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Abstract—We design privacy-preserving protocols for Scaled
Manhattan and Scaled Euclidean verifiers, secure against ma-
licious clients and honest-but-curious server. We then augment
our protocols with principal component analysis (PCA), which
can help improve authentication accuracy. We evaluate the per-
formance of our protocols on an emerging application—namely,
continuous authentication of smartphone users. We compare the
performance of protocols secure under the malicious client model,
with three protocols secure in the honest-but-curious model. We
report tradeoffs between computation overhead, communication
cost, and authentication accuracy. Our key observations are: 1)
Scaled Manhattan without PCA gives the best tradeoff between
security, accuracy, and overhead; and 2) with PCA, memory
availability on current smartphones limits the number of features
that can be used with Scaled Manhattan, and prevents the Scaled
Euclidean protocol from running. Our extended evaluation on a
laptop client shows that PCA with both Scaled Manhattan and
Scaled Euclidean verifiers is feasible given sufficient memory.

Index Terms—Privacy-preserving authentication, behavioral
biometrics, cryptographic protocols, secure multiparty compu-
tation, garbled circuits, homomorphic encryption

I. INTRODUCTION

Outsourcing biometric authentication involves delegating
authentication to third party service providers (e.g., AdmitOne
Security [1] and BehavioSec [4]), who specialize in deploying
and maintaining biometric systems. Despite the advantages
that outsourcing could offer in terms of convenience and cost
savings, it raises privacy and security concerns. Biometric data
is sensitive, and disclosing it to a third party is undesirable.

In this paper, we address the problem of securely out-
sourcing biometric authentication. We characterize outsourced
authentication as a two-party problem which involves: (1) a
client (a device in the hands of a user); and (2) an authen-
tication server. Our goal is to design protocols that allow
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both parties to perform authentication without disclosing any
information—besides the outcome of the authentication (to the
client) and the authentication score (to the server). Specifically,
our protocols conceal the authentication sample collected by
the client from the server, and the user’s template from both
parties.

A. Our Contributions

Protocols Secure Against Malicious Clients. We design
protocols for Scaled Manhattan and Scaled Euclidean verifiers,
secure against malicious clients. Previous work in this area
(e.g., [19], [8]) mostly focused on providing security against
honest-but-curious (HBC) adversaries. However, security in
the HBC model may be inadequate for authentication because
it assumes that the client and the server faithfully follow all
protocol specifications. For instance, the HBC model does not
guarantee that a malicious client cannot get authenticated by
“cheating” or deviating from the protocol.

On the other hand, there are generic ways to transform HBC
to fully malicious protocols (e.g., cut-and-choose [20], [33]).
However, these transformations increase the overall protocol
cost by at least two orders of magnitude [23]. To achieve
a balance between security and cost, we designed protocols
that are secure against malicious clients and HBC server. We
believe our hybrid model is more practical for authentication:
unlike HBC, our model ensures that a malicious client does
not benefit from deviating from the protocol. At the same time,
it is reasonable to assume that the authentication server can be
audited, to expose any misbehavior not captured by the HBC
model.
Augmenting Authentication Protocols with PCA. We aug-
ment our authentication protocols with principal component
analysis (PCA), mainly for the following two reasons: (1) the
verifiers considered in this paper assume that features are
independent. PCA is commonly used as a preprocessing step to
suppress covariance among features, to bring the data closer to
the model assumption and thus possibly improve performance;
and (2) although PCA has been used many times in biometric
authentication (e.g., [48], [28]), to our knowledge no study has
introduced secure protocols for verification in PCA space.
Protocol Evaluation for Smartphone Authentication. We
evaluate the performance of the new protocols for continuous
authentication of smartphone users. We believe this is both
timely and important. The former, because more and more
companies have started to offer smartphone user authentication
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as a service (e.g., [4]). The latter—because in order to make
biometric outsourcing viable in the long term, privacy issues
must be fully addressed. Another motivation for choosing
smartphones for evaluating our protocols is that even though
they have become ubiquitous, limited number of studies
evaluated secure protocols on this platform. In fact, to our
knowledge, only three studies ([19], [43], [8]) have explicitly
addressed privacy-preserving continuous authentication in the
smartphone domain. Through our evaluation, we aim to mainly
address three questions: (1) are our protocols, secure in
the hybrid model, practical for continuous authentication on
commodity smartphones? (2) How do these protocols compare
in terms of computation and communication overhead with
protocols secure in the HBC model? And (3) how does PCA
impact the cost of the protocols?

Our findings can be summarized as follows: (1) Our Scaled
Manhattan and Scaled Euclidean protocols in the hybrid model
are feasible on current commodity smartphones. Moreover,
Scaled Manhattan outperforms Scaled Euclidean in terms of
both computation and communication costs. (2) Our protocols
secure in the hybrid model have lower communication cost
than their HBC counterparts; however, they are more com-
putationally expensive. (3) Although PCA provides a notable
improvement in verification accuracy, it also significantly in-
creases the computation and communication overhead. Scaled
Manhattan in PCA space can be run on commodity smart-
phone devices, albeit with limited number of features. How-
ever, Scaled Euclidean in PCA space requires more memory
than what the OS provides to apps.
Comparison with a New Lightweight Protocol. As a further
point of comparison between protocols secure in our hybrid
model versus protocols in the HBC model, we design a simple
protocol for privacy-preserving 1-Prob verifier, secure in HBC.
To our knowledge, our 1-Prob verifier is the fastest protocol
for continuous authentication on smartphone devices.

B. Organization

In Section II, we review related research. In Section III,
we present the required biometric and cryptographic back-
ground for our protocols. In Section IV, we introduce privacy-
preserving protocols for authentication, and present their PCA
counterparts in Section V. We evaluate the security of our
protocols in Section VI and present their performance in
Section VII. We conclude in Section VIII.

II. RELATED WORK

Since the seminal work on garbled circuit evaluation [51],
[18], it has been shown that any function can be securely
evaluated by representing it as a boolean circuit. Similar results
exist for secure evaluation of any function using secret sharing
techniques, e.g., [40], or homomorphic encryption, e.g., [9].

In recent years, a number of tools have been developed
for automatically creating a secure protocol from its function
description written in a high-level language. Examples include
Fairplay [34], VIFF [12] and TASTY [21]. However, “custom”
optimized protocols for specific applications are often more
efficient than such general techniques.

Garbled circuits offer security in the honest-but-curious
model. However, a technique called cut-and-choose can be
used to make garbled circuits secure in the malicious model.
With cut-and-choose, the server creates multiple garblings of a
circuit. The client randomly selects a subset of these garblings,
and asks the server to reveal these circuits’ input keys. The
client verifies that all circuits are constructed properly, and
evaluates the remaining circuits to obtain the result of the
computation. Then, both parties switch roles and repeat this
process. There are several approaches to implement cut-and-
choose, each requiring a different number of circuits to achieve
a given level of security. (See, e.g., [20] or [33].) In particular,
recent results by Huang [23] achieve κ-bit security with
approximately κ circuits.

Another approach to privacy-preserving computation is fully
homomorphic encryption (FHE), first constructed by Gentry in
[15]. FHE allows computation of arbitrary ring operations in
the encrypted domain, and as such can be used for outsourcing
biometric authentication. Despite advancements in the area,
current implementations are still too slow, and impractical for
our setting. (See for example [16] and [39].)

