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Abstract. In this paper we present a method for moving objects de-
tection and labeling denominated Lateral Interaction in Accumulative
Computation (LIAC). The LIAC method usefulness in the general task
of motion detection may be appreciated by means of some step-by-step
descriptions of significant examples of object detection in video sequences
of synthetic and real images.
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1 Introduction

Image segmentation refers to the process of partitioning an image into a set of co-
herent regions. The segmentation methods lie in (or between) two groups; those
detecting flow discontinuities (local operations) and those detecting patches of
self-consistent motion according to set criteria (global measurements). Segmen-
tation of an image sequence into moving regions belongs to the most difficult
and important problems in computer vision [6]. Spatiotemporal segmentation
techniques attempt to identify the objects present in a scene based on spatial
and temporal (motion) information [5]. As in [7], we define spatial information as
being the brightness information and temporal information as being the motion
information. The scene is partitioned into regions such that each region (except
the background) represents a moving object. The resulting regions can be iden-
tified as moving objects composing the scene [2]. Some approaches rely on a
region-merging procedure to identify meaningful objects. First, a set of initial
regions is derived. Usually these regions do not represent meaningful objects.
These regions are then merged based on some measure of spatiotemporal sim-
ilarity, so as to obtain meaningful moving objects [1]. We believe that motion
from intensity changes is rich enough to warrant precise segmentation.

2 The Lateral Interaction in Accumulative Computation
Method

The problem we are putting forward is the detection of the objects moving in a
scene. These objects are detected from the motion of any of their parts. Present
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in a video sequence of images, motion allows obtaining the silhouettes of all
moving elements. The proposed system is able to detect and even to associate all
moving parts of the objects present in the scene [4]. The subtasks implemented in
neural network layers, and explained in the following subsections, are (a) LIAC
Temporal Motion Detecting, (b) LIAC Spatial-Temporal Recharging, and, (c)
LIAC Spatial-Temporal Homogenization.

2.1 LIAC Temporal Motion Detection

This subtask firstly covers the need to segment each input image I into a preset
group of gray level bands (n), according to equation [Il

oo L I(i,g5t) € [225 -k, 225 (B + 1) — 1]
k(i j5t) = { 0, otherwise (1)
This formula assigns pixel (4, j) to gray level band k. Then, the accumulated
charge value related to motion detection at each input image pixel is obtained,

as shown in formula 2k
Vais, if 2 (i, 5;t) =0
Usatvif (Ik(zv.%t) = 1) N (Ik(ivj;tf At) = 0)
maX[Ik(ivj; t— At) — Vdm, vdis]v
if (zx(d,5;t) = 1) N (2e (i, j3t — At) = 1)

yk(i’j;t) = (2)

The charge value at pixel (4, 7) is discharged down to v4;s when no motion is
detected, is saturated to vs,; when motion is detected at ¢, and, is decremented

by a value v4,, when motion goes on being detected in consecutive intervals ¢
and t — At [3].

2.2 LIAC Spatial-Temporal Recharging

This subtask is thought to reactivate the charge values of those pixels partially
loaded (charge different from vg;s and vs.:) and that are directly or indirectly
connected to saturated pixels (whose charge is equal to vs4¢). Formula[3 explains
these issues, where v,., is precisely the recharge value.

Vdis, if yk(la]7t + (l - 1) ! AT) = Udis
- . _ Vsat» ifyk(ivj;t#»(l*l)'AT):vsat
yi(t, st +1- A7) = minfyg (i, 5;t + (1 — 1) - AT) + Uy, Vsat], (3)

if vgis < yr(i,7;t+ (1 —1) - AT) < vgat
This step occurs in an iterative way in a different space of time 7 < t. The
value of A7 will determine the number of times the mean value is calculated.
2.3 LIAC Spatial-Temporal Homogenization

