ R
n, N 7→ argmin

x∈Υξ̃(N)
F̂ 0
N (x, ξ̃)

with Σξ̃(+∞) = arg min
x∈Υξ̃(+∞)

Eξ[F 0(x, ·)], where Υξ̃ was defined by (7).

Remark 4.2. For each N ∈ N
∗, and for almost all ξ̃ ∈ Ξ̃, by Weierstrass’ Theorerm,

Σξ̃(N) is nonempty because x 7→ F̂ 0
N (x, ξ̃) is continuous on the compact set EwN (ξ̃). The

same rule obviously holds for Σξ̃(+∞)

Now, we can introduce the following optimal value function

(11) Vξ̃ : N∗ ∪ {+∞} → R, N 7→ min
x∈Υξ̃(N)

F̂ 0
N (x, ξ̃)

with Vξ̃(+∞) = min
x∈Υξ̃(+∞)

Eξ[F 0(x, ·)].

Lemma 4.3. Let A ⊂ R
n be a closed set, and let g : A → R be a continuous function.

Then the set argmin
x∈A

g(x) is closed.
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Proof. Let x ∈ argmin
x∈A

g(x), where Ā denotes the topological closure of a set A. There

exists a sequence (xN )N≥1 in argmin
x∈A

g(x) such that xN → x. Thus, g(x) = lim g(xN ) =

g(xN ) (for each N ) hence x ∈ Σ. �

Theorem 4.3. Under (H0, H1, H2, H3, H4, H5), for almost all ξ̃ in Ξ̃, the sequence of
SAA-N optimal values (Vξ̃(N))N≥1 converges to the true optimal value Vξ̃(+∞).
Moreover, for almost all ξ̃ in Ξ̃ and for each sequence (x∗N )N≥1 in Σξ̃(N), all cluster
points of (x∗N )N≥1 belong to Σξ̃(+∞).

Proof. By Remark 3.3, ∀ξ̃ ∈ Ξ̃ \ Ã0, x 7→ F̂ 0
N (x, ξ̃) is continous on S. By Remark 3.4,

there exists a set B̃0 ⊂ Ξ̃ with P̃ξ(B̃0) = 0 such that for each fixed ξ̃ ∈ Ξ̃ \ B̃0, F̂ 0
N (·, ξ̃)

converges to Eξ[F 0(·, ·)] uniformly on S.

Let ξ̃ ∈ Ξ̃ \ (Ã0 ∪ B̃0 ∪ Ã ∪ B̃ ∪ C̃) be fixed. Since Υξ̃ is Hausdorff continuous at
+∞ (Theorem 4.2), it is H-u.c. at +∞. Moreover, Υξ̃ is closed valued, thus it is closed
by [32, Proposition 2.5.15]. Let ε > 0. Since Υξ̃ is also H-l.c. at +∞, by definition,
∃N0(ε) ∈ N∗ such that ∀N ≥ N0(ε), Υξ̃(+∞) ⊂ Υξ̃(N) + Bε, where Bε denote the
open ball of radius ε and center 0. Let x ∈ Σξ̃(+∞) (Σξ̃(+∞) 6= ∅ by Remark 4.2).
Obviously, x ∈ Υξ̃(+∞) and then x ∈ Υξ̃(N) + Bε ∀N ≥ N0(ε). It follows that
(x+Bε) ∩Υξ̃(N) 6= ∅ for N ≥ N0(ε).

All the assumptions of [16, Proposition 4.4] are fulfilled, hence, on one hand Σξ̃ is u.c.
at +∞, and on the other hand Vξ̃ is continuous at +∞ i.e. Vξ̃(N)→ Vξ̃(+∞).

Since Σξ̃ is u.c. at +∞, it is H-u.c. (Proposition 3.3). Hence, for N large enough
Σξ̃(N) ⊂ Σξ̃(+∞)+Bε. Moreover (Lemma 4.3) Σξ̃(+∞) is a closed set. By [4, Theorem
5.2.4] and Remark 3.6, we have lim sup

N→+∞
Σξ̃(N) ⊂ Σξ̃(+∞) which concludes the last

sentence of the Theorem. �

5. RESULTS IN THE OUTCOME SPACE Rr

In this section, we work with the Pareto sets image, and we assume only (H0, H1, H2, H3).

