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1 Introduction

In many markets, individually rational behavior requires considerable sophistication. For

example, the optimal bid in a “simple” sealed-bid, first-price auction with symmetric, risk-

averse players is a non-additively separable function of the private valuation, the number of

players, and the risk tolerance (cf. Harrison, 1989). In cases like these, it is unlikely that

market actors are perfect logicians who derive mathematical formulas to guide behavior.

Rather, experienced actors are thought to develop heuristics, or mental shortcuts, that allow

them to behave as if they were logicians.1 This “as if” justification provides a convenient way

to bridge abstract models and real-world behavior without descending into the messy details

of human cognition. With “as if” actors, the goodness of a model depends on the accuracy

of its predictions, rather than on the realism of its behavioral assumptions (Friedman, 1953).

One issue with the notion that heuristics undergird as-if rational behavior is that these

mental shortcuts are often context dependent. Whereas the perfect logician immediately

discerns the logical rules of a new environment, the boundedly rational actor develops adap-

tive heuristics through experience. As a result, mental shortcuts honed in one context may

leave actors ill-equipped in another. Kagel and Levin (1986) illustrate this concern in an

experimental study of repeated common value auctions. They find that laboratory subjects

learn to avoid the winner’s curse by bidding a fraction of their private signals, but when

minor contextual details change, players revert to bidding their signals and experience the

winner’s curse again. Individuals often find themselves in contexts outside of their direct

experience. The extent to which economic theories predict behavior in these cases depends

on the portability of their expertise.

A handful of studies measure this portability by observing real-world experts perform

1For instance, Harrison and List (2004) hypothesize that “naturally occurring [auction] markets are
efficient because certain traders use heuristics to avoid the inferential error that underlies the winner’s
curse.”
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unfamiliar tasks that conceptually replicate those in which they are experienced. These

studies, which we review in Section 2, have produced conflicting results. As we detail, this

disagreement may stem from the obscurity of the unfamiliar tasks: each of these studies

examines the behavior of experts on conventional laboratory games that differ markedly

from their expertise.

In this paper, we conduct a sharp test of the portability of expertise by observing experts

perform nearly the same task in which they are experienced. This analogous task differs from

our subjects’ domain of expertise on a minimal set of contextual cues; on formal dimensions,

it is isomorphic. Our main finding is that these experts fail to apply their expertise in the

unfamiliar environment, implying that unfamiliarity restricts the portability of expertise.

However, we also find that the experts improve with repetition in the new setting—and

more quickly than comparably able novices—suggesting that relevant expertise accelerates

learning on unfamiliar tasks.

The experts we study are members of a forecasting panel who regularly make probabilistic

predictions about individual events and sets of events. Formally, the task is similar to

predicting both the probability of default on individual mortgages in a mortgage-backed

security and the probability that the security will be downgraded, or to predicting state-

by-state electoral odds for a presidential candidate and the probability that she wins the

election. We are interested in whether an expert’s predictions for individual events (e.g.,

mortgage defaults) are consistent with her predictions for an encompassing set of events

(e.g., a downgrade). We compare the consistency of predictions by the same experts between

a task that is familiar to them and a conceptually isomorphic task in which the context is

rendered abstractly (as drawing balls from urns).

Specifically, we observe predictions from a panel of more than one hundred basketball ex-

perts run by the ESPN sports network, which are published on ESPN.com. Panelists predict

the outcomes of playoff series in the National Basketball Association (NBA), which follow a
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best-of-7 format, ending after one team wins 4 games. Before each series, these experts are

asked to report: 1) 7 probabilities corresponding to the likelihoods that the favored team

in the series wins each of the 7 games (should the 5th, 6th, or 7th game be played), 2) the

probability that the favored team wins the series (hereafter, series probability), and 3) the

most likely series outcome chosen from 8 possible series outcomes (i.e., favored team in 4, 5,

6, or 7 games, or the underdog in 4, 5, 6, or 7 games). Assuming that respondents interpret

the game-by-game probabilities as sequentially independent—an assumption that is justified

by the data—the game-by-game probabilities imply both the series probability and the most

likely series outcome. We evaluate the consistency of a respondent’s predictions by compar-

ing her reported series predictions with those implied by her game-by-game probabilities.

ESPN solicits the same predictions from readers of a basketball blog on ESPN.com, and we

use these predictions to construct a non-expert baseline.

Previous research has shown that individuals often report probabilities for sets of out-

comes that cannot be rationalized by the probabilities of constituent events (Grether, 1980,

1992; Tversky and Kahneman, 1983; Charness, Karni and Levin, 2010). In contrast, we find

a high degree of consistency between the game-by-game and series predictions made by these

experts in their domain of expertise. The average deviation between an expert’s predicted

series probability and the value implied by the game-by-game probabilities is just 6.7 per-

centage points, compared to 13 percentage points for readers. Similarly, experts report the

implied most likely series outcome on 49% of responses, whereas readers do so only 39% of

the time.

The same ESPN editor then asked the same expert panel to perform a conceptually

identical exercise. Specifically, the task described 7 ordered jars, each with black and red

marbles in specified quantities, and each with 100 marbles total. Subjects were told that a

single marble would be drawn sequentially from each jar. They were then asked to report

1) the probability that 4 or more black marbles will be drawn in total—i.e., the probability
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that black will “win” the series of draws; and 2) the jar they expect the 4th marble of the

same color to be drawn from—i.e., the most likely best-of-7 outcome. Each expert observed 5

sequences of jars, 4 of which were matched to the NBA context—i.e., each sequence contained

black and red marbles in identical proportions to game-by-game probabilities reported by

that same expert for an NBA playoff series. The fifth sequence, shown to all respondents,

contained 95 black marbles (and 5 red marbles) in each jar. The jars-and-marbles problem

is a close copy of the NBA playoff forecasting task: the questions were conceptually identical

and respondents observed the same sequences of probabilities on the unfamiliar task that

they had previously solved on the familiar one. Moreover, the link between the contexts was

made explicit: the editor described the marbles exercise as “designed to improve ESPN’s

NBA playoffs forecasting.”

The experts appear motivated to solve the jars-and-marbles problems, taking their time

and giving precise answers. Nonetheless, they display significantly less consistency on the

unfamiliar marbles task, both in economic and statistical terms. Among matched sequences,

reported series probabilities differ from their implied values by an average of 14 percentage

points in the unfamiliar context—twice the error rate in the NBA context. Similar results

pertain for the most likely series outcome: 26% more responses predict the implied most

likely series outcome on the familiar task than on the unfamiliar one. Furthermore, errors

are weakly correlated across the familiar and unfamiliar contexts, suggesting that the experts

behaved as if facing new problems, rather than ones they had already solved.