In this subtask the charge is distributed among all connected neighbors holding
a minimum charge (greater than 6,,;, ), according to equation (4).
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1
L4 6ic1,j 4 0iv1j + 6ij—1 + 6ij
X[yk (i, j;t+ (m—1) - Ar) +
Sic1j -y — 1,45t +(m—1)- A1) +
Siv1j yk(i+ 1,5t +(m—1)- A7) + (4)
8ij—1-yr(i,j —Lit+(m—1)- Ar) +
8ij+1-yu(i,j+ 1;t+ (m—1) - Ar)]

yr(i, jit +m- At) =

where

1, if yr(a, Bt 4+ (m—1) - AT) > Oin,
0, otherwise

V(a,B8) € i+ 1,j+1],608 = { (5)

Lastly, we take the maximum value of all outputs of the k gray level bands
to show the silhouette of a moving object. The result is filtered with a sec-
ond threshold, namely 6,,,., eliminating noisy pixels pertaining to non-moving

objects:
O(i, j;t) = argmax zi.(i, j; ) (6)

0(7’7]5 t) = Udis, if (O(Zvja t) = amzn) U O(Zvj7t) > 9maz) (7)

3 Step-by-Step Description

The performance of the method applied to motion detection is demonstrated
on a step-by-step description basis of two sets of image sequences. The first
set includes synthetic scenes to describe the method’s behavior. The second set
shows natural images with a real scene from a traffic control system.

3.1 Black over White Motion Detection

In the first sequence a black rectangular region of 8«16 pixels is moving one pixel
per frame rightward on a white 32%32 pixel background. In this first experiment,
motion is detected only on those pixels that pass from black to white at a given
frame. General formula () is instantiated as z(i,j;t) = 1, if I(i,4;t) = 1.
Fig. [ (a) to (c¢) shows the method’s output after permanency values calculation
on pixels (16,16), (16,17) and (16,18), respectively. Parameters used in this
experiment are vsqt = 255, Vgm = 32, Uy = 16 and vg;s = 0, whilst t = 16.
Firstly, this very simple example permits to focus on total recharge, partial
discharge, partial recharge, and total discharge. Total recharge occurs at ¢t = 3
(7 = 48) at pixel (16,16), t =4 (7 = 64) at pixel (17,16), and t = 5 (7 = 80) at
pixel (18, 16), respectively, just as the black box hits for the first time the pixel
in white. From that moment on, you may also appreciate a partial discharge
at each new instant t. This is clearly what was expected to occur: a totally or
partially charged pixel is partially discharged when no variation is detected in its
black level from one frame to another. And, this is true until the black rectangle
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Permanency Values

pixel (16,16)

charge value

Fig. 1. LIAC permanency and charge values. (a) Permanency values for pixel (16, 16).
(b) Permanency values for pixel (16,17). (c¢) Permanency values for pixel (16,18). (d)
Charge values for pixel (16, 16).

completely passes the observed pixel. In our special case, the width of the box is
eight pixels. Thus, a complete discharge occurs after eight time instants ¢, that
is to say, at t = 11 (7 = 176) at pixel (16,16), t = 12 (7 = 192) at pixel (17, 16),
and t = 13 (7 = 208) at pixel (18, 16), respectively.

Now that the complete recharge, the partial discharge and the complete dis-
charge have been explained from Fig. [I] let us center on the partial recharge
notion. Remember, once again, that a partial recharge is the result of being in-
formed by a totally recharged neighbor to sum up some charge. Fig. [l allows
noticing the spatial precedence of this information. In fact, if we consider pixel
(16,16), it may be appreciated that at time instant ¢ = 4, it is informed by a
neighbor 1 pixel away (pixel (16,17) in this case); at ¢ = 5, it is informed by a
neighbor 2 pixels away (pixel (16, 18) in this case; and so on. This simple exam-
ple offered at Fig. Ml has led us to consider the most relevant ideas in permanency
value calculation. Now, Fig. [Id shows the output after charge value calculation
on pixel (16, 16). In this figure, you may only notice a quick descent of the charge
value until reaching a more stable value at the end.