Proposition 5.1. For each N ≥ 1, the SAA-N Pareto set EN (ξ̃) is a nonempty bounded
set a.e. on Ξ̃. The true Pareto set E is also nonempty and bounded.

Proof. Let N ∈ N∗, ξ̃ ∈ Ξ̃ \ Ã, and let λ ∈ Rr such that λi > 0 ∀i = 1, . . . , r. Since x 7→
F̂N (x, ξ̃) is continuous, by Weierstrass’ Theorem there exists x̃ ∈ argmin

x∈S

〈
λ, F̂N (x, ξ̃)

〉
.

If x̃ /∈ EN (ξ̃) there exists x̂ ∈ S such that F̂N (x̂, ξ̃) ≤ F̂N (x̃, ξ̃) and F̂N (x̂, ξ̃) 6=
F̂N (x̃, ξ̃). Hence

〈
λ, F̂N (x̂, ξ̃)

〉
<
〈
λ, F̂N (x̃, ξ̃)

〉
, a contradiction. Finally x ∈ EN (ξ̃).

Since S is compact, the boundedness follows. The same rule holds for the true Pareto set
E since x 7→ Eξ[F (x, ·)] is continuous. �

To prove the main results of this section, we need the following Lemmas.

Lemma 5.1. Let (AN )N≥1 be a sequence of non-empty subsets of Rr, and let A be a
subset of Rr. If d(x,AN )→ 0 as N →∞ for all x in A, then d(x,AN )→ 0 as N →∞
for all x in Ā.
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Proof. Let x̄ ∈ Ā. Then there exists a sequence (xk)k≥1 in A such that d(xk, x̄) → 0 as
k → ∞. Let ε > 0 be fixed. ∃k such that d(xk, x̄) < ε

2 . Since xk ∈ A, there exists N0

such that : ∀N ≥ N0, d(xk, AN ) < ε
2 . Since d(x̄, AN ) ≤ d(x̄, xk) + d(xk, AN ), we

obtain d(x̄, AN ) < ε for all N ≥ N0. �

Lemma 5.2. For almost all ξ̃ ∈ Ξ̃, for each N ≥ 1 and for all y ∈ F̂N (S, ξ̃), there exists
ŷ ∈ F̂N (EN (ξ̃), ξ̃) such that ŷ ≤ y.

Proof. Let ξ̃ ∈ Ξ̃ \ Ã be fixed and N ∈ N
∗. Let y ∈ F̂N (S, ξ̃) and let λ ∈ int(Rr+).

Since x 7→ F̂N (x, ξ̃) is continuous, the set Zy =
{
y′ ∈ Rr

∣∣∣y′ ∈ (y − Rr+) ∩ F̂N (S, ξ̃)
}

is
nonempty and compact. Thus there exists ŷ ∈ argmin

y′∈Zy
〈λ, y′〉. Obviously, we have ŷ ≤ y.

If ŷ /∈ F̂N (EN (ξ̃), ξ̃), there exists a z in F̂N (S, ξ̃) such that z ≤ ŷ and z 6= ŷ. Hence
z ∈ Zy and 〈λ, z〉 < 〈λ, ŷ〉 which is a contradiction. Therefore, ŷ ∈ F̂N (EN (ξ̃), ξ̃). �

Proposition 5.2. For almost all ξ̃ in Ξ̃, the deviation of the true Pareto set image Eξ[F (E, ·)]
from the SAA-N Pareto sets image F̂N (EN (ξ̃), ξ̃) tends to zero as N tends to infinity, i.e

P̃ξ

({
ξ̃ ∈ Ξ̃

∣∣∣ lim
N→∞

D

(
Eξ[F (E, ·)], F̂N (EN (ξ̃), ξ̃)