We interpret these results to imply that the unfamiliarity of the jars-and-marbles exercise

inhibits the transfer of expertise. The jars-and-marbles problem is unfamiliar to NBA experts

in two ways: the problem is presented in the abstract language of jars and marbles instead

of games and probabilities, and the proportions of marbles in jars are imposed, whereas the

game-by-game probabilities are elicited from the experts themselves.2 Research in cognitive

2Reporting the game-by-game probabilities may help familiarize the respondent with the series.
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science shows that individuals have difficulty transferring expertise from a specific to an

abstract domain (Loewenstein, 1999)—e.g., solving an algebra problem after learning to

solve a conceptually identical problem in physics (Bassok and Holyoak, 1989).3 Analogously,

NBA experts have difficulty applying skills learned from games and teams to an abstract,

though formally equivalent, question involving jars and marbles. Our results suggest that the

internal consistency displayed by the experts in the NBA is learned implicitly. While many

of our expert subjects have statistical training, few explicitly calculate summary statistics

for the complex distributions they are asked to assess. Instead, NBA experts may possess

separate intuitions for 1) outcomes of games, and 2) the outcomes of the series, and it may

be that with experience, these intuitions become consistent.

Our second set of results measures improvement in the unfamiliar environment by com-

paring performance across the 4 matched sequences—which are randomly ordered—finding

that accuracy increases with repetition. For the series probability, the average error drops

from 16 percentage points for the first and second sequences to 11 percentage points for

the third and fourth, a decline that is statistically significant but insufficient to reach the

7 percentage point rate in the NBA context. For the most likely series outcome, repetition

erodes the effect of unfamiliarity completely.

This improvement likely does not reflect a conceptual understanding of how to calculate

summary statistics for complex distributions. For the fifth sequence, in which all jars have

95 black marbles, the majority of experts report a series probability of 95%, an apparently

intuitive response that contrasts with the correct answer of greater than 99.98%. Instead, the

3The Wason selection task offers a complementary insight: when problems are rendered in familiar, rather
than abstract terms, subjects prove more capable. In its abstract form, the Wason task presents subjects
with four cards on a table marked ‘A’, ‘K’, ‘2’, and ‘7’, respectively. Subjects are told that each card has a
letter on one side and a number on the other. A logical rule is stated: If there is an ‘A’ on one side, then
there is a ‘2’ on the other side. Subjects are then asked to turn over those cards, and only those cards, that
determine whether the rule is violated. In this rendering, few subjects recognize the “if P , then not Q” logic
and turn over ‘A’ and ‘7’. However, many more choose correctly when the logic is framed in familiar terms,
such as “If a player wins a game, then he will have to treat the others to a round of drinks.” (Gigerenzer
and Hug, 1992)
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experts either learn to apply their domain expertise as they become more familiar with the

problem, or they refine a heuristic separate from their expertise. We arbitrate between these

interpretations by assigning the same jars-and-marbles problems to a population of compar-

atively able novices on Mechanical Turk, calibrating performance incentives to match first-

and second-round accuracy between the experts and novices. We find that with repetition,

the novices improve only marginally—and more slowly than the experts—suggesting that

expertise plays a role in the experts’ improvement on the unfamiliar task.

Collectively, our results speak to a debate about the generalizability of findings from

the laboratory to field contexts of interest (e.g. Levitt and List, 2007a,b, 2008; Falk and

Heckman, 2009; Camerer, 2011; Al-Ubaydli and List, 2013). In particular, the main result

that unfamiliarity restricts the portability of expertise raises questions about the extent

to which behavior by experts in abstract laboratory settings (e.g. Haigh and List, 2005;

List and Haigh, 2005; Harrison and List, 2008) predicts behavior by those actors in more

familiar contexts. Our results also speak to questions about the influence of unfamiliarity

on non-experts. In contrast to many laboratory experiments in social psychology, in which

elements of familiar environments are recognizable, the convention in economics is to render

laboratory experiments in abstract terms, in which theoretical concepts like incentives and

beliefs are readily identifiable, but contextual cues are not (Hertwig and Ortmann, 2001).4

Our results indicate that individuals behave differently in abstract laboratory environments

than in the conceptually similar environments with which they are familiar.

Our findings also show that establishing familiarity through repetition can bring outside

experience to bear in the lab. We observe that rates of improvement on an unfamiliar task

are correlated with underlying expertise. As a result, laboratory subjects who learn quickly

may have stronger external validity, making them a useful sub-sample for analysis.

4Of course, there are many exceptions (e.g. Kessler and Roth, 2014).
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2 Related Literature

Two sets of studies on experts, one with professional soccer players and a second with

chess grandmasters, examine the portability of expertise to traditional laboratory games.

Chiappori, Levitt and Groseclose (2002) and Palacios-Huerta (2003) show that in professional

soccer, penalty kicks are consistent with minimax predictions: kickers and goalies appear to

randomize directions in proportion to expected payoffs. In order to measure the portability

of this expertise in randomization, Palacios-Huerta and Volij (2008) and Levitt, List and

Reiley (2010) invite professional soccer players to play stylized card games with simple

mixed strategy equilibria. Palacios-Huerta and Volij (2008) find that experts’ card play is

consistent with minimax predictions, and considerably more so than non-experts, though

Wooders (2010) arrives at the opposite conclusion from the same data. By contrast, Levitt

et al. (2010) find that professional soccer players playing the same card game randomize

as poorly as non-experts. One concern is that soccer players may not expertly play mixed

strategies in the field—tests of optimal randomization in penalty kicks are underpowered

(Kovash and Levitt, 2009), and a failure to reject the null of optimal play does not imply

optimal play. Levitt et al. (2010) find that professional poker players, whose expertise in

randomization is arguably less ambiguous than that of soccer players,5 do not apply that

expertise in the lab.

Similarly inconsistent results are found when chess grandmasters, who are presumably

skilled in backward induction, play stylized games that purport to test that skill. Whereas

Palacios-Huerta and Volij (2009) find that each of the 26 grandmasters in their study play

the Nash equilibrium prediction—stopping at the first node when playing the centipede game

against other grandmasters—Levitt, List and Sadoff (2011) find that each of their 16 grand-

5One justification for this argument is that experience is more frequent for poker players than for soccer
players: poker players play many hands in a sitting, whereas soccer matches end in penalty kicks infrequently,
and when they do, relatively few kicks decide the game.
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masters deviate from the backward induction prediction in the centipede game, choosing to

cooperate rather than play the Nash equilibrium. One concern is that the centipede game

is a poor conceptual replica of chess because it allows for cooperative equilibria. Addressing

this concern, Levitt et al. (2011) show that grandmasters exhibit greater skill when playing

the “race to 100” game, which like chess is winner-take-all. However, seemingly incidental

rule changes (e.g., whether the game can be maximally incremented by 9 or 10) nevertheless

induce large changes in behavior.

