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How well can observers detect the presence of a change in luminance distributions? Performance was measured in three
experiments. Observers viewed pairs of grayscale images on a calibrated CRT display. Each image was a checkerboard.
All luminances in one image of each pair consisted of random draws from a single probability distribution. For the other
image, some patch luminances consisted of random draws from that same distribution, while the rest of the patch
luminances (test patches) consisted of random draws from a second distribution. The observers’ task was to pick the image
with luminances drawn from two distributions. The parameters of the second distribution that led to 75% correct
performance were determined across manipulations of (1) the number of test patches, (2) the observers’ certainty about test
patch location, and (3) the geometric structure of the images. Performance improved with number of test patches and
location certainty. The geometric manipulations did not affect performance. An ideal observer model with high efficiency fit
the data well and a classification image analysis showed a similar use of information by the ideal and human observers,
indicating that observers can make effective use of photometric information in our distribution discrimination task.
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Introduction

The visual system’s representation of objects includes
percepts that correlate with object surface reflectance. In
general, these include color as well as perceptual
correlates of object material properties, such as glossiness
(Maloney & Brainard, 2010). The retinal image, however,
does not provide an explicit representation of object
reflectance. Rather, image intensities depend both on
object reflectance and the properties of the illumination.
To produce stable perceptual representations of object
surface reflectance, the visual system must process the
retinal image to minimize effects of variation in the
illumination. Figure 1 shows an achromatic image where
there is large spatial variation in the illumination.
A number of theorists have postulated that the stabili-

zation of object appearance occurs in two stages (Adelson,
2000; Gilchrist, 1977; Gilchrist et al., 1999; Kardos, 1934;
Koffka, 1935). The first stage segments the image into
regions that each have roughly constant illumination. The
second stage then, in effect, estimates the illuminant
within each region and uses the estimate in its conversion
between luminance and lightness for that region.
What information could the visual system use to

segment the image according to illumination? Photometric
cues provide one source of information that can indicate
illumination changes. Surface albedo is typically thought
to vary over about a 30 to 1 range in natural scenes (see,
for example, reflectance data summarized in Wyszecki &
Stiles, 1982). Thus, if two grayscale image regions vary in

luminance by a factor much larger than 30, they are
unlikely to share a common illuminant. In the image
shown in Figure 1, it is easy to imagine that such a
difference in image intensity helps mediate the impression
that the floor is lit by two distinct illuminants.
On the other hand, a number of geometric factors may

also correlate with illumination changes. One, for exam-
ple, is distance: The further apart two surface patches are
in a scene, the less likely it seems that they will share a
common illuminant. Accordingly, experiments have found
a decreasing influence of contextual surfaces on target
surface appearance with increasing distance (Kurki,
Peromaa, Hyvärinen, & Saarinen, 2009; Reid & Shapley,
1988; Shimozaki, Eckstein, & Abbey, 2005; Spehar,
Debonet, & Zaidi, 1996). Closely related is the idea that
coplanar surfaces are more likely to share a common
illuminant than surfaces oriented differently within a
scene (Gilchrist, 1980). Various cues are available to
indicate surface orientation in a scene (e.g., binocular
disparity), as well as changes in orientation of groups of
surfaces (e.g., <-junctions, Sinha & Adelson, 1993).
Finally, the luminance relations across certain geometric
configurations may signal illumination boundaries (e.g.,
X- and T-junctions, Todorović, 1997).
Despite the centrality of segmentation in theories of

lightness, little is known about how well observers can use
the type of photometric information induced by changes
of illumination to segregate scenes. For achromatic
images, changing the illumination changes the statistical
distribution of the luminances reaching the observer,
because the luminance distribution arises as the product
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of the illuminant intensity and the underlying distribution
of surface albedos. In the present paper, then, we step
back from the specifics of illuminant-based segmentation
and ask the more basic question of how well observers can
detect within-image changes in the distribution of image
luminances. That is, we sought to study fundamental
aspects of this ability, using simple stimuli that did not
evoke percepts of illuminated surfaces. We used checker-
board stimuli and asked observers to judge which of two
images contained a region where the luminance statistics
differed from those in the rest of the scene. We also
compared the data to predictions from an ideal observer
model. Finally, we asked whether manipulating the geo-
metric structure of the images affected performance on our
segregation task. The measurements provide baseline
information that can be exploited in future experiments
that study illumination segmentation in more complex
scenes to determine the role of additional information
sources.

Overview

Observers viewed displays consisting of two side-by-
side grayscale checkerboards (e.g., Figure 2). The lumi-
nances of the patches in one of the checkerboards were
drawn from a single probability distribution (a truncated
Gaussian); for the other checkerboard, two distributions
were used. Observers indicated which of the two checker-
boards contained patches with luminances drawn from
two distributions. The experiment embodies an abstracted
version of the illuminant segmentation task that observers
confront in natural viewing.
Performance was measured in three experiments. In

Experiment 1, we varied the number of patches drawn

from the second distribution, as well as observers’
uncertainty about the spatial locations of these patches.
Performance was compared to that of an ideal observer
model, as well as a number of alternative simpler models.
In Experiments 2 and 3, geometric manipulations were

introduced. In Experiment 2, these consisted of (a) varying
the contiguity of the patches drawn from the second
distribution and (b) changing the spatial arrangement of
the images to introduce <-junctions. This was done to test
the idea that the geometric cues would limit integration of
photometric information to patches grouped together by
those cues. In Experiment 3, binocular depth cues were
used to separate patches into two different depth planes,
again with the idea that this might lead to processing
grouped by depth.