)
= 0
})

= 1

Proof. Let x ∈ E and let ξ̃ ∈ Ξ̃\ (Ã∪ B̃) be fixed. By Lemma 5.2, there exists a sequence
(xN )N≥1 verifying xN ∈ EN (ξ̃) and

(12) F̂N (xN , ξ̃) ≤ F̂N (x, ξ̃) for each N ≥ 1

On one hand, since F̂N (S, ξ̃) is compact for each N ≥ 1, the sequence (F̂N (xN , ξ̃))N≥1

admits at least one cluster point. Let ŷ be such a cluster point. On the other hand, (xN )N≥1

lies in the compact S. Hence there exists a strictly increasing mapping φ : N → N such
that lim

k→∞
xφ(k) = x̂ and lim

k→∞
F̂φ(k)(xφ(k), ξ̃) = ŷ. Since ξ̃ /∈ (Ã ∪ B̃) ŷ = Eξ[F (x̂, ·)].

By (12), for each k ≥ 1, F̂φ(k)(xφ(k), ξ̃) ≤ F̂φ(k)(x, ξ̃). Passing to the limit implies
Eξ[F (x̂, ·)] ≤ Eξ[F (x, ·)], and since x ∈ E we have Eξ[F (x̂, ·)] = Eξ[F (x, ·)] = ŷ. Thus
all the cluster points of (F̂N (xN , ξ̃))N≥1 coincide, hence lim

N→∞
F̂N (xN , ξ̃) = Eξ[F (x, ·)].

We have shown that for all x in E and for almost every ξ̃ ∈ Ξ̃,
lim
N→∞

d(Eξ[F (x, ·)], F̂N (EN (ξ̃), ξ̃)) = 0. By Lemma 5.1 and using Ascoli-Arzelà Theo-

rem as in Lemma 3.2, we can easily show that lim
N→∞

D(Eξ[F (E, ·)], F̂N (EN (ξ̃), ξ̃)) = 0

a.e. on Ξ̃.
Since sup

y∈Eξ[F (E,·)]
d(y, F̂N (EN (ξ̃), ξ̃)) ≤ sup

y∈Eξ[F (E,·)]
d(y, F̂N (EN (ξ̃), ξ̃)), the rest of the

proof is straightforward. �

Proposition 5.3. For almost all ξ̃ in Ξ̃, the deviation of the SAA-N Pareto sets image
F̂N (EN (ξ̃), ξ̃) from the true Pareto set image Eξ[F (E, ·)] tends to zero as N tends to
infinity, i.e

P̃ξ

({
ξ̃ ∈ Ξ̃

∣∣∣ lim
N→∞

D

(
F̂N (EN (ξ̃), ξ̃),Eξ[F (E, ·)]

)
= 0
})

= 1

Proof. Let ξ̃ ∈ Ξ̃\(Ã∪ B̃) be fixed. Since Γξ̃ is continuous at +∞ (Lemma 3.3), Γξ̃ is l.c.
at +∞. Hence by Proposition 3.2 Γξ̃(+∞) ⊂ lim inf

N→+∞
Γξ̃(N). Moreover Γξ̃ is compact at
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+∞ (Lemma 3.3). All the assumptions of [32, Theorem 3.5.29] are satisfied hence Λξ̃ is
u.c. at +∞. By Proposition 3.3 Λξ̃ is H-u.c. at +∞. The conclusion follows by Remark
3.7. �

The proof of the following is straightforward :

Theorem 5.1. For almost all ξ̃ in Ξ̃, the Hausdorff-Pompeiu distance between the SAA-N
Pareto sets image F̂N (EN (ξ̃), ξ̃) and the true Pareto set image Eξ[F (E, ·)] tends to zero
as N tends to infinity, i.e

P̃ξ

({
ξ̃ ∈ Ξ̃

∣∣∣ lim
N→∞

H

(
F̂N (EN (ξ̃), ξ̃),Eξ[F (E, ·)]

)
= 0
})

= 1

For a.a. ξ̃ ∈ Ξ̃ and for all N ∈ N∗, let us denote

UN (ξ̃) = inf
x∈EN (ξ̃)

f(F̂N (x, ξ̃)), U = inf
x∈E

f(Eξ[F (x, ·)])

Theorem 5.2. For almost all ξ̃ in Ξ̃, the sequence of SAA-N optimal values (UN (ξ̃))N≥1

converges to the true optimal value U .