One interpretation of these conflicting results is that studies which compare expert be-

havior across vastly different environments have difficulty isolating the effect of unfamiliarity

on expertise. For instance, subtle framing effects may differ between purportedly comparable

designs. In the centipede game, these framing effects may motivate one group of subjects to

play “the right way” and another to make the most money. By contrast, our study lessens

the distance between familiar and unfamiliar domains, allowing us to more credibly measure

the portability of expertise.

A separate literature measures the degree to which preferences, rather than expertise,

correlate across lab and field. The findings here are mixed: in some cases, preferences in the

lab predict those in the field (e.g. Benz and Meier, 2008), and in other cases, they do not

(e.g. List, 2006; Stoop, Noussair and Van Soest, 2012). For a review, see Camerer (2011).

3 NBA playoff predictions

The ESPN sports network regularly surveys a panel of more than one hundred basketball

writers, sportscasters, analysts, and executives. From 2013-15, an ESPN editor asked this

panel to predict outcomes of NBA playoff series. During the 2014 playoffs, ESPN also sur-

veyed readers of the TrueHoop blog on ESPN.com, asking them an identical set of questions

as the experts. All respondents were told that their predictions would be published on
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ESPN.com; no further incentives were offered. Respondents were unaware that their re-

sponses would be evaluated for internal consistency or used for any other research purpose.

NBA playoff series follow a best-of-7 format: the first team to win 4 games wins the

series, and games 5, 6, and 7 are only played if neither team has won 4 games up to that

point. We refer to the series home team as the team that plays at home for game 1, and

we restrict our analyses to the common format, in which the series home team also plays

at home for games 2, 5, and 7. Each survey asked first for the probability that the series

home team will win each game of the series—7 probabilities total, with those for games 5,

6, and 7 conditioned on that game being played. Respondents chose these game-by-game

probabilities from 11 options: every 10 percentage points from 5% to 95%, as well as 50%.

Respondents were then asked to choose the most likely series outcome of the series from

among 8 mutually exclusive and completely exhaustive options—i.e., series home team in 4,

5, 6, or 7 games, or series road team in 4, 5, 6, or 7 games. We denote an outcome as the

pair of games won by the series home team and series road team; for example, 4-1 implies

that the series home team wins the series 4 games to 1. Beginning in 2014, respondents were

also asked to report the probability that the series home team will win the series. For this

question, respondents typed in a number, which we round to the nearest percent. With the

exception of the game 1 probability, none of these quantities are reliably estimated by Vegas

betting lines or prediction markets prior to game 1.6 Appendix A shows examples of the

survey invitation and the online survey form. Our sample comprises 165 experts, who each

complete between 1 and 32 surveys over the observation window (with a median of 6 and

mean of 9) for a total of 1480 responses (1010 of which have series probability predictions),

as well as 472 reader responses over 2 series.7

6Betting lines and prediction market securities for individual games are only traded immediately prior to
that game. In some cases, markets exist for series outcomes prior to the start of the series, but these are
frequently illiquid.

7This count reflects removal of 7 reader responses which report impossible most likely series outcomes—
i.e., fewer than 4 wins for both teams or at least 4 wins for both teams. Unfortunately, inconsistent name
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We first evaluate the internal consistency of each response under the assumption that

the reported game-by-game probabilities are sequentially independent; later, we relax this

assumption. Specifically, we compute the probability of each potential series outcome—e.g.,

series home team winning in 5 games, 4 games to 1—by multiplying the associated game-

by-game probabilities.8 The implied series probability is the cumulative probability among

series outcomes of 4-0, 4-1, 4-2, and 4-3—i.e., in which the series home team wins the series.

The implied most likely series outcome is the series outcome with the highest probability.

We measure the internal consistency of a prediction by its absolute error. For the series

probability, the absolute error is the difference between the reported and implied values; for

the most likely series outcome, the absolute error is the difference between the probability

of the reported most likely series outcome and the probability of the implied most likely

series outcome. For example, a commonly reported sequence of game-by-game probabilities

assigns the series home team a 65% chance of winning games 1, 2, 5, and 7 (which the

series home team plays at home) and a 45% chance of winning games 3, 4, and 6 (which

the series home team plays on the road). Assuming sequential independence, these game-

by-game probabilities imply that 1) the series home team has a 64.1% chance of winning the

series, and 2) the most likely series outcome is the series home team winning 4 games to 3,

which occurs with probability 20.2%. Hence, a reported series probability of, say, 60% has

an error of 4.1 percentage points, and a reported most likely series outcome of 4-1, which

occurs with 19.6% probability, has an error of 0.6 percentage points. Reported game-by-game

probabilities typically imply series probabilities and most likely series outcome probabilities

that are distant from 0 or 1, alleviating boundary concerns in our measure of absolute error.9

reporting prevents us from identifying multiple responses from the same reader.
8For example, P (4−1) = p1·p2·p3·(1−p4)·p5+p1·p2·(1−p3)·p4·p5+p1·(1−p2)·p3·p4·p5+(1−p1)·p2·p3·p4·p5,

where pn is the series home team’s probability of winning game n.
916% of game-by-game probabilities reported by experts and 24% of game-by-game probabilities reported

by readers imply series probabilities either greater than 90% or less than 10%. Every reported sequence of
game-by-game probabilities by either experts or readers implies a most likely series outcome that occurs
with intermediate probability—between 15% and 81%.

10



Figure 1: NBA playoffs: experts vs. readers.
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(b) most likely series outcome
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Note: Experts exhibit greater internal consistency than readers. The distribution of expert
responses stochastically dominates the distribution of reader responses in both graphs. p-
values for the Kolmogorov-Smirnov (KS) and Mann-Whitney (MW) tests of distributional
equivalence are reported in the figure legends.

Figure 1 shows the empirical cumulative distribution function of the absolute error—i.e.,

the share of responses for which absolute errors are less than or equal to a given value—for

the series probability (1a) and the most series likely outcome (1b). Experts exhibit high

levels of internal consistency, both in absolute terms and relative to readers. In Figure 1a,

52% of expert responses report a series probability within 5 percentage points of its implied

value, compared to 34% of readers; 78% of expert responses are within 10 percentage points,

compared to 54% of readers. In Figure 1b, 49% of expert responses report the most likely

series outcome implied by their game-by-game predictions, compared to 39% of readers.