A number of publications address the problem of privacy-
preserving biometric authentication and identification. Bringer
et al. [7] were the first to introduce a general security model
for biometric user authentication. The model assumes low
trust between the involved parties, and formalizes privacy for
biometric authentication. Furthermore, the paper introduces
a privacy-preserving protocol that computes the Hamming
distance of two bit strings, representing a biometric sample
and a template.

Barbosa et al. [2] extend the framework of Bringer et
al. [7] with a classifier to improve authentication accuracy
and propose an instantiation based on Support Vector Machine
(SVM) using homomorphic encryption.

Schoenmakers et al. [45] introduced a protocol for secure
privacy-preserving iris matching. The protocol is implemented
using threshold ElGamal, and computes (encrypted) Hamming
distance between two bit strings representing a template and
a user sample, encoded using IrisCode. The result of the
Hamming distance is then compared, in encrypted form, with
a threshold.

Secure face recognition was first addressed by Erkin et
al. [13]. In this paper, the authors designed a privacy-
preserving face recognition protocol based on Eigenfaces.
Sadeghi et al. [42] subsequently improved the performance
of the protocol of Erkin et al. More recently, Osadchy et
al. [36] designed a new face recognition algorithm together
with its privacy-preserving realization called SCiFI. SCiFI
simultaneously improves robustness and efficiency of [42].

Blanton et al. [5] focused on privacy-preserving iris and
fingerprint matching. The authors rely on a hybrid approach
based on garbled circuits and homomorphic encryption for
optimal performance. Barni et al. [3] presented a privacy-
preserving protocol for fingerprint identification using Finger-
Codes [25], which is not as discriminative as techniques based
on location of minutiae points, but is particularly suited for
efficient privacy-preserving implementations.

Govindarajan et al. [19] present two protocols for smart-
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phone user authentication. They implemented Scaled Manhat-
tan and Scaled Euclidean verifiers secure in the HBC model.
In Section VII, we compare the performance of our protocols
secure against malicious clients with the protocols in [19].

Safa et al. [43] present a protocol for outsourcing con-
tinuous authentication with a Scaled Manhattan verifier on
smartphones, and consider security against malicious clients.
However, the security argument presented in their HBC pro-
tocol does not take into account information disclosed by
order-preserving encryption, even in ciphertext-only scenarios.
(See, e.g., the analysis of Boldyreva et al. [6].) As such,
there is substantial amount of information leaked by the client
during the protocol. In contrast, our scheme provably leaks no
information.

Chun et al. [8] introduced a garbled-circuit based protocol
for outsourcing biometric authentication. Their protocol is
secure in the honest-but-curious model and the performance
reported by the authors is highly impractical: the lowest
reported protocol execution time is approx. 39 minutes.

Techniques based on fuzzy commitments (e.g., [26], [49],
[27] and [50]) are commonly used to provide template protec-
tion and to implement access control on encrypted documents.
However, such techniques require biometric comparisons to
be performed in a feature space different from that of the
original biometrics, possibly increasing equal error rate (EER)
[31]. In contrast, our protocols do not affect the EER of the
underlying biometric modality, since the comparison between
the user sample and the template is functionally the same as
the comparison in the unencrypted domain.

III. BACKGROUND

A. Biometric Verification

We implemented privacy-preserving protocols for three ver-
ifiers: (1) Scaled Euclidean, (2) Scaled Manhattan, and (3)
first-order probabilistic (1-Prob).

Let {Y1, Y2, . . . , YM} denote M n-dimensional training
data points. Let x = {x1, . . . , xn} denote an n-dimensional
test point. A brief description of the verifiers follows.

Scaled Euclidean and Scaled Manhattan Verifiers. Let y =
{y1, . . . , yn} be the mean vector computed from the feature
vectors in the training set of a user. The Scaled Euclidean
verifier calculates the verification score as:

DE(x, y) =

√√√√ n∑
i=1

(xi − yi)2
σ2
i

(1)

and the Scaled Manhattan verifier calculates the score as:

DM (x, y) =

n∑
i=1

|xi − yi|
σi

, (2)

where σi is the standard deviation of the i-th feature.

First-order Probabilistic Verifier (1-Prob). This verifier
outputs the probability score P (Uj , x), which is the joint
probability of the jth user Uj and the discrete test vector

x. The score is calculated using the multiplication rule of
probability as follows:

P (Uj , x) = P (Uj).

n∏
i=1

P (xi|Uj) (3)

where xi is the i-th feature and probabilities of the type
P (xi|Uj) are estimated from jth user’s training set using:

P (xi|Uj) =
ri +mp

rj +m
, (4)

where rj is the number of training samples that belong to Uj ,
ri is the number of samples in the ith-bin of xi for user Uj ,
and m is the m-estimate. We assumed all users are equally
likely, so P (Uj) is same for all users. To estimate probabilities
of the type P (xi|Uj), we discretized each user’s features into
equal-width bins and created a probability histogram. Because
Equation (3) is a product of probabilities, if the probability of
one bin is zero, the entire score becomes zero. To avoid this,
we used

∑n
i=1 logP (xi|Uj) instead of

∏n
i=1 P (xi|Uj), and

treated log 0 as 0.

Choice of Verifiers. Scaled Manhattan and Scaled Euclidean
are fairly popular verifiers in the biometric authentication liter-
ature (see for example, [25], [44], [28], [52] and [46]). The 1-
Prob verifier implements a 1-class version of the Naive Bayes
classifier and was chosen because of its simplicity and the
surprisingly good performance of Naive Bayes in classification
tasks despite its feature independence assumption [41].

Verification in PCA Space. We performed PCA to decorrelate
features, thereby making the features compatible with the
feature independence assumption of Scaled Euclidean, Scaled
Manhattan, and 1-Prob verifiers. Furthermore, there is com-
pelling evidence that PCA improves authentication accuracy
for several biometric modalities (see, e.g., [48], [47]).

Though the feature decorrelation property of PCA is well
known, we briefly review it for completeness. Let YM×n
be a data-matrix containing M n-dimensional zero-centered
training samples of a user. The covariance matrix of YM×n
is Y TY . PCA transforms YM×n to Y

′

M×n (YA = Y
′
), where

An×n is a matrix containing n eigenvectors of Y TY . It is easy
to show that Y ′TY ′, the covariance matrix of the transformed
data is a diagonal matrix with eigenvalues λ1, . . . , λn as
diagonal elements.

B. Cryptographic Preliminaries

In this section, we review the cryptographic tools used in
our constructions.

Garbled Circuit Evaluation. Originally proposed in [51],
garbled circuits allow two parties to securely evaluate any
function represented as a boolean circuit. The basic idea is
that given a circuit composed of gates connected by wires,
the server “garbles” the circuit by assigning two randomly
chosen encryption keys, ωj,0 and ωj,1, to each wire wj . These
keys represent, respectively, 0 and 1. (In the garbled circuits
literature, keys are usually referred to as labels.) The server
then encrypts a truth table corresponding to each gate. Values
in the table are also represented using labels, and each label
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is encrypted with two keys, ωj,bj and ωl,bl , corresponding to
the values on the gate’s input wires. Therefore, computing the
“output label” of each gate requires knowing two of its input
labels.

