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The capacitated team orienteering problem with time windows (CTOPTW) is a problem to determine players’ paths that have the
maximum rewards while satisfying the constraints. In this paper, we present the exact solution approach for the CTOPTW which
has not been done in previous literature. We show that the branch-and-price (B&P) scheme which was originally developed for the
team orienteering problem can be applied to the CTOPTW. To solve pricing problems, we used implicit enumeration acceleration
techniques, heuristic algorithms, and ng-route relaxations.

1. Introduction

The orienteering problem (OP) [1], an NP-hard integer
problem (IP), originates from a sport in which a player finds
a path that has the maximum reward.The OP arises in a map
with a set of points and connecting arcs. The player moves
from the starting point and has to reach the ending point
within a time limit. Each point has its own reward and the
player can collect rewards by visiting points. Many exact and
heuristic algorithms have been proposed to solve the OP [2].

The team orienteering problem (TOP) is a variant of
the OP that considers multiple players. TOP is also NP-
hard. Many algorithms have been proposed for the TOP,
including heuristic algorithms [3–13] and exact algorithms
[14–17]. Some practical problems in the field of the vehicle
routing research exhibit the form of OP/TOP. For example,
the home fuel delivery problem and the recruiting problem
have the same problem characteristics with the OP/TOP [3].
Therefore, several vehicle routing constraints like the vehicle
capacity and time windows constraints have been considered
in the TOP.

The TOPwith time windows (TOPTW) is a variant of the
TOP that additionally considers the time window constraint;
that is, a player can visit a point only within a specified

interval (time window). Many heuristic algorithms [18–27]
and one exact algorithm [17] have been proposed for the
TOPTW.

The capacitated TOP (CTOP) is a variant of the TOP that
additionally considers a capacity constraint where each point
has its own demand and all players have the same capacity. A
player cannot visit a set of points if the sum of the demands of
the visited points exceeds the player’s capacity. Our previous
studies found two heuristic algorithms [28, 29] and one exact
algorithm [30] for the CTOP.

The capacitated TOP with time windows (CTOPTW) is a
hybrid of the CTOP and TOPTW. The CTOPTW was first
studied in [31] and the authors proposed the iterated local
search (ILS) heuristic algorithm. Later, [32–35] proposed
improving algorithms but proposed no exact algorithm for
the CTOPTW. To the best of our knowledge, our paper is the
first to present the exact solution of the CTOPTW.

We apply the branch-and-price (B&P) scheme of Boussier
et al. [16] to the CTOPTW. The B&P scheme was originally
developed for the TOP, but it can be applied to the CTOPTW
without any modification. We develop implicit enumeration
to solve pricing problems that arise in the B&P for the
CTOPTW.
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The remainder of this paper is organized as follows.
Section 2 describes the exact algorithm. Section 3 contains
the computational results and Section 4 concludes the paper.

2. A Branch-and-Price for the CTOPTW

Section 2.1 provides a mathematical formulation of the
CTOPTW. Section 2.2 describes the B&P scheme applied to
the CTOPTW. Section 2.3 describes the implicit enumeration
developed to solve pricing problems.

2.1. Mathematical Formulation. The CTOPTW arises in the
directed graph 𝐺 = (𝑃, 𝐴), where 𝑃 = {0, 1, . . . , 𝑛, 𝑛 + 1}
represents a set of points and 𝐴 = {(𝑖, 𝑗) | 𝑖, 𝑗 ∈ 𝑃, 𝑖 ̸=
𝑗} represents a set of arcs that connect pairs of points. 𝑚
identical players move from starting point 0 to ending point
𝑛+1.𝑃𝑟 = {1, . . . , 𝑛} represents the set of points where players
can collect a reward 𝑟𝑖 by visiting a point 𝑖 ∈ 𝑃𝑟. A player
takes travelling time 𝑡𝑖,𝑗 (≥ 0) to traverse an arc (𝑖, 𝑗) ∈ 𝐴.
The CTOPTW has the following constraints:

(C1) A point 𝑖 ∈ 𝑃𝑟 can be visited only once by only
one player.
(C2) A player cannot take more than time 𝐿 to move
from 0 to 𝑛 + 1.
(C3) A point 𝑖 ∈ 𝑃𝑟 has demand 𝑑𝑖 and a player can
visit a set of points only if the sum of their demands
does not exceed the player’s capacity 𝑄.
(C4) A player can visit 𝑝𝑖 only during the interval
[𝑒𝑖, 𝑙𝑖]. If the player arrives at 𝑝𝑖 before 𝑒𝑖, the player
must wait until 𝑒𝑖. The player takes 𝑢𝑖 time to finish
the visit at the point.

Let 𝐻 = {ℎ1, ℎ2, . . .} be a set of paths from 0 to 𝑛 + 1 that
satisfies (C1)–(C4). Using the mathematical formulation of
[16, 17], the CTOPTW can be formulated in mathematical
form as [CTOPTW].

max 𝑧 = ∑
ℎ𝑖∈𝐻

𝑟 (ℎ𝑖) 𝑥𝑖, (1)

∑
ℎ𝑖∈𝐻

𝑎𝑗,𝑖𝑥𝑖 ≤ 1, ∀𝑗 ∈ 𝑃𝑟, (2)

∑
ℎ𝑖∈𝐻

𝑥𝑖 ≤ 𝑚, (3)

𝑥𝑖 ∈ {0, 1} , ∀ℎ𝑖 ∈ 𝐻, (4)

where 𝑟(ℎ𝑖) represents the sum of collected rewards by
traversing the path ℎ𝑖; decision binary variable 𝑥𝑖 has the
value 1 if the path ℎ𝑖 is used and 0 otherwise; and 𝑎𝑗,𝑖 is 1 if
path ℎ𝑖 visits point 𝑝𝑗 and 0 otherwise.The objective function
(1) maximizes the sum of collected rewards. Constraint (2)
ensures that no point is visited more than once. Constraint
(3) limits the number of players to be less than or equal to
𝑚. Constraint (4) forces 𝑥𝑖 to be binary.This formulation has
the same form as the set partitioning problem (SPP) with an
exponential number of columns which is known to be NP-
hard [36].

2.2. Branch-and-Price. Branch-and-price (B&P) is a special
case of branch-and-bound (B&B) [37], which is an exact
method used to find the optimal solution of an IP. The
B&B transforms an IP to a linear problem (LP) by relaxing
the integer constraints, solves the LP at the root node, and
terminates if the optimal solution of the LP is an integer.
Otherwise, the B&B branches the root node into some child
nodes according to a predefined branching rule. For each
child node, the B&B repeatedly solves an LP and decides
whether it branches or bounds the child node.The repetition
ends when the optimal solution of the IP is found. The B&B
can be used to find the optimal solution of [CTOPTW]. If
its LPs have an exponential number of columns, however, the
B&B may fail.

B&P solves an LP at each node by the column generation
technique. The column generation technique helps to find
the optimal solution of an LP by considering only a small
portion of its columns. In this paper, B&P ismore appropriate
than B&B because each of our benchmark instances has 102
points. B&P requires the user to define the branching rule.
The simplest branching rule to fix a noninteger variable as 1 or
0 entails tremendous computational difficulty [16].Therefore,
the user may choose to define an alternative rule that forces a
node or an arc to be used or not. Previous B&P papers about
the TOP [16], the CTOP [30], and the TOPTW [17] all used
the identical branching rule, and we also use it in this paper.

The column generation technique decomposes the origi-
nal LP withmany columns intomaster and pricing problems.
The master problem contains only a small portion of the
original columns. After the technique solves the master
problem, it solves the pricing problem to detect a column
that can improve the solution of the master problem. If it
detects a column, it adds the column to the master problem
as a new column. Otherwise, the technique terminates and
concludes that the optimal solution of the master problem is
also optimal for the original LP.