For both the series probability and most likely series outcome, the distribution of expert

responses stochastically dominates the distribution of reader responses. Graphically, the

cumulative distribution of expert responses lies above and to the left of the reader curve.

For every level of inconsistency, proportionally more expert than reader responses exhibit

that amount of inconsistency or less.
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We measure the statistical significance of the difference in consistency between experts

and readers using two-sample Kolmogorov-Smirnov (KS) and Mann-Whitney (MW) rank-

sum tests, which test the null hypothesis that two empirical distributions are drawn from

the sample population. p-values for these tests are reported in the legends of Figures 1a

and 1b. For each summary statistic, both tests reject the null hypothesis, implying that

experts demonstrate statistically greater internal consistency than readers.10

Experts also outperform a set of heuristics when reporting the series probability. The

mean absolute error among expert responses is 6.7 percentage points. If each expert had

instead reported a series probability equivalent to his or her reported game 1 probability, or

to the mean, median, or mode of his or her reported game-by-game probabilities, the mean

absolute error would have been 8.3, 8.6, 9.6, and 9.4 percentage points, respectively. The

differences in mean error between each of these heuristics and the actual expert responses

are all significant at the p < 10−4 level. By contrast, reader responses underperform most

of these heuristics. The mean error rate among reader responses is 12.9 percentage points,

compared to 10.9 percentage points (p = 0.001), 9.7 percentage points (p < 10−4), and 10.0

percentage points (p < 10−4) for the mean, median, and mode of the sequence of game-by-

game probabilities; reporting the game 1 probability as the series probability yields greater

inconsistency, with an average error of 14.3 percentage points (p = 0.032).

One concern with the comparison between experts and readers is that the two groups

may differ in the sequences of game-by-game probabilities they report. In particular, differ-

ences in internal consistency could merely reflect differences in the difficulty of evaluating

summary statistics from reported game-by-game probabilities. In Appendix B, we show

10This implication only follows if one sample stochastically dominates the other. If instead, the empirical
cumulative distribution functions cross, then both the KS and MW tests may reject the null hypothesis even
if it is not clear that one population is more internally consistent than the other. However, in all cases in
this paper for which two-sample KS and MW tests reject the null hypothesis, inspection of the empirical
cumulative distribution functions reveals first-order stochastically dominance over the vast majority of the
range.
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that differences in observed consistency cannot be explained by differential selection of the

game-by-game probabilities. Specifically, we show that it is impossible to construct a large

matched sample—in which the distribution of game-by-game probabilities is equivalent for

experts and readers—for which readers demonstrate greater internal consistency than ex-

perts.

A second concern is our assumption of sequential independence—i.e., that the outcome of

a game, should it be played, does not depend on the outcomes of games earlier in the series.

Here, we relax the assumption of sequential independence, showing that reported series prob-

abilities are inconsistent with dependence structures that diverge greatly from our sequence

independence assumption. Specifically, we assume a flexible dependence framework in which

game outcomes are conditional on the current series score (e.g., 2-1 in favor of the series home

team), and reported game-by-game probabilities represent unconditional estimates. Under

this sequential dependence structure, a sequence of game-by-game probabilities identifies a

range of implied series probabilities, rather than the single implied value identified by the

sequential independence assumption.

That range is typically quite large. Figure 2 shows bounds on the implied series proba-

bilities for the most commonly reported game-by-game probabilities; Appendix C details the

estimation. For many commonly reported sequences, the range of implied series probabilities

is 20 percentage points or more. If experts possess dependence structures that deviate maxi-

mally from independence, and they evaluate series probabilities according to those structures,

then they would report series probabilities that differ from the implied value under indepen-

dence by 10 percentage points or more. However, nearly 80% of reported series probabilities

by experts are within 10 percentage points of their implied values under independence.

Hence, for experts to believe in strong sequential dependence, they would either have to

evaluate those beliefs precisely almost every time, or they would have to systematically mis-

evaluate those beliefs in the direction of the implied value under independence. We contend
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Figure 2: Bounds on the implied series probability for sequences of game-by-game proba-
bilities reported at least 4 times by experts.
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Note: Bounds were estimated by minimizing and maximizing the series probability over the
unobserved conditional game-by-game probabilities subject to the observed unconditional
game-by-game probabilities.

that a more likely interpretation is that the experts report game-by-game probabilities as if

game outcomes are more or less independent events.11

Collectively, these results suggest that the experts we study possess expertise in a task

that is familiar to them. The next set of studies asks whether that expertise can be applied

to an unfamiliar yet conceptually identical task, or equivalently, whether the nature of that

11This analysis also shows that differences in dependence structures cannot explain observed differences
in consistency between experts and readers, as the disparity persists even when allowing for sequential
dependence. We find that 87% of reported series probabilities by experts fall within the estimated dependence
bounds, compared to just 67% for readers.
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expertise is a general skill in evaluating summary statistics of complex distributions or is

instead context specific.

4 Jars and marbles

Six months after the conclusion of the 2015 NBA playoffs, the same ESPN editor asked the

expert panel to participate in a survey “designed to improve ESPN’s NBA playoffs forecast-

ing...[and] to contribute to academic research.”12 We designed the survey to conceptually

mimic the playoff prediction task in an unfamiliar environment. Specifically, the survey de-

scribed 7 ordered jars, each with 100 marbles total. Marbles were either black or red, and

the proportions of black and red marbles in each jar were explicitly stated. Figure 3 shows

an example problem from the survey, with 55 black marbles and 45 red marbles in jars 1, 2,

5, and 7, and 45 black marbles and 55 red marbles in jars 3, 4, and 6.

Subjects were told, “One marble will be drawn randomly from each jar in order, starting

with Jar 1 and ending with Jar 7.” They were then asked to state 1) the probability that at

least 4 of the 7 drawn marbles would be black, and 2) the color and jar combination from

which they expect the 4th marble of the same color to be drawn from. (For the example

in Figure 3, 4 or more black marbles are drawn with 51.6% probability, and the most likely

outcome is that the 4th black marble will be drawn from the 7th jar.) For the first question,

subjects typed in a percentage, which we round to the nearest percent. For the second

question, subjects chose from among the 8 possible options—red in the 4th, 5th, 6th, or

7th jar, or black in the 4th, 5th, 6th, or 7th jar. This abstract problem is conceptually

analogous to the structure of an NBA playoff series: the jars and marbles represent games

and game-specific probabilities, respectively, and the questions ask for the series probability

and the most likely series outcome. Contextual differences make the task unfamiliar: jars

12Pre-registration documents are available at www.etangreen.com. Appendix D shows an example of the
survey invitation.