The output of the circuit is encoded in its output wires,
constructed and interpreted as follows. Let ωi,b ∈ {0, 1}κ be
the label of output wire i corresponding to output bit b, and
s the number of output wires. The server selects a pair of
random labels (ωi,0, ωi,1) for each output wire i ∈ [1, s]. Then,
it builds a table T = (ω1,0, ω2,0, . . . , ωs,0) and sends it to the
client as part of the circuit. The client uses T to interpret the
output of the circuit as follows: after evaluating the circuit, the
client decrypts exactly one label ωi,bi for each output wire i,
where bi ∈ {0, 1} is i-th bit of the protocol’s output. For each
i, if ωi,bi appears in T then bi is 0, otherwise 1.

Recent literature provides optimizations that reduce com-
putation and communication overhead associated with circuit
construction and evaluation. Kolesnikov et al. [30] describe a
modification that permits XOR gates to be evaluated for free,
i.e., there is no communication overhead associated with such
gates and their evaluation does not involve cryptographic func-
tions. With this modification, elements of a pair (ωi,0, ωi,1)
might not be selected independently. Instead, ωi,0 = ωi,1 ⊕ r
for some value r, constant throughout the circuit. Pinkas et
al. [38] additionally give a mechanism for reducing commu-
nication complexity of binary gates by 25%: now each gate
can be specified by encoding only three outcomes of the gate
instead of all four. Finally, Kolesnikov et al. [29] improve
the complexity of certain commonly used operations such
as addition, multiplication, comparison, etc. by reducing the
number of non-XOR gates.

Before garbled circuit evaluation, the client engages in
oblivious transfer (OT) protocol, described next.

Oblivious Transfer. In 1-out-of-2 Oblivious Transfer (OT 2
1 ),

one party (denoted as sender) has two strings m0,m1, and the
other party (the receiver) has one bit (b) as its input. At the end
of the protocol, the receiver learns mb and the sender learns
nothing. Similarly, in 1-out-of-N OT the receiver obtains one
of the N strings held by the sender.

In this paper we use an efficient implementation of OT 2
1

from [35] as well as techniques from [24] that reduce a large
number of OT protocol executions to κ (where κ is the security
parameter).

Homomorphic Encryption. Our constructions use a semanti-
cally secure additively homomorphic encryption scheme. In
an additively homomorphic encryption scheme, Enc(m1) ·
Enc(m2) = Enc(m1 + m2), which also implies that
Enc(m)a = Enc(a·m). While any encryption scheme with the
above properties (such as the well known Paillier encryption
scheme [37]) suffices for the purposes of this work, we use the
construction due to Damgård et al. [11], [10] (DGK) because
it is fast and it produces small ciphertexts. In the rest of the
paper, we use JmK to refer to the DGK encryption of message
m under the server’s public key. (The server is assumed to
have access to the corresponding decryption key.)

Our privacy-preserving protocol for computing Scaled Man-
hattan distance requires privacy-preserving comparison of two

encrypted values. For this task, we rely on the comparison
protocol of Erkin et al. [13].

Representation of Values in the Encrypted Domain. All
inputs to our privacy-preserving protocols are integer values,
so we mapped real-valued inputs to 2e − 1 equal-width bins
corresponding to integers in the interval [−2e−1 + 1, 2e−1 −
1]. We represented integers in two’s-complement notation
throughout our protocols. The size of the discretized domain
was more than e bits, to account for addition and multiplication
operations throughout the protocol.

We used the following formula for discretization:

discretizee,F(xi) =

[
(2e − 1) · xi

maxF

]
(5)

where F is the feature being discretized, xi is an instance in
F and maxF is the maximum of absolute values in F.

IV. PRIVACY-PRESERVING PROTOCOLS

We now introduce our privacy-preserving protocols for
secure outsourcing of authentication. Our protocols are divided
in two phases: enrollment and verification. During enrollment,
a mobile device (client) is used to acquire biometric signals
from the user. With the help of an enrollment server, the
biometric signals are processed to build the user’s encrypted
template. Processing is performed either: (a) by the client—
here, the enrollment server simply binds the user’s identity
with the encrypted template; or (b) by the enrollment server—
in this case, the computational burden is offloaded from the
client at the cost of revealing the template to the server.

During enrollment, all parties involved (the user, the mobile
device, and the enrollment server) are trusted. In practice,
this is necessary to ensure that data collection is performed
correctly.

In all our protocols based on garbled circuits, the client
needs an additive share of user’s template for authentication.
To lower the amount of information stored on the client, the
user’s additive share r can be encrypted under the client’s
symmetric key c during enrollment, and stored as AESc(r) on
the authentication server. Before each authentication attempt,
the authentication server sends AESc(r) to the client. This
allows the client to store only one key, c, instead of the user’s
share. We do not further elaborate on this modification, as its
implementation is straightforward and the cost is insignificant
compared to the rest of the protocol.

A. Modification of the Garbled Circuits Protocol to Achieve
Security Against Malicious Clients

To achieve security against malicious client, we implement
three modifications to the garbled circuits protocol:

(1) Output Labels Are Selected Independently. The security
of our protocol against malicious clients relies on the security
of the garbled circuits in the HBC model. To our knowl-
edge, the only available proof of security for garbled circuits
against HBC adversaries is that of Lindell et al. [32]. This
proof requires that output labels are selected independently at
random—we modified [22] to do this.
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(2) Client Does Not Learn T . The security of our protocol
relies on the assumption that the client learns only one output
label for each pair (ωi,0, ωi,1). For this reason, we modify
garbled circuits so that the server does not send T to the client.
Instead, the client sends the output labels to the server.
(3) Server Aborts on Invalid Output Labels. In the HBC
model, the labels returned by the client are always valid
because all parties faithfully follow the protocol. Therefore,
the behavior of the server when labels are invalid need not be
defined. However, in our setting we assume that the client can
arbitrarily deviate from the protocol.

Let M = (ω′1, . . . , ω
′
s) be a s-tuple of strings in {0, 1}κ. M

is a valid tuple of output labels iff there exist (b′1, . . . , b
′
s) ∈

{0, 1}s s.t. M = (ω1,b′1
, . . . , ωs,b′s). The server verifies if the

labels returned by the client are valid. If not, the server aborts.
The server incurs negligible overhead for checking the

validity of the labels—for each label ω′i that is not in T (i.e.,
ω′i does not encode 0), the server verifies that ω′i = ωi,1.

Modifications (2) and (3) are implemented by at least one
existing garbled circuits instantiations [22], although not for
improving the security of the protocol.