The pricing problem of the B&P in the CTOPTW is a
form of the elementary shortest path problem with capacity
and time windows (ESPPCTW).The ESPPCTW is a problem
of determining the elementary path from the starting point
to the ending point that collects the maximum net rewards
while satisfying the two constraints. The ESPPCTW arises in
the same graph with the CTOPTW, except that a point 𝑖 ∈ 𝑃𝑟
has a dual reward 𝑟𝑖 and its net reward is calculated as 𝑟𝑖 − 𝑟𝑖.

Let 𝑟(ℎ𝑖) represent the sum of dual rewards that are
collected by traversing path ℎ𝑖. The optimal path ℎ∗ of the
ESPPCTW is found by solving

ℎ∗ = argmax
ℎ𝑖∈𝐻

𝑟 (ℎ𝑖) − 𝑟 (ℎ𝑖) . (5)

2.3. Implicit Enumeration. The ESPPCTW is also NP-hard
[38]. Full enumeration lists all feasible paths from 0 to 𝑛 + 1
and selects the path with the maximum net reward. In full
enumeration, a state 𝑠 is defined as a path from 0 to 𝑖 ∈ 𝑃
with a label 𝑠 = (𝑖, 𝑟, 𝑞, 𝑡, 𝐸), where 𝑖 is the index of the last
visited point, 𝑟 is the sum of rewards of the visited points, 𝑞 is
the sum of demands of the visited points, 𝑡 is the current time
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of the path, and 𝐸 = (𝐸1, . . . , 𝐸𝑛) is an 𝑛-sized binary vector
in which 𝐸𝑗 = 1 if the path has visited 𝑗 ∈ 𝑃𝑟 and 0 otherwise.

𝑠 can be extended to 𝑗 ∈ 𝑃 if 𝑞 + 𝑑𝑗 ≤ 𝑄, 𝑡 + 𝑡𝑖,𝑗 + 𝑢𝑖 ≤ 𝑙𝑗,
and 𝐸𝑗 ̸= 1; when this is done, the label 𝑠󸀠 = (𝑗, 𝑟󸀠, 𝑞󸀠, 𝑡󸀠, 𝐸󸀠)
of the extended state is updated as

𝑟󸀠 = 𝑟 + 𝑟𝑗,

𝑞󸀠 = 𝑞 + 𝑑𝑗,

𝑡󸀠 = max (𝑡 + 𝑡𝑖,𝑗 + 𝑢𝑖, 𝑒𝑗) ,

𝐸󸀠𝑘 =
{
{
{

𝐸𝑘 if 𝑘 ̸= 𝑗
1 o.w.

for each 𝑘 ∈ 𝑃𝑟.

(6)

Since full enumeration generates an exponential number
of states, previous studies [39–42] have used a version of
full enumeration called implicit enumeration to solve the
ESPPCTW. Implicit enumeration allows domination between
states. A state dominated by another state can be discarded
without loss of optimality. As the number of dominated
states increases, both the number of states generated and
the computational effort decrease. Given two states 𝑠 =
(𝑖, 𝑟, 𝑞, 𝑡, 𝐸) and 𝑠󸀠󸀠 = (𝑖, 𝑟󸀠󸀠, 𝑞󸀠󸀠, 𝑡󸀠󸀠, 𝐸󸀠󸀠), in the same node, 𝑠
dominates 𝑠󸀠󸀠 if

𝑟 ≥ 𝑟󸀠󸀠,

𝑞 ≤ 𝑞󸀠󸀠,

𝑡 ≤ 𝑡󸀠󸀠,

𝐸𝑘 ≤ 𝐸󸀠󸀠𝑘 for each 𝑝𝑘 ∈ 𝑃𝑟.