15

www.etangreen.com


Figure 3: Example survey page.
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and marbles abstract away from teams and games, and participants observe sequences of

proportions instead of reporting game-by-game probabilities.

Respondents completed a personalized survey comprising five sets of jars-and-marbles

problems, with each set on a separate page. The first four pages showed sequences in which

the proportions of black marbles replicated game-by-game probabilities reported by the same

respondent for an NBA playoff series.13 Matching marble proportions to game-by-game

probabilities allows us to compare performance by the same expert on a formally identical

problem. The fifth page showed the same sequence to all respondents: 7 jars containing 95

black marbles (and 5 red marbles) each. This sequence measures conceptual understanding

at the end of the survey. The first four pages were randomly ordered, and respondents could

not navigate to previously completed pages.

We designed this survey after a pilot study found poor performance by the expert panel

on a jars-and-marbles problem of the same format. In the pilot study, the marble propor-

tions were common to all participants and corresponded to a frequently reported sequence

of game-by-game probabilities for an NBA playoff series.14 We then compared responses

by survey participants to NBA predictions made by a non-overlapping set of experts, find-

ing far higher accuracy in the NBA domain.15 However, this performance gap may be

13When an expert reported more than 4 unique sequences of game-by-game probabilities for NBA playoff
series, we choose the 4 sequences that maximize the minimum distance between any two sequences, where
distance is defined as the sum of the absolute differences in game-by-game probabilities across the 7 games.
When an expert reported fewer than 4 unique sequences, we include commonly reported (but unmatched)
sequences to fill the difference. We analyze only the sequences that are matched by respondent across the
familiar and unfamiliar contexts.

14The sequence comprised 65 black marbles in jars 1, 2, 5, and 7, and 45 black marbles in jars 3, 4, and 6;
respondents also evaluated two other sequences with marble proportions that did not mimic game-by-game
probabilities for a typical NBA playoff series.

1529 experts completed this pilot survey. In the NBA domain, 17 responses report this sequence and
evaluate the most likely series outcome; 13 of these also evaluate the series probability. Of these 13, none
reports a series probability more than 12 percentage points from the correct value. By contrast, 9 of the
29 experts (31%) who take the pilot survey do so. The difference is similarly extreme at a 5 percentage
point cutoff: 9 of 13 (69%) NBA responses are within this error bound, compared to just 8 of 29 (28%)
pilot survey responses. For the most likely series outcome, 11 of 17 (65%) NBA responses provide the exact
implied value, compared to just 14 of 29 (48%) pilot survey responses.
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explained by unobserved differences between these groups, rather than differences in contex-

tual cues. By matching marble proportions to game-by-game probabilities reported by the

same respondent, this study allows for within-respondent comparisons—thereby alleviating

selection concerns, isolating the effect of the unfamiliarity on the portability of expertise,

and providing stronger evidence in support of the conclusion that the experts fail to apply

their expertise in the unfamiliar domain.16

Of the 119 experts solicited, 44 reported estimates for at least one sequence. This par-

ticipation rate compares favorably to a coterminous ESPN poll, in which a superset of 382

basketball experts were asked to rank NBA players using an online survey, and 98 partici-

pated in some capacity. Moreover, the experts who participate in the marbles survey show

similar levels of consistency on the NBA prediction task as the experts who do not partici-

pate.17 For our initial results, in which we compare performance on matched sequences across

domains, we analyze the 143 matched sequences from all 44 study participants. However,

13 of these participants did not complete four matched sequences. When we later compare

performance across domains at the respondent level, we restrict our analyses to a subsample

of 124 matched sequences from the 31 participants who each completed four matched se-

quences. All p-values for mean comparisons reported in this section are from two-way tests

with standard errors clustered by respondent.

Low motivation, a concern in many laboratory experiments, does not appear to plague

our study. The median completion time is 9 minutes and 7 seconds, or almost 2 minutes per

16The pilot study raises a second concern—that performing multiple studies on the same population may
corrupt responses in later studies. In particular, practice with problems of the same format should enhance
subsequent performance, rather than diminish it. As a result, this dynamic suggests that our findings of
poor performance on the second study are conservative. Without practice on a pilot study, the experts
presumably would have performed even worse.

17For the series probability, the mean error for the series probability was 7.3 percentage points for survey
participants, compared to 6.3 percentage points for non-participants (p = 0.126). For the most likely series
outcome, 51% of survey participants predicted the implied most likely outcome, compared to 50% of non-
participants (p = 0.687). Note that for survey participants, these figures reflect performance on all NBA
responses, not just matched sequences.
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page, and the minimum completion time is 3 minutes and 23 seconds.18 Error rates for those

who finish the survey faster than the median completion time and slower than the median

are statistically indistinguishable, suggesting that the fastest finishers do not greatly sacrifice

accuracy.19 Also indicative of attentiveness, respondents round their series probabilities to

the nearest 5% less often when evaluating jars and marbles (rounding on 55% of responses)

than when predicting NBA playoff outcomes (68%), a statistically significant difference (p =

0.028) Finally, one subject appeared to solve the problems either mathematically or by

simulation, taking more than 20 minutes and correctly answering each question to the nearest

percentage point or game. A second respondent, who sent a spreadsheet to the editor,

correctly reported each series probability to the nearest percent, but chose the correct most

likely series outcome for only two of the five sequences.

Despite their apparent attentiveness, the experts are generally unable to apply their

expertise in the unfamiliar study setting. Figure 4 shows cumulative distributions of absolute

error for the NBA and jars and marbles responses, separately for the series probability (4a)

and most likely series outcome (4b). Error rates are considerably lower in the familiar

domain. 54% of NBA responses report series probabilities within 5 percentage points of

their implied values, whereas only 28% do so when the same problem is rendered abstractly.

Similarly, 81% of NBA responses are within 10 percentage points of their implied values,

compared to just 44% for the jars and marbles task. The mean error rate in the unfamiliar

domain is more than twice as high as the corresponding rate in the NBA: 13.5% to 6.6%

(p < 0.001). Comparable results pertain for the most likely series outcome: 59% of NBA

responses predict the implied most likely series outcome, but only 47% do so in the unfamiliar

18Completion times are not comparable with the NBA context because the NBA playoff surveys elicited
individual game probabilities in addition to series outcomes. We also note that completion times may reflect
time not spent on the survey while the survey window was open.