B. Scaled Manhattan and Scaled Euclidean Protocols Secure
Against Malicious Client

We implemented the Scaled Manhattan and Scaled Eu-
clidean verifiers with our modifications to garbled circuits.
Enrollment Phase. A user’s scaled and discretized template
y = (y1, ..., yn) is computed from the mean template y′, as is
described Figure 1. Standard deviations σ = (σ1, ..., σn) used
for scaling are taken as the mean of standard deviations of all
users in the training set. The same σ is used for all users and
is made public. The additive share r of the user’s template
can be stored either on the client, or encrypted as AESc(r)
and stored on the server.
Verification Phase. The server’s input is the additive share
of the biometric template −(y + r) and the client’s input is
x + r, where x is the current biometric (test) sample and
r is the additive share of the template. The layout of the
verification circuit is in Figure 2. The client and server run
the verification circuit on their inputs. The server obtains the
Manhattan/Euclidean distance between x and y. The server
then makes an authentication decision based on the distance.
In case of Scaled Euclidean, the circuit outputs the square of
the distance, to avoid the costly computation of square root.
Because square root is a monotonous function, this does not
impact the outcome of authentication.
One-bit Output Instead of Distance. Our protocols can be
modified to output an authentication decision (i.e., whether
or not the distance between the biometric template and the
client’s input is smaller than a threshold). To achieve this, we
added a subcircuit that computes the “smaller than” function-
ality. This subcircuit takes the (unencrypted) threshold and the
(garbled) output of the sum subcircuit of Figure 2 as input.
This modification improves client’s privacy because the server
does not learn any information besides the authentication
decision.

distance distance

sum

output

distance

x1 + r1 −(y1 + r1) x2 + r2 −(y2 + r2) xn + rn −(yn + rn)

Fig. 2: Generic authentication circuit for Scaled Manhat-
tan/Euclidean distance. The distance component is instantiated
using Manhattan or Euclidean distance subcircuit. Output of
the circuit is the verification score.

C. Protocols Secure in the HBC Model

Scaled Manhattan and Scaled Euclidean. We summarize the
privacy-preserving protocols for Scaled Manhattan and Scaled
Euclidean in the Appendix (Figures 6 and 7, respectively). Full
description and analysis of the protocols is available in [19].
Next, we discuss our 1-Prob protocol.

1-Prob. We designed a new 1-Prob protocol as a way to
implement a fast, yet accurate verifier. Our protocol is secure
in the HBC model, and is implemented using homomorphic
encryption instead of garbled circuits.

Reasons for not implementing a 1-Prob protocol with gar-
bled circuits to secure against a malicious client follow. Under
this setting, it is difficult to guarantee both template protection
and verification correctness. In 1-Prob, the client must select a
set of probabilities from a matrix Y ′, which represents the user
template. Clearly Y ′ cannot be shared with the client, since it
would disclose the entire biometric information stored in the
system for a particular user. Similarly, Y ′ cannot be revealed
to the authentication server.

As an alternative, the server could store an additive share of
Y ′ (say, Y), where a different random value ri,j is added to
each element Y ′i,j . The input to the authentication protocol
would include Y for the server, and ri,j-s for the client.
Although this approach provides template protection, it also
allows a malicious client to trivially authenticate without
knowing the user’s biometric. The client could, for example,
replace each random value ri,j with r′i,j = ri,j − δ for some
0 < δ ≤ 1/n. The output of the protocol would therefore be
nδ +

∑n
i=0 Yi,j instead of

∑n
i=0 Yi,j , allowing the malicious

client to authenticate with overwhelming probability. Although
techniques based on zero-knowledge proofs can be used to
prevent this attack, the additional overhead from computation,
communication, and number of rounds would make the 1-Prob
protocol too expensive for mobile devices (and thereby defeat
our primary motivation for using 1-Prob). Next, we discuss
our design of 1-Prob protocol.

In the enrollment phase, biometric samples are collected and
processed. Each sample is represented as an n-dimensional
feature vector. For each feature, we define ` bins, which
correspond to different ranges of values for that feature. For
each feature, bins contain the logarithm of the probability
associated with the corresponding range. The output of this
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Biometric template y′ = (y′1, . . . , y
′
n) Vector y′ is the mean of user’s biometric measurement from the training session.

Scaled and Discretized template y = (de,1(y
′
1/σ1), . . . , de,n(y

′
n/σn)) Discretization ranges are the same for all users, per feature.

Final template for enrollment y + r = (de,1(y
′
1/σ1) + r1, . . . , de,n(y

′
n/σn) + rn) Addition is modulo 2e. The vector r is selected uniformly at random.

Fig. 1: Step by step overview of processing user’s biometric template y′ = (y′1, ..., y
′
n) during enrollment for the Scaled

Manhattan and Scaled Euclidean protocols without PCA. Randomization is omitted for protocols secure in the HBC model.

Input: Client: sample x = (x1, . . . , xn), server’s public key and decryption key for AESc(·); Server: encrypted n ×m
probability template matrix AESc(Y) = AESc(J− log p1,1K, . . . , J− log pn,`K) and decryption key for the homomorphic
encryption scheme.
Output: The server learns ScoreNB(x,Y).
Protocol steps:

1) The server sends AESc(Y) to the client, which decrypts it, obtaining J− log p0,0K, . . . , J− log pn,`K.
2) For i = 1, . . . , n Client selects J− log pi,xiK from Y and computes:

JdK =

t(
n∑

i=1

− log pi,xi

)|

=

n∏
i=1

J− log pi,xiK

3) Client randomizes JdK as JdK = JdKJ0K.
4) Client sends JdK to the server, which decrypts it and outputs ScoreNB(x,Y) as d.

Fig. 3: Computation of privacy-preserving 1-Prob score

Input: Client: sample x = (x1, . . . , xn), server’s public key, and decryption key for AESc(·); Server: encrypted n×n Eigen
matrix AESc(A) = AESc(Ja1,1K, . . . , Jan,nK), encrypted n-dimensional template vector in the PCA space AESc(y

′) =
AESc(Jy′1K, . . . , Jy′nK) and decryption key for the homomorphic encryption scheme.
Output: The client learns encryption of x transformed in PCA space.
Protocol steps:

1) The server sends AESc(y
′) and AESc(A) to the client, which decrypts it, obtaining Jy′1K, . . . , Jy′nK and

Ja1,1K, . . . , Jan,nK.
2) Let (Jx′1K, . . . , Jx′nK) denote the component-wise encryption of Ax. For i = 1, . . . , n the client computes:

q
x′i

y
=

t(
n∑

j=1

ai,j · xj

)|

=

n∏
j=1

J(ai,j)Kxj

3) For i = 1, . . . , n the client computes
q
x′′i

y
=

q
x′i

y
·
q
y′i

y−1
=

q
x′i − y′i

y

4) Client outputs x′′, which corresponds the encryption of x transformed in PCA space.

Fig. 4: Computation of privacy-preserving PCA transformation

process is the following n× ` matrix:

Y ′ =


− log p1,1 · · · − log p1,`

...
. . .

− log pn,1 − log pn,`

 (6)

where log pi,j is the logarithm of the probability that feature
i falls within bin j. (If computation is performed in PCA
space, feature vectors are pre-processed as discussed in Sec-
tion III-A.)

Matrix Y is computed by encrypting each element of Y ′
separately using homomorphic encryption. That is, the element
on the i-th row, j-th column of Y is J− log pi,jK. Finally, Y
is encrypted as AESc(Y) (c known to the client) and sent
to the authentication server. Since the server does not have
access to the decryption key for AESc(·), it cannot extract
any information from AESc(Y) (besides its size).

Verification phase is illustrated in Figure 3.

V. PRIVACY-PRESERVING VERIFICATION IN PCA SPACE

In addition to the results reported in this paper, PCA’s
positive impact on authentication accuracy has been evidenced
in many behavioral modalities—see, e.g., [47]. For the Scaled
Manhattan and for the 1-Prob verifier, PCA de-correlates
features, thus bringing them closer to 1-Prob’s assumption that
features are independent.