(7)

We use implicit enumeration to solve the pricing prob-
lem of the B&P or ESPPCTW but adopt two acceleration
techniques to reduce the computational burden. The first is a
heuristic algorithm proposed by Tae and Kim [17]. The aim
of solving the ESPPCTW is to find an improving column.
Although both implicit enumeration and the heuristic algo-
rithm can find an improving column, each has a drawback.
Implicit enumeration is computationally expensive but guar-
antees the optimality of the column, whereas the heuristic
algorithm is computationally inexpensive but cannot guaran-
tee optimality. Thus, we select implicit enumeration to solve
the ESPPCTW when the heuristic algorithm fails to find an
improving column.

The second technique is 𝑛𝑔-route relaxation of Baldacci et
al. [43], which is one type of elementary constraint relaxation.
In this relaxation, each point 𝑖 has a group of points called 𝑛𝑔-
group or 𝑛𝑔𝑖. 𝑛𝑔-relaxed state 𝑠𝑖 in the point 𝑖 can be extended
to a point 𝑗 ∈ 𝑃 even though 𝑠𝑖 has visited 𝑗 if the extension
is feasible and 𝑗 ∉ 𝑛𝑔𝑖.

As a new state is generated in the implicit enumeration,
the state is joined with 𝑛𝑔-route relaxed states. This joining
provides the upper bound of the state; if the upper bound is
less promising than the lower bound, the state is ignored. 𝑛𝑔-
route relaxation has achieved great acceleration in previous
papers [17, 42, 43]. 𝑛𝑔-route relaxation requires that a con-
stant 𝐾 be set. If 𝐾 is a large number, the relaxation provides

strong bounds but requires extensive computational time to
find them, whereas if𝐾 is small, the relaxation provides weak
bounds but requires less time [43]. Considering the tradeoffs,
we set 𝐾 = 5 [17].

3. Computational Results

Garcia et al. [31] made benchmark instances based on the
instances of Solomon [44] andCordeau et al. [45].They tested
their algorithm on these instances by setting the number of
players to one and two. By the definition of the CTOPTW,
the number of players should be at least two. However, they
considered single player case because the case had been
solved exactly by Righini and Salani [46]. In this paper, we
only consider case of two players.

In each instance, each point has its own 𝑥-𝑦 coordinates,
demand, reward, and time windows. The travelling time
between the points is calculated as Euclidean distance. The
starting and ending points are located in the same positions in
every instance.The constant of the time limitation constraint
or 𝐿 is calculated as 𝑙𝑛+1 − 𝑒0 which is the end of the time
window of the ending point minus the start of the time
window of the starting point.

Table 1 compares the optimal solution of each instance
with the best solutions reported in Garcia et al. [31] and
Souffriau et al. [35].Wedonot bring the solutions ofAghezzaf
and Fahim [34] into this table since we have a reason to
doubt that they used the different instances. Aghezzaf and
Fahim [34] claimed they used the instances of Garcia et al.
[31]. However, they considered 𝐸2 as the capacity constraint
while Garcia et al. [31] considered 𝐸1 (here, we use the same
notation with Garcia et al. [31]).

Notations in Table 1 represent the following: 𝑛, the num-
ber of players; 𝑄, the value of vehicle capacity; TOPTW, the
objective value found by TOPTW algorithms (see Garcia et
al. [31]); ILS, the objective value found by Garcia et al.’s [31]
iterated local search (ILS) algorithm; GRILS, the objective
value found by Souffriau et al.’s [35] greedy randomized
iterated local search (GRILS) algorithm; RUB, the value of
upper bound at the root node found by our algorithm; UB,
the value of upper bound found by our algorithm; LB, the
value of lower bound found by our algorithm;CT, the value of
computational time in seconds; “—”means no value is found.

Computational tests are performed using an Intel i7
3.6GHz processor with 8GB RAM. Our program is built
on a Microsoft Visual Basic C++ environment and LPs are
solved by IBM CPLEX. The program is run on a single
core. Computation time is limited to 7200 seconds. All the
benchmark instances and optimal solutions can be found
in https://sites.google.com/site/optimizationlaboratory. The
distance between points are calculated by using a Euclidean
distance that is rounded to the first decimal for Solomon’s
instances (c101–c109, r101–r112, rc101–rc108) and to the second
for Cordeau’s instances (pr01–pr10).