19For the series probability, mean absolute error by respondent is 14% for the fastest 18 finishers and 13%
for the slowest 18 (p = 0.661). For the series probability, the fastest 18 respondents choose the correct most
likely series outcome 44% of the time, while the slowest 18 respondents make the correct choice 50% of the
time (p = 0.597).
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Figure 4: NBA playoff predictions vs. jars and marbles.
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Note: The sample comprises 143 matched responses, in which the proportions of black
marbles in each jar are identical to those reported by the expert for an NBA playoff series.
The distribution of absolute error in the NBA stochastically dominates the distribution of
absolute error on the matched jars-and-marbles problems, implying that experts fail to apply
their expertise to the unfamiliar task.

domain (p = 0.038). For both the series probability and most likely series outcome, the error

distribution for NBA responses stochastically dominates the error distribution for the jars

and marbles task—i.e., there is no error level for which more marbles than NBA responses

fall at or under that threshold. The probability that the error distributions are drawn from

the same population is less than 10−7 for the series probability, regardless of whether the

Kolmogorov-Smirnov or Mann-Whitney test is used. For the most likely series outcome, the

error distributions are significantly different under the MW test (p = 0.031) but not under

the KS test (p = 0.207). In sum, the experts prove largely unable to apply their expertise in

an unfamiliar domain. Moreover, they fail to solve problems that are formally identical to

those they solved before.

Unfamiliarity not only erodes performance—it decouples performance between the fa-

miliar and unfamiliar domains. Figure 5 shows scatter plots of absolute error in series
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Figure 5: Series probability error rates across domains.
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(b) Mean error by expert: ρ = 0.08
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Note: The sample is restricted to 124 responses by the 31 experts who each complete 4
matched sequences. The solid line represents the best linear fit. Expert performance is
weakly correlated across contexts.

probability judgements by context; Figure 5a compares errors for each matched response,

and Figure 5b compares mean error rates by respondent. Performance in one context poorly

predicts performance in the other: errors in series probability judgements are correlated at

0.19 by response and 0.08 by respondent. The decoupling is similarly severe for evaluations

of most likely series outcomes. Correctness in these judgements is correlated across contexts

at just 0.08, and mean correctness by respondent is correlated at 0.23. Performance in one

domain poorly predicts performance in the other.

We also find that exposure makes the abstract domain more familiar: with practice, per-

formance improves. Figure 6 shows cumulative distributions of absolute error for the first

two matched sequences and the last two matched sequences, separately for the series prob-

ability (6a) and most likely series outcome (6b). The four matched sequences are randomly

ordered, implying equivalence in average difficulty from round 1 to round 4. Yet in both
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Figure 6: Jars and marbles: rounds 1 & 2 vs. rounds 3 & 4.
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Note: The sample is restricted to 124 responses—62 in rounds 1 and 2, and 62 in rounds 3
and 4—by the 31 experts who each complete 4 matched sequences. p-values for the KS and
MW tests refer to comparisons between the first two and last two matched rounds of the
jars study. Expert performance improves with repetition.

figures, the error distributions for the third and fourth rounds stochastically dominate the

error distributions for the first and seconds rounds—i.e., error rates decrease with repetition.

For the series probability, neither distributional test can reject the null hypothesis that initial

and subsequent performance are equivalent. For the most likely series outcome, however,

the difference is more pronounced, and both the KS (p = 0.085) and MW (p = 0.043) tests

reject equivalence at conventional significance levels. Mean comparisons show improvement

on both questions, particularly for the most likely series outcome. The average error for the

series probability declines from 15% in rounds 1 and 2 to 11% in rounds 3 and 4 (p = 0.039),

though this improvement falls short of the 6.9% mean error for matched NBA responses

(p = 0.019). For the most likely series outcome, just 35% of jars responses report the correct

choice in the first two rounds, but 56% do so for the last two matched sequences (p = 0.017),

which is comparable to the 57% rate for matched NBA responses (p = 0.923). With just

a few repetitions, the experts more accurately judge series probabilities, and they evaluate
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most likely series outcomes as if predicting predicting playoff series rather than solving an

abstract exercise.

These results show that the experts improve with repetition, but what exactly are they

learning? We can rule out the possibility that they learn the underlying probabilistic struc-

ture. The fifth and final sequence, in which each of the 7 jars contains 95 black marbles

and 5 red marbles, has a series probability of 99.98%—i.e., drawing 4 or more black marbles

is virtually guaranteed.20 However, 60% of experts report a series probability of 95%, an

intuitively appealing choice that reflects a conceptual misunderstanding of the binomial dis-

tribution; by contrast, only 27% report a series probability of 99 or 100%. (Experts report

the corresponding sequence of game-by-game probabilities 4 times for NBA playoff series,

and each time they select a series probability of 99% or 100%.) Two possible interpretations

remain. Either the experts learn to apply their expertise to the formally identical problem,

or they develop an adaptive heuristic that is independent of their expertise.

We arbitrate between these interpretations—learning to apply expertise, or learning an

orthogonal heuristic—by recruiting a sample of non-experts to complete the same jars and

marbles surveys.21 We match initial performance on the marbles exercise between experts

and non-experts by calibrating the incentives offered to non-experts.22 This equivalence on

initial performance indicates that the populations are comparable on ability and motivation.

Presumably, they differ on expertise. We find that the non-experts improve more slowly

20For this sequence, the true most likely series outcome coincides with perhaps the most intuitive response,
and 90% of experts choose the correct most likely series outcome of “The 4th black marble will be drawn
from Jar 4.”

21Pre-registration documents are available at www.etangreen.com.
22We calibrated the payment scheme so as to match the non-expert and expert samples on average perfor-

mance over the first two sequences. Specifically, we ran four pilot studies with fewer subjects, and each with
different incentives. In the first pilot, subjects were paid $1 for completing the survey and no performance-
based payment. In the second pilot, subjects were paid 50 cents for completion, along with performance
incentives of up to $3. In the third and fourth pilots, subjects were paid performance incentives of up to $4
and $6, respectively, with no payment for completion. Initial performance—i.e., in the first two rounds—
generally increased with the performance-based incentives and by the fourth pilot, matched the average
initial performance of the experts on the same sequences. As a result, we implemented the payment scheme
from the fourth pilot in the subsequent study.
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than the experts, suggesting that expertise accelerates improvement on the unfamiliar task.

However, we note that expertise is not randomly assigned, and as such, we cannot rule out

the possibility that differences along dimensions other than expertise explain the observed

differences in learning rates.