From a privacy perspective, however, the eigenmatrix A
obtained with PCA reveals important information about a
user’s template, such as: (a) the relative importance of features,
especially in eigenvectors corresponding to top eigenvalues
and (b) the structure of the feature covariance matrix. Note that
concealing the content of A while revealing the authentication
attempt in eigenspace will not resolve the privacy issue: if
the adversary obtains multiple instances of the authentication
vector and its counterpart in eigenspace, it can estimate A.

Scaling in the PCA space has to be done differently com-
pared to feature space:

1) The PCA transformation matrix is different for each user,
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so the average of the standard deviations in PCA space
is not meaningful. Therefore, we use standard deviation
calculated user-wise.

2) The eigenvalues corresponding to individual Principal
Components (PCA space dimensions) are again different
for each user, and therefore are calculated user-wise.

The above items are not published, unlike in the Scaled Man-
hattan/Euclidean verifiers in the feature space. Instead, these
are “embedded” in the PCA matrix rows/columns, respectively.

The number of basis vectors/elements in the PCA space m
is lower than or equal to the number of vectors in the feature
space (now denoted as n).

A. PCA with protocols based on Garbled Circuits

The PCA subcircuit is the same for Scaled Manhattan
and Scaled Euclidean verifiers, and is illustrated in Figure
5. The transformation matrix A and the biometric template
y are additively shared between the server and client as
follows. During enrollment, the client generates a random
matrix R← Zm×n2e and a random vector s← Zn2e . The client
stores (A+R) and s, while the server stores −R and −(y+s).

During authentication, the client acquires biometric sample
x. It then evaluates the circuit in Figure 5. The client input
is (x + s) and (A + R) while the server’s is −(y + s) and
−R. The circuit computes A = (A + R) − R and the zero-
centered biometric sample x − y = (x + s) − (y + s); then,
it maps x − y to PCA space, obtaining A(x − y), and uses
the circuit in Figure 2 to compute the Manhattan/Euclidean
distance between A(x− y) and the 0-vector.

add matrices

linear mapping

weight weight weight

sum

output

add vectors

−(y + s)

A(x− y)nA(x− y)2A(x− y)1

Ax− y

x+ s A+R −R

Fig. 5: Circuit for authentication using Scaled Manhat-
tan/Euclidean distance in PCA space. The Scaled Manhattan
and Scaled Euclidean circuits differ in the weight subcircuit.

B. PCA with protocols based on Homomorphic Encryption

To prevent information leakage via A or Ax, we modify our
protocols so that the client’s input Ax is provided in encrypted
form. The unencrypted version of Ax is never observed by
any of the parties. Additionally, we design a short protocol,
shown in Figure 4, to compute Ax in encrypted form. Below,
we detail the changes to the verification protocols that must be
implemented to allow distance computation in PCA space. To
zero-center user’s biometric sample y = (y1, . . . , yn) using

the corresponding biometric sample x = (x1, . . . , xn) and
transform it to PCA space defined by transformation matrix
A, we need to compute A(x− y). In the encrypted domain, it
is more convenient to use the linearity of matrix multiplication
and compute Ax−Ay instead. A and Ay is stored encrypted
on the server and sent to client.

Scaled Euclidean. In order to compute J−2αixiyiK in Fig-
ure 7, Step 2, client and server perform a short interactive
protocol [13] to calculate the product of −xi and 2αiyi in the
encrypted domain.

Scaled Manhattan. No change is required to the Scaled
Manhattan protocol because it operates on encrypted inputs
for both client and server.

1-Prob. During enrollment, probability matrix Y ′ is computed
using biometric samples in PCA space. Each row is randomly
shuffled, and two values li,j and hi,j (representing the lower
and higher limit of the bin corresponding to log pi,j) are
associated with each element of Y ′. li,j and hi,j are en-
crypted separately using homomorphic encryption. Ciphertexts
Jli,jK and Jhi,jK are then encrypted, together with Y (Y is
the encryption of Y ′ as discussed in Section IV-C), using
AESc(·). During verification, the client transforms vector x
to PCA space using the protocol in Figure 4, obtaining Ax =
(x′1, . . . , x

′
n). Then, the client decrypts AESc(Y, li,j , hi,j) and,

for all i, j, it interacts with the server to compute ci,j =

(x′i
?
< hi,j) + (x′i

?
> li,j) − 1. Note that ci,j is 1 if x′i falls

within bin i, j, and 0 otherwise. Then the client computesr∑n
j=1

(
− log pi,x′

i

)z
=
∏n
j=1 J− log(pi,j) · ciK. In order to

compute − log(pi,j) · ci in the encrypted domain, client and
server perform the short interactive multiplication protocol
in [13].

VI. SECURITY ANALYSIS

In this section, we analyze the security of our protocols
based on garbled circuits. We show that the protocols are
secure against a malicious client.

Security against a HBC server is shown in [32]. We argue
that our modifications to garbled circuits, presented in Sec-
tion IV-A, do not invalidate the proof in [32]. In particular,
modification (1) does not affect the analysis in [32], which
assumes that labels are selected independently. Modification
(2) also does not affect the security of the protocol: to the
server, knowing the protocol’s output is equivalent to knowing
the corresponding output labels. Finally, modification (3) is
irrelevant when the client follows the protocol faithfully.

Security Model. We use the term adversary to refer to
insiders, i.e., protocol participants. This allows us to model
both misbehaving and compromised clients and servers. We
do not consider outside adversaries, since their actions can be
mitigated via standard secure protocols, such as TLS.

Informally, a HBC party follows the prescribed protocol
behavior, and might try to learn additional information from
the protocol transcripts. Formally [17]:

Definition 1. Let P1 and P2 participate in protocol π
that computes function f(in1, in2) = (out1, out2), where



8

ini and outi denote Pi’s input and output, respectively. Let
VIEWπ(Pi) denote the view of participant Pi during the
execution of protocol π. Pi’s view is formed by its input, inter-
nal random coin tosses ri, and messages m1, . . .,mt passed
between the parties during protocol execution: VIEWπ(Pi) =
(ini, ri,m1, . . .,mt). We say that protocol π is secure against
HBC party Pj , j ∈ {1, 2} if for party Pj there ex-
ists a probabilistic polynomial time simulator Sj such that
{Sj(inj , fj(in1, in2))} ≡ {VIEWπ(Pj), outj}, where “≡”
denotes computational indistinguishability.

We use the standard “ideal world” vs. “real world” defini-
tion of security for malicious adversaries, which we briefly
summarize here. (Complete definition is available in Section
7.2.3 of [17].) A malicious party can use any PPT algorithm
during protocol execution. The protocol is deemed secure if
all attacks that are possible during protocol executions (i.e., in
the “real world”) can also be executed when the protocol is
replaced by a trusted third party (in the “ideal world”):

Definition 2. We say that protocol π securely computes f in
the presence of malicious party P2, if for every PPT algorithm
A that is admissible for the real model, there exists a PPT
algorithm B that is admissible in the ideal model such that

{IDEALf,(P1(z),B(z))(x, y)} ≡ {REALπ,(P1(z),A(z))(x, y)}

Security against malicious clients is stated in Theorem 1.

Theorem 1. Assuming that the oblivious transfer protocol is
secure against malicious adversaries, and that the encryption
scheme has indistinguishable encryptions under chosen plain-
text attacks, our modified garbled circuit protocol is secure in
the random oracle model with respect to a malicious client.