Experiment 1

Methods
Observers

Four observers (one male, three females, mean age = 23)
participated in this experiment. Each observer came to the
laboratory for two sessions and was compensated for his
or her time. The observers all had Snellen acuity of at
least 20/40 (corrected) and scored at least 36/38 correct on
the Ishihara (1998) color plates.

Figure 1. Image containing regions with different illumination. The
parts of the garden seen through the windowpanes in direct
sunlight are adjacent to shadowed walls inside the room.
However, the two lighting environments are very different. Image
taken from http://www.flickr.com/photos/molinarius/3585205048/
and used with permission of the photographer.

Figure 2. Examples of Experiment 1 stimuli. (Top) Location-known
condition. (Bottom) Location-unknown condition. In both exam-
ples, there are 5 test patches in one of the two checkerboards.
For the top panel, they are in the center row on the right; for the
bottom panel, they are scattered in the left checkerboard.

Journal of Vision (2011) 11(13):14, 1–16 Lee & Brainard 2

Downloaded from jov.arvojournals.org on 06/30/2019

http://www.flickr.com/photos/molinarius/3585205048/


Stimuli and setup

The stimuli on each trial consisted of two side-by-side
grayscale checkerboards (Figure 2). These were presented
on a calibrated ViewSonic G220fb CRT monitor. Observers
viewed the monitor from a distance of 560 mm, with
viewing position stabilized by a headrest-chinrest assembly.
Each checkerboard consisted of five rows of five patches,
with each patch 29 � 30 mm (2.97- � 3.07-).1 The overall
size of the 5 � 5 checkerboards was thus 145 � 150 mm
(14.75- � 15.26-). The two checkerboards were presented
against a dark gray background (4.4 cd/m2) and were
separated horizontally by 48 mm (4.91-). The CIE 1931 xy
chromaticity of the background and checkerboard patches
was held fixed at [0.30, 0.30].
On each trial, one of the two checkerboards (left or

right) was randomly designated the test checkerboard and
the other the standard checkerboard. The luminances for
the 25 patches in the standard checkerboard and almost all
of the patches in the test checkerboard were randomly
drawn from a truncated Gaussian distribution with a mean
of 15.0 cd/m2, a standard deviation of 5.0 cd/m2, and a
truncation range of [5.0, 50.0] cd/m2. For the test
checkerboard, the luminances of the remaining patches,
which we refer to as the test patches, were drawn from a
different distribution. The test patch distribution was a
truncated Gaussian whose mean and standard deviation
were larger than the standard distribution by a multi-
plicative constant. Across trials, this constant varied
between 1 (minimum) and 2.5 (maximum). These corre-
sponded to test patch distributions with a mean of 15.0 cd/
m2, a standard deviation of 5.0 cd/m2, and a truncation
range of [5.0, 50.0] cd/m2 (minimum) and with a mean of
37.5 cd/m2, a standard deviation of 12.5 cd/m2, and a
truncation range of [12.5, 125.0] cd/m2 (maximum).

Procedure

The observer’s task on each trial was to indicate via a
button press which of the two checkerboards was the test
checkerboard. We found during pilot experiments that the
most effective instructions were to ask observers to
identify the checkerboard that contained some patches
drawn “from a larger range of luminances than the rest of
the patches.” These instructions were used. The full
instructions are provided in the Supplementary material
available at http://color.psych.upenn.edu/supplements/
distribdiscrim/. Feedback was provided by a tone when-
ever the observer made an error.
The multiplicative constant for the test distribution

parameters was adjusted trial by trial based on whether the
observer’s response was correct, using a 2-down 1-up
staircase procedure (Levitt, 1971): The test distribution
parameters decreased after every two correct responses
and increased after every incorrect response. The thresh-
old test distribution, parameterized by its mean, at which
observers were correct on 75% of the trials was estimated
by fitting a Weibull psychometric function to all of the

data, using the psignifit toolbox version 2.5.6 (Wichmann
& Hill, 2001; see http://bootstrap-software.org/psignifit).
The psignifit software implements a maximum-likelihood
fit of the Weibull parameters along with a lapse rate
parameter.
Two variables were manipulated across conditions: the

number of test patches in the signal checkerboard and the
observers’ certainty about the location of these patches.
The number of test patches varied between 1 and 5. The
test patches were either at fixed locations known to the
observer (in the center row of the signal checkerboard;
location-known condition; top panel of Figure 2) or were
randomly selected on each trial from the 25 checkerboard
patches (location-unknown condition; bottom panel of
Figure 2). This resulted in a total of 10 conditions (5 patch
numbers � 2 levels of certainty). Conditions were blocked
and observers were informed beforehand which condition
was being tested. The order of conditions was randomized
for each observer. For each condition, observers ran five
blocks of 100 trials before moving onto the next
condition.