Specifically, we recruited a panel of respondents on Amazon Mechanical Turk.23 We

advertised a survey about probabilistic judgement for academic research, comprising 5 prob-

lems of an identical format and 10 questions total, and with payment based on correctness—

between $0 and $6, with an expected average of $2.24 Subjects were not given any further

guidance about how long the survey would take to complete or how the bonus would be

calculated. We replicated the 31 surveys for which experts completed 4 matched sequences,

and we randomly assigned non-experts to these surveys. For each of the 31 surveys, we

analyze the first 4 responses from non-experts who take at least 2 minutes to complete the

survey,25 creating a sample of 496 balanced responses from 124 respondents. We compare

this non-expert sample to the 124 responses from the 31 experts who evaluate the same

sequences.

Figure 7 shows cumulative distributions of absolute error for non-experts, separately for

the first two sequences (solid) and the last two sequences (dashed), and separately for the

series probability (7a) and most likely series outcome (7b); for comparison, we superimpose

the expert results from Figure 6 in gray. First, we highlight the similar performance of

experts and non-experts in rounds 1 and 2, demonstrating the effectiveness of our matching

procedure. For the series probability, error distributions in rounds 1 and 2 are overlapping

23Appendix D shows the instructions on Mechanical Turk. Conducting experiments on crowdsourcing
platforms, such as Mechanical Turk, has risen greatly in popularity in recent years (Mason and Suri, 2012)
and a body of research has shown that these subjects replicate the behavior of traditional laboratory subjects
in many experiments (e.g. Berinsky, Huber and Lenz, 2012; Paolacci, Chandler and Ipeirotis, 2010; Goodman,
Cryder and Cheema, 2013).

24The actual average payment was $1.70.
25Despite the performance-based incentives, some Mechanical Turk respondents complete the problems

too quickly to have considered them in a thoughtful way. We committed to this restriction criterion in
pre-registration.
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Figure 7: Rounds 1 & 2 vs. rounds 3 & 4.
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matched to 124 responses by 31 experts. Non-experts improve marginally with repetition
and more slowly than experts, especially on the most likely series outcome question.

for experts and non-experts, and the difference between the populations is statistically indis-

tinguishable by either the KS (p = 0.999) or MW (p = 0.975) test. In the first two rounds,

mean error for the series probability is 15% for both groups (p = 0.860). For the most

likely series outcome, non-experts make the correct choice on 36% of first and second round

responses, compared to 35% for experts (p = 0.900), and neither distributional test rejects

the null hypothesis of equivalence between the populations (KS: p = 0.552; MW: p = 0.458).

However, experts and non-experts differ on other observables. Median completion times are

6 minutes and 18 seconds for non-experts and 8 minutes and 52 seconds for this subsample

of experts (p = 0.008). 65% of series probabilities reported by non-experts are rounded to

the nearest 5 percentage points, compared to 53% for expert responses (p = 0.013). And on

the common fifth sequence, 15% of non-experts and 27% of experts report 99% or 100% for

the series probability, while 77% of non-experts and 90% of experts choose the correct most

likely series outcome. These comparisons suggest that while experts and non-experts are
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closely matched on initial performance, they differ along dimensions other than expertise.

Second, we compare rates of improvement for experts and non-experts. For the series

probability, experts and non-experts improve at similarly slow rates. In Figure 7a, the two

populations appear matched not only in rounds 1 and 2, but also in rounds 3 and 4. Relative

to the first pair of sequences, mean error for non-experts declines by 1.7 percentage points

when evaluating the second pair, compared to a decline of 4.1 percentage points for experts,

and the difference in these declines is not significantly different from zero (p = 0.271).

Divergence between the populations is more stark for the most likely series outcome. In

Figure 7b, the distribution of expert error in rounds 3 and 4 stochastically dominates the

corresponding distribution for non-experts, and the difference between the populations is

statistically significant under both the KS (p = 0.022) and MW (p = 0.013) tests. Experts

learn to identify the most likely series outcome while non-experts do not. Non-experts choose

the correct most likely series outcome at the same rate in rounds 1 and 2 as in rounds 3 and

4. Experts, by contrast, improve by 21 percentage points, and these rates of improvement

differ significantly (p = 0.023). We interpret this result to imply that expertise in a formally

identical problem accelerates learning in an unfamiliar setting.

5 Conclusion

This paper shows that unfamiliarity restricts the portability of expertise. We study experts

who are adept at making difficult probabilistic judgements on a familiar task. And we

find that these experts fail to apply their expertise on a formally identical but contextually

distinct problem. Their expertise is not conceptual mastery but something more intuitive

and context dependent. When the problem is made unfamiliar, their expertise fades.

We make the problem unfamiliar by manipulating the contextual cues that experts ob-

serve. This is akin to a worker who takes a similar job at a different firm or in a different
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industry—for instance, a buyer in a department store who moves from housewares to jewelry,

or an agent who negotiates first on behalf of musicians and then on behalf of athletes. Our

results suggest that such actors develop expertise intuitively, and then fail to apply that

expertise in unfamiliar, but conceptually analogous, environments.

Problems can be made unfamiliar in other ways—for instance, when parameters change.

A number of laboratory experiments show that learning does not necessarily imply conceptual

mastery. In the repeated common-value auctions studied by Kagel and Levin (1986) and

described earlier, subjects learn to avoid the winner’s curse with practice, only to experience

it again when the number of bidders changes. In a similar vein, Neelin, Sonnenschein and

Spiegel (1988) observe sequential bargaining games with discounting,26 in which subjects

play a 2-round game, followed by a 3-round game, followed by a 5-round game. After a

practice game, subjects make the subgame-perfect first offer in the initial 2-round game, but

they continue to make similar first offers when the number of rounds increases, even though

doing so is off the equilibrium path. In our experiment, experts improve with repetition of

the jars-and-marbles problem. Yet when shown a final version with unfamiliar values, they

reveal a conceptual misunderstanding of the binomial distribution. Evidently, slight changes

in context or cues can deprive an expert of the benefits of her expertise.

26In these games, two players exchange offers over how to split a shrinking pie. In the first round, one
player offers a split. If the second player rejects the split, she makes a offers a split of a smaller sum. This
sequence alternates until either one player accepts an offer, in which case the pie is divided as agreed to, or
the pie disappears completely.
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Appendix for online publication

A Materials from the NBA playoff forecasting study

Figure 8: Example invitation for experts (email)

Figure 9: Example invitation for readers (blog post)
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Figure 10: Example survey, first page.
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Figure 11: Expert forecast published on ESPN.com
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B Selection of probabilities

One concern is that the differences between expert and reader responses in Figure 1 may

result from asymmetries in the task, rather than differences in consistency. At issue is that

each response reports both game-by-game probabilities and statistics which summarize that

sequence—i.e., respondents choose the distributions they evaluate. In particular, readers

may choose sequences whose implied series probabilities and most likely series outcomes are

more difficult to compute than the implied values of sequences chosen by experts.