Proof (sketch). We first show that, with our modified garbled
circuits, a malicious client can construct a valid message for
the server only by faithfully executing the circuit. Then, we
show that the client cannot extract any information on the
server’s inputs and outputs from the protocol execution. We
conclude by showing that these two properties allow us to
build a simulator that uses a malicious client to implement an
attack in the ideal world.
Valid Message by the Client Can Only be Constructed by
Faithfully Executing the Protocol. Recall that the message
sent from the client to the server is M = (ω′1, . . . , ω

′
s).

All encryption keys are selected independently. All ωi,bi are
also selected independently, and the encryption scheme is
semantically secure; therefore, the client can obtain valid
output labels only by decrypting the corresponding ciphertexts.

Keys used for encrypting output labels are also encrypted,
and so are all previous “layers” of the circuit. Hence, to obtain
the decryption keys for the output labels, decryption must
start at the topmost layer of the circuit, using the input wire
keys. The client needs one key corresponding to the server’s
input and one key corresponding to client input for each input
gate. Server’s keys are made public, while client’s keys are
exchanged using OT. Because OT is secure in the malicious
model, the client only learns one client key per input gate.
Therefore, the client can only decrypt one input label per each
gate/wire in the circuit, including output wires.

Because the labels were chosen uniformly at random by
the server, the probability of guessing a valid label without
decrypting the output label is negligible.

When M was not constructed according to the protocol, it
will be invalid with overwhelming probability, and the server
will abort the protocol.

Server Input Privacy. If the client is faithfully following the
protocol, security in HBC model of garbled circuits implies
that the client does not learn any information about the server’s
input. We have shown that the client can either follow the pro-
tocol, or the server aborts with overwhelming probability and
without sending additional messages to the client. Therefore,
our modified garbled circuit protocol provides server input
privacy against malicious client.

Correctness. Correctness follows from the fact that the client
either follows the protocol (then, the result is correct), or the
server aborts with overwhelming probability and there is no
output.

Server Output Privacy. The client either follows the protocol
or the server aborts. In the first case, the security of garbled
circuits in HBC implies the server output privacy.

Real vs. Ideal World Security. Let C∗ be a malicious
client in the real world. From server input/output privacy and
correctness, we know that C∗ does not learn any information
about the server’s input and output. C∗ can influence the
server’s output only via its input.

For any malicious client C∗, we show that it is possible
to construct a simulator S that uses C∗ to implement the
same attack in the ideal world. Using the OT in [35], S can
extract the input of C∗ exploiting the random oracle. S can
then present the same input with the trusted third party in the
ideal world.

From the correctness of the protocol in the real world, the
output of the trusted third party in the ideal world must be
the same as the output of the protocol. We conclude that C∗’s
strategy is not an attack on the protocol, as it can be simulated
in the ideal world.

VII. PERFORMANCE ANALYSIS

We evaluated the overhead of our protocols for continuous
authentication of smartphone users. Running the protocols
requires choosing parameters that impact communication and
computation (for example, number of features and level of
discretization). Optimal parameters are dataset- and features-
specific. Because these parameters were not disclosed in
existing smartphone authentication literature, we determined
them by performing biometric experiments on two publicly
available datasets, Dataset-LTU [46] and Dataset-Frank [14].

Dataset Description. Dataset-LTU was collected from 190
users, in two separate sessions for each user. We used the first
session for training, and the second for testing. The dataset
is divided into four partitions, based on phone orientation
(landscape or portrait) and the orientation of strokes on the
screen (horizontal or vertical). Although we ran experiment on
all four subsets, for the sake of presentation we include two
most representative settings: landscape-horizontal swipes (646
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genuine scores) and portrait-vertical swipes (2748 genuine
scores). These settings illustrate where PCA has a significant
impact on error rates and where it does not, respectively.
Dataset-Frank was collected in one session only, so we split the
feature vectors belonging to each user into two sets: training
and testing. We used the first 90 percent of a user’s vectors to
perform 1-class training. We used the remaining 10 percent
(188 genuine scores) for zero-effort testing (i.e., impostor
attempts of one user are genuine attempts of the remaining
users). In Supplement [53], we give further details on our
biometric experiments.

In the rest of this section, we report biometric accuracies,
protocol costs, and tradeoffs.

A. Biometric Accuracy

Here we report the equal error rates (EERs) achieved on
Dataset-LTU and Dataset-Frank. Note that the main purpose
of our experiments was to observe the impact of discretization
and PCA on ERRs.

Impact of PCA. In Table I, we summarized EERs with and
without PCA, with no discretization. The use of PCA improves
the EER by about 3% in the ‘portrait-vertical’ subset of
Dataset-LTU, as well as in Dataset-Frank. For the ‘landscape-
horizontal’ subset of Dataset-LTU, PCA does not improve
EERs. These results are in agreement with existing research in
other behavioral biometrics (e.g., [48], [47]), and confirm that
PCA is worth considering and can improve the authentication
accuracy—although not in all circumstances.

Impact of Discretization. Our cryptographic building blocks
require that all operations are performed on integers rather than
floating point numbers. Therefore, we evaluated the biometric
accuracy of our protocols with different discretization (e)
values, corresponding to number of bits used for discretization
of protocol inputs.

In order to achieve roughly the same authentication ac-
curacy as with floating point arithmetics with the Dataset-
LTU, e = 8 was sufficient for 1-Prob without PCA, while
e = 12 was needed for all other verifiers with and without
PCA. With Dataset-Frank, floating-point-arithmetic-precision
was achieved with the same discretization parameters in all
configurations, except for Scaled Manhattan and Scaled Eu-
clidean in PCA space, which required e = 20.

B. Protocol Performance

Precomputation for Garbled Circuits. In continuous au-
thentication, an authentication window represents the time
slot in which a biometric sample is collected. The size of
the window (plus time taken by the verification algorithm)
specifies the unavoidable delay in the authentication process.
The precomputation phase of our protocols runs during the
authentication window. Therefore, precomputation does not
increase the authentication delay, as long as the time taken
for precomputation is within the authentication window.

The most expensive part of the OT protocol can be per-
formed ahead of time by the client and the server [5]. More-
over, the server can construct the garbled circuit independently

from the client. This reduces the cost of the protocols once
authentication data is available. In the subsequent online phase,
the parties complete the OT and the client evaluates the circuit.

We report the time and bandwidth overhead for the pre-
computation and authentication phases separately in Tables II,
III and IV. Communication required for the precomputation
phase is constant and consist of 22 KB, as is required for the
OT. We only include total communication time in the tables.

Asymptotic Complexity. The protocols secure against mali-
cious clients are implemented using garbled circuits, so their
complexity (both time and space) is linear in the number
of the circuit gates. Let n denote the number of features,
m the number of PCA features (in case PCA is used) and
e the number of bits per feature or element used for dis-
cretization. The Scaled Manhattan protocol without PCA has
complexity O((e + log(n)) · n), and our Scaled Euclidean
protocol has higher complexity O((e + log(n))2 · n) due to
the multiplication required for computing Euclidean distance.
The Scaled Manhattan protocol with PCA has complexity
O((e+log(n)+log(m))2·mn) and the Scaled Euclidean proto-
col with PCA has complexity O((e+log(n)+log(m))4 ·mn).