Figure 3. Average (across observers, n = 4) threshold plotted as a
function of number of test patches, for the location-known (solid
circles) and location-unknown (solid triangles) conditions. Error
bars show T1 SEM. Ideal observer simulation data (dots
connected by solid black lines) are also shown (solid line,
location-known; dashed line, location-unknown). Error bars show
T1 SEM over multiple simulation runs, except for the 4 and 5 test
patch points for the location-unknown condition where only a
single run was done. Red lines/red solid dots show the ideal
observer data scaled by a multiplicative constant to best fit the
experimental data. Individual observer data for this experiment, as
well as for Experiments 2 and 3, are provided in the Supple-
mentary material available at http://color.psych.upenn.edu/
supplements/distribdiscrim.
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Results

Figure 3 plots average thresholds as a function of
number of test patches. Two broad effects are apparent.
First, in both the location-known and location-unknown
conditions, thresholds fall with increasing number of test
patches, with the largest drop occurring between one and
two test patches. Second, knowledge of test patch location
decreased thresholds for all test patch numbers. On
average, the location-known condition thresholds were
4.9 cd/m2 lower than the location-unknown thresholds.
Ideal observer thresholds are also plotted in Figure 3. The

ideal observer calculations are described in Appendix A.
The broad patterns visible in the experimental data are
also apparent for the ideal observer: Thresholds decrease
with increasing numbers of test patches and thresholds are
greater for the location-unknown case. In addition, the
ideal observer thresholds are slightly lower than the
human observer thresholds. We scaled the ideal observer
data to fit the experimental data (red lines in Figure 3,
separate scaling for location-known and location-unknown
conditions). In each case, the ideal observer predicts the
dependence of threshold on number of test patches. The
scale factor required was slightly larger for the location-
unknown case (1.03 for location known; 1.09 for location
unknown). Thus, human performance is close to ideal in
the location-known case, but uncertainty in test patch
location adds an additional cost, beyond what would be
experienced by an ideal observer faced with the same
uncertainty.

Intermediate discussion 1

Although the data are consistent with an ideal observer
model that efficiently integrates information from the test
patch locations to judge which image contained the
distributional change, it is possible that similar perfor-
mance could be obtained for our stimuli using simpler
strategies. We thus considered models based on three such
strategies: (a) a mean luminance model that chooses the
checkerboard with the larger mean luminance on each
trial, (b) a highest luminance model that chooses the
checkerboard containing the highest luminance patch on
each trial, and (c) a highest range model that chooses the
checkerboard with the highest luminance range on each
trial. We constructed variants of these models for the
location-known and location-unknown conditions. For the
location-known condition, the mean luminance and high-
est luminance were evaluated only over the known test
patch locations in each checkerboard, while the range was
obtained by subtracting the lowest non-test patch location
luminance from the highest test patch location luminance.
For the location-unknown condition, the mean, highest
luminance, and luminance range were computed over all
the locations in each checkerboard.

Figure 4 replots the data from Experiment 1 along with
the predictions from each of these models. The data from
the location-unknown condition clearly falsify the mean
luminance model, as that model’s dependence on test
patch number has a very different form from the measure-
ments. Both the highest luminance model and luminance
range models, however, make predictions quite similar to
those of the ideal observer model and are not ruled out by
the data. Of note is that these models require only the
most primitive form of integrating information across test
patch locations: identifying which patches in each check-
erboard image have the highest (and lowest) luminances.
To investigate further, we conducted a classification

image analysis of the relationship between the trial-by-
trial variation in the stimulus and the trial-by-trial
responses, both for our human observers and simulations
of performance based on the models. Such analyses can
reveal the relative weighting of various sources of
stimulus information that lead to the same level of overall
performance (Abbey & Eckstein, 2006; Ahumada &
Lovell, 1971; Gold, Murray, Bennett, & Sekuler, 2000;
Murray, Bennett, & Sekuler, 2002). The intuition behind
this kind of analysis is that the correlations between
aspects of the stimulus that contribute to the decision and
the response will be high, while the corresponding
correlations for aspects of the stimulus that are irrelevant
will be low.
To implement the analysis, we fit the coefficients of a

logistic regression model (Alexander & Lutfi, 2004) to

Figure 4. Data from Experiment 1, plotted with simulated thresh-
olds from ideal observer model (black), mean luminance model
(blue), highest luminance model (red), and highest range model
(green). Circles and triangles are replotted from Figure 3. Solid
lines connect points from location-known conditions; dashed lines
connect points from location-unknown conditions. Error bars show
T1 SEM.
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estimate the weights placed on patch luminance differences
from trial-by-trial responses:

r ¼ 1

1þ ejPIw
: ð1Þ

In Equation 1, r is a binary column vector coding
responses (left/right) as 1 s and 0 s, w is a row vector
with the weights found by the regression, and P is a
matrix whose rows were per-trial vectors of luminances
obtained from the stimulus. The values in the rows of P
were obtained as follows: on each trial, for each checker-
board (left and right), we took the luminances from the
test patch locations, the two most luminous non-test
patches, and the two least luminous non-test patches. We
sorted the luminances for the test and non-test patches in
descending order separately, for each checkerboard. Then,
we took the differences between the corresponding
luminance-ranked patches (i.e., the most intense test patch
on the left minus the most intense test patch on the right,
the second most intense test patch on the left minus the
second most intense test patch on the right, etc.). The
regression thus tells us how much weight is assigned to

the luminance differences between corresponding rank-
ordered test patches across the two checkerboards and to
the luminance differences of corresponding rank-ordered
non-test patches at the high and low luminance ends of the
non-test patch range. We analyzed only the data from the
location-known conditions in this way, as we found that
our data set did not have sufficient power to provide
reliable estimates of the weights when all checkerboard
squares were considered.
The estimated weights are plotted in Figure 5 for the

human observers, the ideal observer model simulation,
and the highest luminance model simulation. Because our
interest is in the relative importance of the luminance-
ordered test patch differences, we normalized the weights
within model/condition by the weight assigned to the most
luminous test patch.
For both model simulations, the weights for the non-test

patches cluster around zero, indicating minimal influence
on the decision, consistent with the fact that these test
patches have no influence on the model’s decision. The
scatter of the weights around zero provides a visual sense
of how precisely the weights are determined, given the
number of simulated trials. For the highest luminance