The moving element (black rectangle) is composed of several charge values due
to motion detection. The last step in algorithmic lateral inhibition is the calcula-
tion of a common mean charge value. Fig. [2 offers the opportunity to explain the
influence of time scale 7. Note that by incrementing 7, the initial ramp is soft-
ened. But, in this example, where 7 has been fixed with a low value (t = 16-7),
it is impossible to obtain the mean value desired. We show that, however, by in-
creasing 7, we get the desired solution. Fig. 2k shows the minimum value required
in this example for 7 to be able to offer a common mean charge value for the
moving element. Any greater value for 7 gets the same result (Fig. 2f). Compare
also the charge value on pixel (16, 16) with ¢ = 16 - 7 and t = 127 - 7 on Fig. B
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Fig. 2. Influence of parameter 7 on the charge values of a moving element. (a) Charge
values with ¢ = 7. (b) Charge values with t = 4 - 7. (c) Charge values with ¢t = 8 - 7.
(d) Charge values with t = 16 - 7. (e) Charge value with ¢ = 87 - 7. (f) Charge value
with ¢t =127 - 7.
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Fig. 3. Influence of parameter 7 on the charge values of pixel (16, 16). (a) Charge values
with t = 16 - 7. (b) Charge values with ¢t = 127 - 7.

3.2 Noise over Noise Motion Detection

In this second example we consider the synthetic scene shown in Fig. [l where two
random-dot rectangular regions (Fig. @bl and @b2) are moving horizontally one
pixel per frame in opposite directions (Fig.[k) on a random-dot noise background
(Fig. @h). During this motion sequence, there is an overlapping area where both
motions are simultaneously perceived.

In this case we shall segment motion of black dots over white background
(x(i,4;t) = 1, if I(d,j;t) = 255), as well as white dots over black background
(x(i,7;t) = 1, if I1(i,4;t) = 0), and merge both segmentations. This way, our
method perfectly segments moving regions. Fig. dd shows the result of segment-
ing from motion of white dots over black background, whereas Fig. e shows
the result of segmenting from motion of white dots over black background. And,
finally, Fig. df shows the result of merging both segmentations.

3.3 Gray Level Difference Motion Detection in Real Scenes

We have to highlight that our method applied to motion detection is highly
useful when used in real scenes. Let us remember again that the number of
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Fig. 4. (a) Random-dot noise background. (b) Random-dot rectangular regions. (c)
Motion directions. (d) Segmentation from white dots over black background. (e) Seg-
mentation from black dots over white background. (f) Final result.

Fig. 5. Image segmented into 8 gray level bands (a) at ¢ = 0, (b) at t = 15, with a
frame rate of At = 0.04 seconds

images in a sequence is unlimited. In order to show all these advantages of the
neuronal method for lateral interaction in accumulative computation for motion
detection we have used a series of real scene test images. This sequence shows
a surveillance scene, used with permission from the PETS2001 dataset 1 (The
University of Reading, UK). In this example, we have generalized the method
in order to segment from motion due to the change in the current gray level of
a pixel.

In this case, we have used n = 8 gray level bands. We show in Fig. [ a little
window of the entire scene where images have been segmented in n = 8 gray
level bands at ¢ = 0 and ¢t = 15, and where At = 0.04 seconds (image frame
rate). The rest of the values were 0 < k < n = 8, vgis = 0, vsqt = 255, and
Vgm = 32 in this case.

Fig. [0l shows some of the outputs of this first part of the whole algorithm after
t=1,t=2,t=3,t=>5,t =11 and ¢t = 15. The implementation of the LIAC
Spatial-Temporal Recharging algorithm takes the following values introduced in
formula @)): vy, =32 and 1 <1 < 128, as t = 128 - 7 in this case. Fig. [ shows,
for ¢ = 12, the evolution of the LIAC Spatial-Temporal Recharging from 7 = 1
up to 7 = 128. Notice the effect of fusing pixels to obtain more accurate parts
of the vehicle in movement.
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Fig. 7. Image processed at t = 12, after (a) 7 =1, and, (b) 7 =128

(a) (b) (c) (d)

Fig. 8. Result of application of ALI Spatial Homogenization at ¢ = 12. (a) Input image.
(b) Omin = 90 and Omaz = 254. (¢) Omin = 100 and Omaee = 230. (d) Omin = 120 and
Omaz = 200.