Proof. Let ξ̃ ∈ Ξ̃ \ (Ã ∪ B̃). Let (aN )N≥1 be a sequence of positive numbers such that
aN → 0. There exists a sequence (yN )N≥1 such that for all N ≥ 1, yN ∈ F̂N (EN (ξ̃), ξ̃)
and

(13) f(yN ) < UN (ξ̃) + aN ≤ f(yN ) + aN

By Lemma 3.2 there exists a compact setK ⊂ Rr such that F̂N (S, ξ̃) ⊂ K and Eξ[F (S, ·)] ⊂
K. Since f is continuous, the sequence (UN (ξ̃))N≥1 lies in the compact set f(K) hence
admits at least one cluster point. Let W be such a cluster point. There exists φ : N → N

strictly increasing such that Uφ(N)(ξ̃)→W . Since (yφ(N))N≥1 is in the compactK, there
exists ϕ : N → N strictly increasing such that yφ(ϕ(N)) → y and y ∈ K. By Proposition
5.3, y ∈ Eξ[F (E, ·)].

By (13), W = lim
N→∞

f(yφ(ϕ(N))). Since f is continuous, W = f(y) and W ∈

f(Eξ[F (E, ·)]). If W < U then y ∈ Eξ[F (E, ·)] \ Eξ[F (E, ·)]. Hence there exists a
sequence (zk)k≥1 in Eξ[F (E, ·)] such that zk → y. By continuity, for k large enough
f(zk) < U which is a contradiction. Thus W ≥ U . Now we suppose that U 6= W , i.e.
U < W . Hence there exists ŷ ∈ Eξ[F (E, ·)] such that

(14) f(ŷ) < W

By Proposition 5.2, there exists a sequence (ŷφ(ϕ(N)))N≥1 such that ŷφ(ϕ(N)) in F̂N (Eφ(ϕ(N))(ξ̃), ξ̃)
for each N and ŷφ(ϕ(N)) → ŷ. Since f is continuous,

lim
N→∞

f(ŷφ(ϕ(N))) = f(ŷ)

For N large enough, the last equality and (14) imply f(ŷφ(ϕ(N))) < Uφ(ϕ(N))(ξ̃), a
contradiction. Hence U = W and all the cluster points of (UN (ξ̃))N≥1 coincide.
Finally, lim

N→∞
UN (ξ̃) = U . �
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6. AN ILLUSTRATIVE EXAMPLE

Consider the following Stochastic Bi-Objective Convex Optimization Problem

min
x∈S

Eξ

[
|ξ|(x1 + x2), |ξ|(x1 − x2)

]
where the feasible set S = {x = (x1, x2) ∈ R2|x2

1 + x2
2 ≤ 1}. To illustrate our approach,

we consider that ξ follows a standard normal distribution. Our goal is to minimize the first
objective over the Pareto set, i.e

min
x∈E

Eξ[|ξ|](x1 + x2)

We deduce that
E = {(cosθ, sinθ) ∈ R2 : θ ∈ [ 3π

4 ,
5π
4 ]}

and
min
x∈E

Eξ[|ξ|](x1 + x2) = − 2√
π

Numerically, let us solve the following SAA-N problem

min
x∈EN (ξ̃)

1
N

∑N
k=1 |ξk|(x1 + x2)

where EN (ξ̃) is the Pareto set associated with the following (SAA-N MOP)

min
x∈S

1
N

∑N
k=1 |ξk|(x1 + x2, x1 − x2)

and the random process ξ̃ verifies hypothesis (H1). Using MATLAB 7, we obtain the
following numerical results
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