Figure 5. Estimated relative weights from classification analysis for (top row) human observers, (middle row) ideal observer model, and
(bottom row) highest luminance model. The leftmost column graphs show the weights for the luminance rank-ordered test patches, the
middle column graphs show the weights for the two most luminous non-test patches, and the rightmost column graphs show the weights
for the two least luminous non-test patches. Only the weights for the location-known conditions are plotted. For 1 to 5 test patches, the
color code is: red, blue, green, purple, black. The weights for human observers are the mean of four observers, and error bars are one
standard error of the mean. For the model simulations, we matched the number of trials to that used in the human experiments and ran
the simulations four times to match the number of observers. The weights shown for the simulations are the mean of these four runs.
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model, only the most luminous test patch receives a high
weight; the weights for the remaining test patches
resemble those of the non-test patches. For the ideal
observer, which integrates information from all test
patches, the weights fall as a function of number of test
patches. We also estimated weights for the other two
models (plots provided in the Supplementary material
available at http://color.psych.upenn.edu/supplements/
distribdiscrim/). The test patch weights for the mean
luminance model are equally high, as all test patches
contribute equally to the average. The test patch weights
for the highest range model resemble those of the highest
luminance model but with an equally large negative
weight on the least luminous non-test patch, as both these
patches are necessary in the calculation of the luminance
range.
If the human observers were using one of the strategies

implemented in the models, then the pattern of their
estimated weights should resemble the pattern from that
model. The human observers’ average weights more
closely resemble those of the ideal observer than the
other models. In particular, the human observers assign
positive weight to multiple test patches. As with the
weights from the ideal observer model, the human weights
for the test patches decrease with test patch luminance.
This analysis suggests that humans integrate photometric
information over multiple test patches. The fact that
overall the weights obtained for the human observer
decrease more rapidly with ordinal test patch luminance
than for the ideal observer is consistent with the fact that
human efficiency with respect to the ideal observer is less
than 1.

Experiment 2

Methods
Purpose

Experiment 1 established that observers can perform the
luminance distribution discrimination task and the classi-
fication image analysis showed they are able to integrate
information across patch locations. In Experiment 2, we
explored the effect of other display manipulations on
performance. Geometric cues were introduced in an
attempt to negatively affect performance, by inducing
segregation of the checkerboards into regions that were
spatially incongruent with the different luminance distri-
bution regions. The hypothesis we sought to test was that
such geometric cues impose a mandatory segregation on
the scene and prevent the use of photometric information
from both sides of the geometrically cued boundary.
Suppose, for example, that a geometric cue grouped one

of two test patch locations separately from the other test
patch location. If the observer were unable to use
information from the two regions, performance for the

two test patch cases with the geometric cue would then
resemble performance for one test patch without the
geometric cue. To put it another way, thresholds would be
predicted to increase across the geometric manipulation.
Two types of geometric cues were tested: separation and

the presence of <-junctions. For the separation manip-
ulation, the test patches were located non-contiguously
with each other. For the <-junctions, the shapes of the
checkerboards were manipulated in a way consistent with
folding part of the checkerboard in depth.

Observers

Three observers participated in this experiment. Each
observer came to the laboratory for one session and was
compensated for his or her time. All three had participated
in Experiment 1.

Stimuli and procedure

The stimuli were presented using the same apparatus as
for Experiment 1, and the luminance statistics were also
the same.
Observers were tested in three main conditions, all

using two test patches. The first was a replication of the
location-known condition of Experiment 1 using two test
patches (“center”). The test patches were the center patch
and the patch to its right within each checkerboard.
The second condition presented two test patches in a

spatially separated configuration (“sep”). In this condition,
the two test patches were the center patch and the lower
right-hand corner patch of each checkerboard (top panel
of Figure 6).
The third condition (“psi”) presented two test patches

on a square + parallelogram checkerboard (bottom panel
of Figure 6). To generate this checkerboard, the rightmost
vertices of the square checkerboard were shifted down a
distance equal to two side lengths of each square (5.94-)
and the next rightmost vertices down by one side length
(2.97-). This manipulation introduced <-junctions
between the third and fourth columns of each checker-
board. Interpreted as a three-dimensional object, this
checkerboard would appear to have its rightmost two
columns folded in depth. Note, however, that this was a
purely monocular manipulation: No binocular depth cues
were used. The test patches were again the center patch
and the patch immediately to its right.
Three control conditions were also run, all with one test

patch. The first was also a replication of the location-
known condition of Experiment 1 but with only one test
patch (“center”). The other two used the <-junction
checkerboard, with the test patch in the center (“psiC”)
or immediately to the right of the center (“psiR”). These
control conditions tested the effect of introducing paral-
lelograms on thresholds for a single square patch and for a
single parallelogram patch.
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In all conditions of Experiment 2, observers knew the
locations where the test patch or patches could appear
(location-known). The observer’s task was the same as in
Experiment 1Vto pick the test checkerboard containing
the test patches. Here, however, observers ran one block
of trials from each of the conditions in random order, then
repeated all the conditions in a different order, until five
blocks of each condition were obtained. As in Experiment 1,
observers were informed before each block of trials as to
what condition was being run for that block. Psychometric
functions were again fit to the data, and the threshold value
was estimated as a measure of performance.