To address this concern, we construct the largest possible matched sample in which the

distribution of sequences is identical for experts and readers.27 While there are more than

half a billion combinations of expert and reader responses that produce such a sample, there

are zero such samples—for either the series probability or the most likely series outcome—

in which the net area between the cumulative distributions of expert and reader errors is

negative. In other words, it is impossible to construct a large matched sample in which

experts exhibit greater inconsistency than readers.28

A related concern is that experts may more frequently than readers report summary

statistics near the midlines of their respective ranges—i.e., 50% for series probabilities and

4-3 or 3-4 for most likely series outcomes—thereby restricting their maximum error relative

to readers. This supposition is inconsistent with the data, as distributions of summary

statistics are comparable for experts and amateurs. While readers tend to report extreme

series probabilities more often than experts, those series probabilities correspond to the

27For the series probability (most likely series outcome), we restrict the full set of responses to the 20 (24)
sequences that experts and readers each report at least once. Of these, 11 (14) have an identical number
of expert and reader responses. We sample among the remaining 9 (10) sequences, in each sample selecting
from the panel with more responses for that sequence. Each matched sample contains 24 (30) responses for
sequences that are matched perfectly in the data and 38 (30) responses for sequences that sampled from the
matched sequences. That is, each matched sample contains 62 (60) responses—31 (30) from experts and 31
(30) from readers—43 (45) of which are identical across samples, and 19 (15) of which vary.

28This statement is based on the most extreme match—in which the most inconsistent expert responses
are matched with the least inconsistent reader responses—rather than observation of the entire set of feasible
matches.
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trivial and frequently reported sequences in which the series home team has either a 95% or

5% chance of winning every game—for which reported summary statistics are nearly always

correct. In other words, readers report extreme summary statistics only when they know

that they are correct. Ignoring these trivial sequences as well as uniform sequences of 50%,

reported series probabilities by experts and readers are on average 19 and 20 percentage

points, respectively, from 50%.29 Distributions of reported most likely series outcomes are

also similar for experts and readers. Experts report the median outcomes of 4-3 and 3-4 in

33% of responses, compared to 28% for readers (p = 0.02). However, experts report extreme

outcomes of 4-0, 4-1, 1-4, and 0-4 more frequently than readers—30% to 18% (p < 10−4)—

contrary to the supposition that experts more greatly limit their potential for inconsistency.

C Unobserved dependence

A second concern is that reported game-by-game probabilities may not be sequentially in-

dependent. We calculate summary statistics implied by a given sequence of game-by-game

probabilities under the assumption that probabilities assigned to individual games do not de-

pend on the outcomes of prior games. However, respondents may believe, for example, that

the probability of winning game 6 depends on whether the series home team leads 3 games

to 2 or trails 2 games to 3. If so, the probability she reports for game 6 will depend on the

probability that she attaches to the series home team leading 3-2 relative to the probability

of the series home team trailing 2-3. Given this sequential dependence, the likelihoods of

the 8 possible series outcomes (e.g., series home team wins 4-2) may differ from their values

under the independence assumption. For example, a response which assigns probabilities of

0.9 to each of the first 4 games implies, under the independence assumption, that the proba-

bility of the series home team winning 4 games to 0 is 0.94 = 0.66. However, the respondent

29The p-value of the difference between these values is 0.32.

35



may instead believe that the home series team will win the first game with probability 0.9

and that the remaining games will be won with certainty by the winner of game 1. Under

these beliefs, the probability of the series home team winning 4 games to 0 is equivalent to

the game 1 probability of 0.9.30

We use a flexible dependence framework to estimate bounds on the series probability

for each reported sequence, finding that unobserved sequential dependence cannot explain

our results: reported series probabilities by experts are far more likely to fall within these

bounds than those reported by readers. Consider a sequential structure in which the outcome

of game n depends on sn, the state of the series prior to game n (e.g., the series home team

leads 3-2 before game 6). We denote the probability with which the series home team wins

game n in state sn as pn|sn . Under this structure, the full distribution of outcomes is defined

by 16 conditional probabilities (p1, p2|1-0, p2|0-1, . . . , p6|3-2, p6|2-3, p7), rather than the 7 game-

by-game probabilities under sequential independence (p1, . . . , p7). Note that both p1 and p7

are sequentially independent under in our model—the former because it begins the sequence,

and the latter because there is only one state in which a seventh game is played (i.e., when

the series is tied 3 games apiece).

In our model, the respondent reports a sequence of unconditional probabilities in which

the probability for game n, pn, equals her expectation over the states in which game n is

played. These probabilities are defined recursively with p1 fixed, p2 = p1·p2|1-0+(1−p1)·p2|0-1,

and pn = pn−1 · pn|s′ + (1− pn−1) · pn|s′′ , where s′ is the state in which the series home team

wins game n − 1, and s′′ is the state in which the series home team loses game n − 1.

The conditional probabilities define the distribution of series outcomes. For example, the

probability of the series home team winning 4 games to 0 equals p1 ·p2|1-0 ·p3|2-0 ·p4|3-0. From

30Note that under this dependence structure, game outcomes depend on the series score, not the manner
in which that score was reached. Order effects are partially accounted for in our dependence structure.
Whenever a team has won all of the prior games in the series, a dependence structure based on individual
game outcomes is equivalent to one based on series score. However, an exhaustive accounting for the order
of outcomes would require many more parameters than our model calls for (68 vs. 16).
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these series outcomes, exact summary statistics can be calculated.

Since we do not observe the parameters of the dependence structure—i.e., the conditional

probabilities—we cannot identify the exact summary statistics implied by such a structure.

However, the reported game-by-game probabilities constrain the values which the conditional

probabilities can take, and these constraints define bounds on summary statistics of interest.

We calculate bounds on the series probability, pseries, by finding, for a given sequence, its

minimum and maximum values under these constraints:31

pseries ∈
[

min
pn|sn

pseries(pn|sn),max
pn|sn

pseries(pn|sn)

]
s.t. pn|sn ∈ [0, 1] & pn = pn−1 · pn|s′ + (1− pn−1) · pn|s′′

Figure 2 displays the bounds on pseries for commonly reported sequences of game-by-game

probabilities. For example, a sequence of 95% in all games can be rationalized by a series

probability as low as 95%—if p2|1-0 = 1, p3|2-0 = 1, p4|3-0 = 1, and all other conditional

probabilities equal 0.

D Materials from the jars and marbles study

Figure 12: Example survey invitation for experts

31We solve for the minimum and maximum values using a convex optimizer, initializing the parameters at
their values under an assumption of independence.
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Figure 13: Description of task on Mechanical Turk
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