We found all optimal solutions for Solomon’s instances
but only one for Coredeau. Coredeau’s instances were more
difficult to solve since they have wider time windows and
more number of players. If the timewindows arewidened, the

https://sites.google.com/site/optimizationlaboratory
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Table 1: Computational results of Garcia et al.’s [31] instances with two players.

Instance information Previous algorithm Proposed algorithm
Name 𝑛 𝑄 TOPTW ILS GRILS RUB UB LB CT
c101 100 614 590 580 590 590 590 590 0.5
c102 100 801 650 650 650 660 660 660 30.3
c103 100 727 710 710 690 724.737 720 720 651.0
c104 100 624 760 760 740 763.333 760 760 2494.4
c105 100 656 640 640 640 640 640 640 2.0
c106 100 604 620 620 620 620 620 620 12.9
c107 100 648 670 660 670 670 670 670 17.1
c108 100 641 680 680 680 680 680 680 23.9
c109 100 788 710 710 710 720 720 720 37.4
r101 100 380 341 322 344 344 344 344 0.2
r102 100 684 501 508 504 508 508 508 57.2
r103 100 566 513 512 515 518.5 517 517 2698.3
r104 100 639 531 538 527 548 548 548 346.1
r105 100 587 430 434 438 438 438 438 1.2
r106 100 645 529 529 521 529 529 529 361.3
r107 100 566 527 523 523 531 531 531 1657.2
r108 100 639 534 539 538 555 555 555 4749.4
r109 100 735 506 498 499 506 506 506 7.3
r110 100 738 506 519 510 523 523 523 27.9
r111 100 737 535 536 540 544 544 544 83.6
r112 100 776 522 513 524 544 544 544 464.8
rc101 100 557 421 427 427 427 427 427 0.3
rc102 100 650 487 497 499 505 505 505 3.5
rc103 100 527 512 501 510 520 520 520 6.3
rc104 100 531 551 556 552 564 564 564 149.0
rc105 100 592 451 448 469 480 480 480 1.0
rc106 100 600 464 462 478 483 483 483 3.3
rc107 100 531 520 516 506 526 526 526 23.2
rc108 100 527 540 526 526 551 551 551 53.2
pr01 48 506 481 489 496 502 502 502 77.5
pr02 96 1001 685 654 672 0 0 0 7200.0
pr03 144 1380 692 701 700 0 0 0 7200.0
pr04 192 2523 880 872 836 0 0 0 7200.0
pr05 240 3925 1031 1002 965 0 0 0 7200.0
pr06 288 4198 992 952 888 0 0 0 7200.0
pr07 72 585 560 547 557 0 0 0 7200.0
pr08 144 1904 809 774 794 0 0 0 7200.0
pr09 216 2967 819 828 795 0 0 0 7200.0
pr10 288 4033 1037 998 955 0 0 0 7200.0

length of a feasible path (the number of the visited players by
a path) increases. Then, the pricing problem or ESPPCTW
becomes more hard to solve. Then, the B&P takes much
more computational time to find the optimal solution. Similar
computational results can be found in the paper of Tae and
Kim [17] who solved the TOPTW by B&P. They also found
many optimal solutions of Solomon’s instances but only a few
for Coredeau.

4. Conclusion

In this paper, we optimally solved some CTOPTW instances
which has not been done previously.We showed that the B&P
scheme of Boussier et al. [16], which was developed for the
TOP, can be applied to the CTOPTW. To solve pricing prob-
lems, we used implicit enumeration acceleration techniques,
heuristic algorithms [17], and 𝑛𝑔-route relaxations [43]. We
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found 30 optimal solutions out of 39 benchmark instances of
Garcia et al. [31].
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