Results

Mean thresholds are plotted in Figure 7 for the various
conditions tested. A repeated measures ANOVA with
observer as a random factor indicated a significant effect
of condition, F(5,10) = 10.4, p e 0.001. Examination of
the plot suggests that this result was driven by the effect of
test patch number: Conditions with two test patches led to
lower thresholds than conditions with one test patch. This
difference is comparable to the difference between the 1- and
2-test patch location-known conditions in Experiment 1,
replotted in Figure 7 with X symbols.
According to the ideal observer model, only the number

of test patches and knowledge of their locations should

Figure 7. Mean thresholds from three observers in Experiment 2. (Left) Two-test-patch conditions: center row, <-junction checkerboard,
separated. (Right) One-test-patch conditions: center row and two control conditions with <-junction checkerboards. The 1- and 2-test-
patch means from the location-known condition in Experiment 1 are plotted with the X symbols for comparison. Error bars are one
standard error of the mean.

Figure 6. Examples of non-contiguous and <-junction stimuli in
Experiment 2. (Top) The target patches lie in the right checker-
board, center patch, and lower right-hand corner. (Bottom) The
target patches lie in the right checkerboard, center patch, and
parallelogram contiguous with it to the right.
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affect performance. If thresholds for the psi/sep two-patch
conditions are greater than those for the center two-patch
condition, then those manipulations have a detrimental
effect on human performance not accounted for in the
model. However, the data in the left panel of Figure 7
show a minimal effect on threshold for those manipu-
lations: A repeated measures ANOVA with observer as a
random factor was not significant, F(2,4) = 1.27, p = 0.37.
In addition, note that the non-significant trend toward an
elevated threshold for the sep condition is small relative to
the effect of test patch number.
The thresholds from the control conditions using one

test patch were also not different from each other, F(2,4) =
4.08, p = 0.68. Simply introducing parallelograms into the
image does not appear to affect performance for a single
test patch, regardless of its shape.
The weights for the second test patch in the three 2-patch

conditions were also estimated, and the means across
observers are listed in Table 1. The weights were all
positive and not different from each other, F(2,6) = 0.80,
p = 0.49. This pattern suggests that similar strategies were
used regardless of scene geometry and that both test patch
luminances affected the decision.

Intermediate discussion 2

We did not find evidence for an effect of the geometric
manipulations in Experiment 2. Interestingly, this suggests
that for the location-unknown condition of Experiment 1,
the performance decrease may have been driven primarily
by uncertainty and not by the non-contiguity of the target
patches. That is, the fact that a random draw of patches
within a checkerboard in the location-unknown condition
of Experiment 1 often resulted a non-contiguous config-
uration of test patches may not have affected performance
directly, at least if the results from the single separation
manipulation of Experiment 2 generalize to more test
patches.
One possibility for our failure to find an effect of geometry

in Experiment 2 is that the geometric manipulations we

used were either ineffective at introducing segmentation,
or at least not effective enough to overcome a larger
effect of the provided photometric cues. In Experiment 3,
we introduced binocular disparity as a different cue to
geometric segregation. The logic was the same as in
Experiment 2Vwould performance for a 2-test-patch
condition resemble performance for a 1-test-patch con-
dition in the presence of disparity cues that segregated
the test patches into separate depth planes?

Experiment 3

Methods
Observers

Three observers (1 male, 2 females, mean age = 20)
participated in this experiment. None had participated in
Experiment 1 or 2. Each was screened using the same
screening procedure and criteria as in Experiment 1. An
additional screening test for stereopsis was also used. This
test was performed using the same apparatus as for the
experiment (see below). A 2.62- square patch appeared
either in front or at the back of a fixed background plane
due to binocular disparity, and observers were asked to
indicate where the patch appeared (“front” or “back”).
The background plane was rendered to be 764 mm away
from the observer. The simulated depth (i.e., amount of
disparity) was adjusted via a 2-down 1-up staircase
procedure (Levitt, 1971) to estimate 71% accuracy on
this task. All observers had thresholds below a simulated
depth change of 10 mm.

Setup and stimuli

The stimuli were presented on a different apparatus
from the previous two experiments. This stereo apparatus,
illustrated in Figure 8, consisted of two calibrated hp
p1230 CRTs controlled by a single computer. Observers
sat with their heads stabilized via a chinrest in front of a
black felt-covered faceplate. They viewed the stimuli
through two 30 mm � 30 mm square openings in the
plate. The distance between the centers of the two
openings was 40 mm. A black cardboard divider sat
perpendicular to the faceplate, preventing overlap between
the visual inputs to the two eyes.
Each eye received input from a CRT whose light was

reflected off an angled mirror before reaching the eye. The
optical distance of the CRTs to the eyes was approximately
764 mm. The apparatus was aligned by replacing the mirrors
with beam splitters and aligning a grid image on each
monitor to a physical grid located 764 mm from the eyes.
The stimuli closely resembled the square checkerboards

from the location-known condition in Experiment 1, with
the following changes. The checkerboards were rendered
to be 764 mm away from the observer (11.21- � 11.21-),