Lastly, step ALI Spatial-Temporal Homogenization is shown by means of the
results offered applying the original formulas (4) and (@), where 6,,;, ranges
from 90 to 120 and 6,,,, ranges from 254 down to 200. The results after ¢t = 12
are shown in Fig. B Obviously there has to be a compromise in the threshold
values applied in order to eliminate noise without erasing parts of the moving
objects.

4 Conclusion

We have presented a method for motion-based segmentation of images with
moving objects. Our approach uses easy local calculation mechanisms. Never-
theless, the global results obtained from these local calculations through the
cooperation and propagation mechanisms presented (lateral interaction in accu-
mulative computation mechanisms) may be compared to much more complex
methods. Up to some extent, our method can be generically classified into the
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models based on image difference. The gradient-based estimates have become the
main approach in the applications of computer vision. These methods are com-
putationally efficient and satisfactory motion estimates of the motion field are
obtained. The disadvantages common to all methods based on the gradient arise
from the logical changes in illumination. The intensity of the image along the
motion trajectory must be constant; that is to say, any change through time in
the intensity of a pixel is only due to motion. This restriction does not affect our
model at all. Lastly, region-based approaches work with image regions instead of
pixels. In general, these methods are less sensitive to noise than gradient-based
methods. Our particular approach takes advantage of this fact and uses all avail-
able neighborhood state information as well as the proper motion information.
On the other hand, our method is not affected by the greatest disadvantage of
region-based methods. Our model does not depend on the pattern of translation
motion. In effect, in region-based methods, regions have to remain quite small so
that the translation pattern remains valid. The most important limitation of the
method applied to motion detection is the impossibility to differentiate among
objects that are seen as a whole during occlusions.

Acknowledgements

This work is supported in part by the Spanish CICYT TIN2004-07661-C02-02
grant, and the Junta de Comunidades de Castilla-La Mancha PBI06-0099 grant.

References

1. Ayer, S., Sawhney, H.S.: Layered representation of motion video using robust
maximum-likelihood estimation of mixture models and MDL encoding. In: Pro-
ceedings of Fifth International Conference on Computer Vision, pp. 777-784 (1995)

2. Dufaux, F., Moscheni, F., Lippman, A.: Spatiotemporal segmentation based on mo-
tion and static segmentation. Proceedings of ICIP’95. 1, 306-309 (1995)

3. Fernandez, M.A., Ferndndez-Caballero, A., Lépez, M.T., Mira, J.: Length-Speed
Ratio (LSR) as a characteristic for moving elements real-time classification. Real-
Time Imaging 9(1), 49-59 (2003)

4. Fernandez-Caballero, A., Mira, J., Ferndandez, M.A., Delgado, A.E.: On motion de-
tection through a multi-layer neural network architecture. Neural Networks 16(2),
205-222 (2003)

5. Goldberger, J., Greenspan, H.: Context-based segmentation of image sequences.
IEEE Transactions on Pattern Analysis and Machine Intelligence 28(3), 463-468
(2006)

6. Mansouri, A.R., Konrad, J.: Multiple motion segmentation with level sets. IEEE
Transactions on Image Processing 12(2), 201-220 (2003)

7. Vazquez, C., Mitiche, A., Laganiére, R.: Joint multiregion segmentation and para-
metric estimation of image motion by basis function representation and level set
evolution. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(5),
782-793 (2006)



	Introduction
	The Lateral Interaction in Accumulative Computation Method
	LIAC Temporal Motion Detection
	LIAC Spatial-Temporal Recharging
	LIAC Spatial-Temporal Homogenization

	Step-by-Step Description
	Black over White Motion Detection
	Noise over Noise Motion Detection
	Gray Level Difference Motion Detection in Real Scenes

	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