The computational complexity of our Scaled Manhattan
protocol in PCA space based on homomorphic encryption is
O(n) for both client and server, where n is the number of
features. The complexity of our Scaled Euclidean protocol is
O(n) for the client and O(1) for the server, i.e., the cost for the
server does not depend on the number of features. In particular,
the server only needs to decrypt one ciphertext regardless of
the number of features used for authentication.

In terms of communication, both protocols require the server
to send AESc(Y) to the client. Additionally, the protocol that
computes Scaled Manhattan distance also requires the parties
to run multiple instances of the comparison and multiplica-
tion protocols, both of which exchange constant number of
messages. As an optimization, if the client caches a copy
of AESc(Y), then the communication cost of computing the
Scaled Euclidean distance is reduced to O(1). This latter
optimization can be used for all protocols, therefore reducing
the amount of data exchanged between client and server—or
entirely removing the need for further communication, in case
of the protocol in Figure 4.

The cost of our privacy-preserving 1-Prob protocol is O(1)
for the server, and O(n) for the client. When performing the
same protocol in PCA space, the cost increases to O(n`)
for both client and server, where ` is the number of bins.
For this reason, the protocol, although feasible for the wide
range of parameters tested in this paper, is practical only
for a relatively small number of features/bins when run on
a commodity smartphone.

Protocols Implementation and Evaluation. We used the
Huang et al. [22] implementation of Garbled Circuits, written
in Java, on a Samsung Galaxy S4 smartphone (1.9 GHz
Krait 300 CPU) and Macbook Pro laptop as server (2.6 GHz
Intel Core i5 CPU). The protocols based on homomorphic
encryption were implemented in Java using the BigInteger
library. All experiments were run in a single thread.

Performance results in this section are reported, for all
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Scaled Manhattan Scaled Euclidean 1-Prob
no PCA PCA no PCA PCA no PCA PCA

Dataset-LTU portrait-vertical 0.314 (26) 0.262 (22/28) 0.305 (26) 0.269 (22/28) 0.344 (28) 0.261 (23/24)
Dataset-LTU landscape-horizontal 0.231 (27) 0.231 (15/28) 0.243 (23) 0.245 (15/28) 0.215 (26) 0.248 (12/24)
Dataset-Frank 0.213 (3) 0.183 (26/27) 0.210 (8) 0.183 (9/12) 0.267 (15) 0.241 (26/27)

TABLE I: Equal error rates for three verifiers when features are not discretized. For each verifier, we report the best EER
achieved across different parameter settings (see Supplement [53] for details). We give the number of features in parenthesis.
For PCA, we report the number of features as number of PCA features/number of original features used to generate PCA
matrix. Except for the ‘landscape-horizontal’ subset of Dataset-LTU, PCA improves the authentication accuracy by at least
2.5%.

Protocols secure against malicious client Honest-but-curious model protocols
precomp. auth. comm. auth. comm.
Smartphone client Smartphone client

Manhattan (n=8) 1.6s 1.5s 0.04 MB 0.85s 4 MB
Manhattan (n=16) 2.5s 3.2s 0.06 MB 1.8s 5 MB
Manhattan (n=28) 3.5s 5.6s 0.09 MB 2.2s 5.5 MB
Euclidean (n=8) 13.2s 39s 0.46 MB 0.5s 2.2 MB
Euclidean (n=16) 27.9s 105.5s 0.95 MB 1.0s 4.2 MB
Euclidean (n=28) 52.8s 237.6s 1.66 MB 2.0s 8 MB
1prob (n=8)

n/a
34ms 16.2 MB

1prob (n=16) 35ms 32.5 MB
1prob (n=28) 36ms 57.5 MB

TABLE II: Performance of our protocols without PCA. We benchmarked the protocols on a smartphone client and Macbook
Pro server. All results are for e = 12 bits discretization. We only implemented the 1-prob verifier in the HBC model, as its
main purpose is low-latency authentication.

Protocols secure against malicious client Honest-but-curious model protocols
precomp. auth. comm. auth. comm.
Smartphone client Smartphone client

Manhattan (n=4, m=3) 16.4s 60.2s 0.7 MB 0.85s 5.4 MB
Manhattan (n=8, m=7) 151.1s 838s 3.6 MB 1.31s 12.2 MB
Manhattan (n=10, m=9) 363.6s 2051s 6.1 MB 1.86s 22.9 MB
1prob (n=8, m=10, 10 bins)

n/a
12.2s 18.2 MB

1prob (n=16, n=27, 10 bins) 18.7s 40.5 MB
1prob (n=28, n=27, 10 bins) 45.9s 174.0 MB

TABLE III: Performance of our protocols with PCA. As the amount of memory available to applications is limited on Android,
we evaluated our Scaled Euclidean protocol and the Scaled Manhattan protocol for higher amount of features on a laptop client.

Protocols secure against malicious client Honest-but-curious model protocols
precomp. auth. comm. auth. comm.
Laptop client Laptop client

Manhattan (n=10, m=9) 7.1s 3.7s 6.2 MB 0.1s 5.4 MB
Manhattan (n=16, m=15) 20.0s 12.0s 17.3 MB 0.3s 12.2 MB
Manhattan (n=28, m=27) 87.2s 71.2s 61.1 MB 0.4s 22.9 MB
Euclidean (n=10, m=9) 31.0s 27.1s 21.4 MB 23ms 14.2 MB
Euclidean (n=16, m=7) 83.4s 70.3s 57.1 MB 37ms 40.3 MB
Euclidean (n=28, m=27) 642s 655s 187.3 MB 65ms 129.4 MB

TABLE IV: Generalization of our results—performance for protocols with PCA on a laptop client. The performance gain
for the Scaled Manhattan protocol with PCA secure against malicious client is more than two orders of magnitude faster on
the laptop compared to the smartphone, because there are no memory restrictions and no need for garbage collection. The
performance of HBC Scaled Manhattan protocol with PCA on laptop is less than five times faster compared to the smartphone.

protocols, when input was discretized with e = 12 bits, both
with and without PCA. We evaluated the performance of our
protocols for n varying from 8 to 28 features. Performance of
our protocols is summarized in Tables II, III and IV.

Performance without PCA. For hybrid-model protocols,
Scaled Manhattan without PCA is practical for continuous user
authentication of smartphones (running time for authentication
is from 1.5 to 5.6 seconds with less than 100 KB data transfer,
for 8 to 28 features). The Scaled Euclidean protocol without
PCA is feasible, but not as practical as Scaled Manhattan, with
running time of the authentication protocol of 39 seconds to

238 seconds and 0.5 MB to 1.6 MB communication for the
same number of features. This difference is mainly due to the
expensive multiplication operations in the Euclidean distance
computation.

While the protocols secure in the HBC model have very low
running time for authentication (between 0.85 and 2.2 seconds)
the communication cost is higher. With Scaled Manhattan, the
communication overhead is over 50 times higher compared to
our hybrid-model protocol. The difference is not as large with
Scaled Euclidean protocols.

As a sidenote, we provide the performance results without
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PCA on a laptop client in the Supplement [53].
Performance with PCA. The number of features in PCA
space was chosen as m = n − 1. In practice, we expect
applications to use less than m PCA features. Therefore, our
measurements provide an upper bound on the computation and
communication cost of our garbled circuit PCA protocols.