Experiment 2: Test patch 2 weights

center psi sep
Mean weight 0.57 0.46 0.17
SEM 0.32 0.21 0.13

Experiment 3: Test patch 2 weights

bp fp m rp
Mean weight 0.61 0.30 0.43 0.27
SEM 0.20 0.14 0.16 0.06

Table 1. Mean estimated weights (n = 3) for second test patch in
2-patch conditions, Experiments 2 and 3. Conditions are labeled
as described in the text.
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and the space between checkerboards was 28 mm (2.10-).
Owing to a smaller monitor gamut, the standard distribu-
tion had a mean of 6.0 cd/m2 and a standard deviation of
3.0 cd/m2, truncated on the interval [1.5, 15] cd/m2. The
test distribution had minimum parameters equal to the
standard distribution parameters. Its maximum parameters
were amean of 17.7 cd/m2, a standard deviation of 8.8 cd/m2,
and a truncation range of [4.4, 44.2] cd/m2.
The number of test patches was always one or two, in

different conditions. For the 1-test-patch conditions, the
test patch was the center patch of the checkerboard; for

the 2-test-patch conditions, the test patches were the
center patch and the patch immediately to its right.
The experimental condition was a 2-test-patch condition

(“Mixed”). However, the center patch was rendered with a
binocular disparity, so that it appeared to float 100 mm in
front of the rest of the checkerboard. The size of the
floating patch was increased to 34.5 mm � 34.5 mm
(2.59- � 2.59-) so that with the disparity it appeared to be
approximately the same size as it was while coplanar with
the checkerboard, 30 mm � 30 mm (1.12- � 1.12-). The
test patch to the right remained in the same plane as the
checkerboard.
A series of control conditions were also tested. The 1- and

2-test-patch cases from the location-known condition of
Experiment 1 were replicated on this stereo apparatus
(“BackPlane,” for 1 and 2 test patches). Additionally, two
control conditions using 1 and 2 test patches brought
forward in depth using binocular disparity were also
run (“FrontPlane,” for 1 and 2 test patches). These
conditions were used to check for changes in perfor-
mance due to the presence of binocular disparity in the
stimulus, without the segregation of test patches into two
depth planes. Finally, a random depth plane condition
(“RandomPlanes”) was tested. This was a 2-test-patch
condition where the potential test patches on both
checkerboards could each randomly appear at either depth
plane. The depth arrangement of the two checkerboards
on every trial was yoked, e.g., if both potential test
patches on one were closer in depth, so were the cor-
responding test patches on the other.

Figure 8. Bird’s-eye-view schematic of stereo apparatus. Two
CRTs and two mirrors were separated by a black cardboard
divider. Each mirror reflected the light from one CRT to one eye of
the observer, who was seated in front of the faceplate. Curtains
hid the CRTs from the observer’s view.

Figure 9. Mean thresholds for three observers in Experiment 3. (Left) Two-test-patch conditions. (Right) One-test-patch conditions. Error
bars are one standard error of the mean. “BackPlane” (bp) refers to the test patches being in the same plane as the checkerboard;
“FrontPlane” (fp) refers to the test patches in a different plane from the checkerboard. The “Mixed” (m) condition has one test patch in the
same plane and one in a different plane from the checkerboard. The depth planes for “RandomPlanes” (rp) were randomized across trials
as described in the text.
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Procedure

The procedure was similar to the one used in
Experiment 2. Observers completed five blocks of all six
conditions in random order and knew in advance of each
block which condition was being run. Each block
consisted of 100 trials.

Results

The mean data for three observers are plotted in Figure 9
as a function of condition. A repeated measures ANOVA
with observer as a random factor indicated a significant
main effect of condition, F(5,10) = 4.4, p e 0.02. As with
Experiments 1 and 2, thresholds for the 1-test-patch
conditions are higher than those for the 2-test-patch
conditions.
The critical comparisons are for the two-patch condi-

tions. Here, thresholds did not differ across the conditions
we ran. A repeated measures ANOVA with observer as a
random factor revealed no effect of condition, F(3,6) = 0.6,
p = 0.66. That is, separating the two test patches in depth
did not affect threshold nor was threshold different in the
condition where the depth of the two test patches was
randomized on every trial.
As in Experiment 2, the weights for the second test

patch in the four 2-patch conditions were also estimated
and listed in Table 1. Again, the weights were not found to
be different across condition, F(3,8) = 1.08, p = 0.41.

General discussion

Summary

In Experiment 1, we investigated how well observers
use photometric information to detect changes in lumi-
nance distributions. We found that observers perform this
task with high efficiency, relative to an ideal observer.
This was true both when the test patch locations were
known and when there was uncertainty about these
locations. Efficiency was somewhat higher, however, in
the location-known case. In both cases, the dependence of
threshold on the number of test patches was also well
modeled by the ideal observer. Our classification image
analysis of the trial-by-trial responses showed that
although high efficiency for our stimuli could be achieved
with a simple strategy that only relied on the highest
luminance in the two checkerboard images, observers
appeared to follow the ideal observer in that they
integrated photometric information from multiple loca-
tions. In Experiments 2 and 3, we showed that simple
geometric manipulations did not affect performance on
our task.