Smartphone devices have limited amount of memory com-
pared to desktop computers and the Android platform limits
the amount of memory available to applications. The per-
application memory limit on our client device is 512 MB;
when the amount of memory used by the application ap-
proaches this limit, garbage collection consumes a significant
portion of the application’s running time. Even though the
available memory suffices for all our experiments without
PCA, we were unable to complete experiments with more than
9 PCA features (computed from 10 original features) with
Scaled Manhattan verifier and to complete any experiments
with the Scaled Euclidean verifier.

It is important to note that the amount of memory available
in smartphones has been increasing staidly, often doubling
every two years. By extrapolating from this trend, we can
assume that protocols limitations due to memory availability
will become less relevant in the near future.

As an additional point of comparison, we evaluated the
performance of our protocols using the MacBook Pro laptop
also as client. The Scaled Manhattan protocol with PCA is
roughly four times faster on the laptop, compared to the
smartphone, in the honest-but-curious model. The performance
difference between smartphone and laptop client is much
higher for the protocol secure against malicious clients, mainly
due to memory constraints on the smartphone and high cost
of repeated garbage collection.
One-bit Output Instead of Distance. The server’s output of
our protocols is the distance between the template and the
authentication sample. The cost of modifying our protocols,
secure against malicious client, to output only one bit as the
authentication result is less than 1 second of computation.
Amount of communication does not increase significantly, as
the additional cost of the smaller than subcircuit is compen-
sated by the reduction in the number of output wires to one.
Performance in Malicious Model. The cut-and-choose tech-
nique allows transformation of garbled circuits to achieve
security in the malicious model (in this model, either the client
or the server can be malicious). This technique increases both
the time and communication cost roughly κ-fold to achieve
κ-bit security.

VIII. CONCLUSIONS

We introduced the first efficient privacy-preserving pro-
tocols for securely outsourcing authentication using Scaled
Euclidean and Scaled Manhattan verifiers, in feature space
and PCA space. Our protocols are secure in the hybrid model,
where the client is assumed to act maliciously and the server
to be HBC. We also designed a light-weight protocol, secure
in the HBC model, for 1-Prob verifier.

We performed experiments to demonstrate the accuracy and
practicality of our protocols on an emerging area—outsourcing

of continuous smartphone user authentication. Our results can
be summarized as follows:
• The choice of discretization parameter e is crucial for

all our privacy-preserving protocols. For all protocols on
Dataset-LTU and for most protocols on Dataset-Frank,
e = 12 is sufficient and provides similar accuracy to using
floating point arithmetics.

• When security against malicious clients or limited com-
munication is required, Scaled Manhattan without PCA
gives the best tradeoff between cost and EER.

• If HBC security is sufficient, privacy-preserving Scaled
Manhattan and Scaled Euclidean protocols in PCA space
offer the best tradeoff between accuracy and performance
(with a slight performance edge for Scaled Manhattan).

• Privacy-preserving 1-Prob verifier without PCA in HBC
model provides remarkably low overhead. This is, to
the best of our knowledge, the fastest protocol designed
for secure outsourcing of continuous authentication on
smartphones.
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APPENDIX

A. HBC Scaled Manhattan and Scaled Euclidean

In Section VII, we compared our new protocols, secure
against malicious clients, with the protocols secure in the
HBC model from [19]. For reference, we include the Scaled
Manhattan and Scaled Euclidean protocol in Figures 6 and 7,
respectively. Security proofs and detailed description can be
found in [19].

B. Security Analysis of 1-Prob Verifier in HBC

The semantic security of AESc(·) prevents the server from
extracting any information from AESc(Y), besides its size.

The server’s view of the protocols consists of the encryption
and decryption key for the homomorphic encryption scheme,
encrypted matrix AESc(Y), and ciphertext JdK from the client.
The server’s output is d.

Simulator Ss provides the server with AESc(Y) and the
decryption key for the homomorphic encryption scheme as
input. It then uses d to construct JdK, and sends it to the server.
Since JdK is properly distributed, i.e., is a valid encryption of
d, the server cannot distinguish between the simulation and a
real execution of the protocol. Therefore, the protocol is secure
against a curious server.

The client’s view of the protocol consists in the server’s
public key, the symmetric key for AESc(·), x and AESc(Y).
The client has no output. Simulator Sc selects a random set
of values y1,1, . . . , yn,`, with 0 ≤ yi,j ≤ 2e−1 − 1. It then
constructs Y ′ and sends AESc(Y ′) to the client. The semantic
security of the homomorphic encryption scheme prevents the
client from determining that Y ′ corresponds to the encryption
of random values. Therefore, AESc(Y ′) is properly distributed.
For this reason, the client cannot distinguish between interac-
tion with the Sc and with a honest server. Hence the protocol
is secure against a curious client.
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Input: Client: sample x = (x1, . . . , xn), server’s public key and decryption key for AESc(·); Server: encrypted template
AESc(y) = AESc(Jα1y1K, . . . , JαnynK) (where αi = 1/σi) and decryption key for the homomorphic encryption scheme.
Output: The server learns DM (x, y).
Protocol steps:

1) The server sends AESc(y) to the client, which decrypts it, obtaining Jα1y1K, . . . , JαnynK.
2) For i = 1, . . . , n, the client and the server interact in a privacy-preserving comparison protocol. At the end of the

protocol the client learns the encryption of bit bi = (αixi < αiyi)
3) For i = 1, . . . , n, the client computes: JdiK = J |αixi − αiyi| K = JMAX(αixi, αiyi)−MIN(αixi, αiyi)K =

J(bi · (αiyi − αixi) + αixi)− (bi · (αixi − αiyi) + αiyi)K as:

JdiK = Jbi · αiyiK2 · Jbi · αixiK−2 · JαixiK · JαiyiK−1

The computation of JdiK requires client and server to perform a short interactive protocol [13] for computing Jbi · αiyiK.
4) Then, the client computes:

JdK =

t(
n∑

i=1

di

)|

=

n∏
i=1

JdiK

5) The client sends JdK to the server, which decrypts it and outputs DM (x, y) as d.

Fig. 6: Computation of privacy-preserving Scaled Manhattan distance secure in the HBC model

Input: Client: sample x = (x1, . . . , xn), decryption key for AESc(·) and server’s public key; Server: encrypted template
AESc(y) = AESc(

q
α1y

2
1

y
, Jα12y1K, . . . ,

q
αny

2
n

y
, Jαn2ynK) (where αi = 1/σ2

i ) and decryption key for the homomorphic
encryption scheme.
Output: The server learns DE(x, y).
Protocol steps:

1) The server sends AESc(y) to the client, which decrypts it as
q
α1y

2
1

y
, Jα12y1K, . . . ,

q
αny

2
n

y
, Jαn2ynK.

2) For i = 1, . . . , n, the client computes:

JdiK =
q(
αi · (xi − yi)2

)y
=

q(
αix

2
i

)y
·
q(
αiy

2
i

)y
· J(αi2yi)K−xi

3) Then, the client computes

JdK =

t(
n∑

i=1

di

)|

=

n∏
i=1

JdiK

4) The client sends JdK to the authentication server, which computes d and outputs DE(x, y) as
√
d.

Fig. 7: Computation of privacy-preserving Scaled Euclidean distance secure in the HBC model
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