Taken together, our findings suggest that the visual
system is quite sensitive to the sorts of changes in
luminance distributions that might indicate changes of
illumination within a scene in the presence of uncertainty
about surface albedo. That is, the visual system is fairly
efficient at using such photometric cues to perform a task
that models illuminant segregation. Although for low-
level perceptual tasks human efficiency is generally low
compared to that of ideal observers (È5%; Banks, Geisler,
& Bennett, 1987), higher efficiencies have been reported
previously for tasks such as symmetry detection (Barlow,
1980).
Overall, thresholds in our experiments changed only

with test patch number and uncertainty about test patch
location but not as a result of manipulations of test patch
separation or geometric cues that might segment the
image. Our data did not reveal a significant effect of
introducing geometric segregation cues on performance.
A caveat, of course, is that conclusions in this regard hold
only up to the power of our data. Our data did, however,
contain sufficient power to reveal changes in performance
between presentation of one and two test patches.
The lack of geometric effects in our experiments is

perhaps not surprising, given that our task was structured
so that photometric cues provided the only information
available to perform the task. What our results do show is
that when photometric information is available, the visual
system can integrate this information across spatial
boundaries created by geometric factors. An interesting
question, but one different from that we studied, is how
geometric and photometric information interact when both
types of information are task-relevant.

Relation to other studies

Our work makes contact with a number of related
threads in the literature. We touch on these below.

Illumination perception

The literature on illumination perception is much
smaller than that on surface perception, but there are a
number of studies that relate to our current work.
Koenderink, Pont, van Doorn, Kappers, and Todd (2007)
asked observers to adjust the illuminant impinging on one
object in a scene so that it matched the illumination field
of the scene as a whole. The fact that observers could do
this with reasonable precision indicates that they could
discriminate local changes in illumination within a single
image, broadly consistent with our results. Earlier studies
(e.g., Beck, 1959, 1961; Kozaki & Noguchi, 1976;
Noguchi & Kozaki, 1985; Noguchi & Masuda, 1971;
Oyama, 1968; Rutherford & Brainard, 2002) also
employed illuminant matching or explicit judgments of
the illuminant but considered between- rather than within-
scene variation.
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Gerhard and Maloney (2010a) showed that observers
can differentiate between illumination changes common to
all surfaces in a scene and illumination changes that vary
from one scene location to another. In a second paper,
they found that observer performance in a task that
required estimating the motion of a collimated light
source was well predicted by an ideal observer model
that interpreted photometric changes in the context of
noisy knowledge about surface geometry (Gerhard &
Maloney, 2010b). In their case, however, the focus was on
geometric changes in the three-dimensional location of an
illumination source rather than on the efficacy of photo-
metric cues for illumination discrimination. Similarly,
Khang, Koenderink, and Kappers (2006) found that
observers could match illuminant source directions across
scenes. In the color domain, Craven and Foster’s (1992)
work has a similar flavor, although they cast their
measurements in terms of discriminations between a
spatially global illumination change and changes in the
surface reflectances of the objects within a scene (see also
Nascimento & Foster, 2000).

Role of geometric cues

A number of studies show that changes in perceived
geometry affect perceived surface lightness (Boyaci,
Maloney, & Hersh, 2003; Gilchrist, 1977, 1980; Hochberg
& Beck, 1954; Knill & Kersten, 1991; Radonjić,
Todorović, & Gilchrist, 2010; Ripamonti et al., 2004).
These effects are often interpreted as resulting from an
effect of geometry on the (perhaps implicitly) perceived
illumination (see, e.g., Brainard & Maloney, 2011). A
recent result in this tradition, however, suggests that when
strong photometric cues are available, they can dominate
geometric information (Gilchrist & Radonjić, 2010).
In related work, a number of lightness illusions

(Adelson, 1993, 2000; Anderson & Winawer, 2005;
Todorović, 1997) also implicate a key role for geometric
cues in the perception of surface lightness. In much of this
work, the emphasis has been on understanding how the
luminance relationships across junctions support partic-
ular scene interpretations. Similar themes are found in the
literature on transparency (Anderson, 1997; Anderson &
Winawer, 2005; Beck, Prazdny, & Ivry, 1984; Metelli,
1985; Singh & Anderson, 2002).
Our results do not contradict the conclusion that

geometric factors play a role in the perception of scene
illumination. They do, however, emphasize the need to
understand in detail how information carried by photo-
metric and geometric cues interact.

Formal connections

The formal structure of our task is that the observers
had to identify which of the two images contained patches
drawn from a mixture of two luminance probability

distributions and which contained luminance patches
drawn from a single distribution. At this formal level,
our task is thus closely related to work on the perception
of texture (for a review, see Landy & Graham, 2004),
where textures are defined in terms of the statistical
properties of their luminance distributions. Despite the
formal similarity, however, there are important content
differences between most texture experiments and our
experiments. For example, texture work often holds the
mean luminance and variance (contrast) constant across
distributional manipulations, so as to allow investigation
of the structure carried by higher order statistical
regularities. In addition, these textures are typically
generated using small, spatially contiguous micropatterns
rather than the more macroscopic spatial structure of
interest when one considers illumination discrimination.
Our task also shares formal features with a contour

integration task introduced by Field, Hayes, and Hess
(1993), where observers were asked to detect the presence
of a coherently oriented contour of Gabor patches
embedded in a field of randomly oriented Gabor patches.

Future directions

Our work represents an initial foray toward under-
standing how photometric information enables illuminant
segregation. To make progress, we employed simple
stimuli and studied performance using a simple psycho-
physical task. These simplifications allowed us to observe
a number of clear regularities within the laboratory model
we studied. Nonetheless, it is worth keeping in mind some
of the limitations of this model. First, the test checker-
boards did not produce a strong perceptual sense of a
collection of surfaces seen under two illuminants and,
thus, may not have engaged all of the mechanisms that
normally subserve illuminant segregation. Second, our use
of a two-alternative forced-choice procedure simplified
the task demands, relative to the case of viewing a single
image that might contain multiple regions of illumination.
Third, the only task-relevant information in our stimuli
was photometric and this may have weakened any
potential geometric effects. Expanding the research to
richer stimuli and tasks, so as to overcome these
limitations, is a clear direction for future research.

Appendix A

Ideal observer calculations

An ideal observer was developed for each condition in
Experiment 1 and its performance was characterized
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through simulation. For each condition, 100 trials each of
38 multiples of the test distribution parameters were
simulated, and for each simulated trial, the ideal observer
calculation indicated which checkerboard contained the
test patches, based on the luminance of all 50 checker-
board patches. Each condition was repeated three times
in a run of the simulation; the results were analyzed in
the same way as the human data. For each simulation,
the mean threshold from the three repetitions was taken
as the measure of performance.
In the location-known conditions, means from ten

simulations were averaged together for each value of test
patch number. This was also done for the 1-, 2-, and
3-test-patch conditions for the location-unknown condi-
tions. The computations for the 4- and 5-test-patch
location-unknown conditions were lengthy, and for these,
only a single simulation mean (of three repetitions) was
obtained.
The ideal observer’s choice was based on the log

likelihood ratio:

‘ xð Þ ¼ log
pðxkTestOnLeftÞ
pðxkTestOnRightÞ

� �
; ðA1Þ

where the vector x represents the luminances of the
50 checkerboard patches presented on a particular trial.
If ‘(x) was greater than 0, the ideal observer indicated that
the test was on the left; if ‘(x) was less than or equal to 0,
the ideal observer indicated that the test was on the right.
For a given trial, the vector x can be thought of as the
concatenation of the vectors xLeft, representing the
luminances of the 25 checkerboard patches on the left
checkerboard, and xRight, the luminances of the 25 checker-
board patches on the right checkerboard.

Location-known condition

For the location-known conditions, the log likelihood of
the data given that the test was on the left is

logðpðxkTestOnLeftÞÞ ¼
X
iZftg

logðptðxLefti ÞÞ þ
X
iZfsg

logðpsðxLefti ÞÞ

þ
X25
i¼1

logðpsðxRighti ÞÞ: ðA2Þ

In this expression, i indexes patch location within a single
checkerboard (left or right), {t} represents the indices of
the test patches within the test checkerboard, and {s}
represents the remaining indices within the test checker-
board. The probability pt(x) is the probability of observing
luminance x at a single patch under the test distribution,
and ps(x) is the probability of observing luminance x at a

single patch under the standard distribution. The corre-
sponding expression when the test is on the right is

logðpðxkTestOnRightÞÞ ¼
X
iZftg

logðptðxRighti ÞÞ

þ
X
iZfsg

logðpsðxRighti ÞÞ þ
X25
i¼1

logðpsðxLefti ÞÞ:

ðA3Þ

The probability ps(x) was evaluated using the proba-
bility density function of a truncated Gaussian distribution
with mean 2 = 15 cd/m2 and standard deviation A =
5 cd/m2 (the parameters of the luminance distribution for
stimulus patches under the standard illuminant). The
Gaussian density function was truncated between the
range [5, 50] and renormalized so that the total probability
was 1, to match how the stimuli were generated for the
experiments.
For the case where the parameters of the test distribu-

tion are known to the observer, the probability pt(x) would
be evaluated using the same basic method as described for
the standard distribution but with the truncated Gaussian
having a mean, variance, and truncation range computed
for the test distribution.
Because the experiments were run using a staircase

method, there was uncertainty about the parameters of the
test distribution. To model this uncertainty, in a separate
simulation, pt(x) was evaluated as a weighted sum of the
likelihood for a given set of test distribution parameters,
with the weights given by the probability of those parameters.
The distribution of the parameters, p(TestDistParam), was
estimated by creating a histogram of the parameters used
in the observers’ experimental runs corresponding to the
condition being simulated. With this,

ptðxÞ ¼
ZTestDistParam2¼37:5;A¼12:5

TestDistParam2¼15;A¼5

ptðxkTestDistParamÞpðTestDistParamÞ:

ðA4Þ

We found that adding this uncertainty had little effect on
the predictions and, in the interest of computational
efficiency, ran our main simulations with the test
distribution parameters known.

Location-unknown condition

Before providing the general equations for the location-
unknown conditions, we first develop the ideas for a
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simplified example. Suppose that there are only four
patches in each checkerboard and that there are two signal
patches to be detected. Let x be the vector of eight
luminances concatenated from the vectors xLeft, the
luminances of patches x1

Left, I x4
Left belonging to the left

checkerboard, and xRight, the luminances of the four
patches x1

Right, I x4
Right belonging to the right checker-

board.
Suppose that the test is on the left. In this case, there are
4

2

� �
= 6 possible combinations of the standard illumi-

nant and test illuminant patch locations in the left
checkerboard, each equally likely. The log likelihood of
the observed luminance vector can be written as

logðpðxkTestOnLeftÞÞ ¼ logðpðxLeftkTestOnLeftÞÞ

þ logðpðxRightkTestOnLeftÞÞ: ðA5Þ

Here,

pðx LeftkTestOnLeftÞ ¼ ð1=6ÞptðxLeft1 ÞptðxLeft2 ÞpsðxLeft3 ÞpsðxLeft4 Þ
þð1=6ÞptðxLeft1 ÞpsðxLeft2 ÞptðxLeft3 ÞpsðxLeft4 Þ
þð1=6ÞptðxLeft1 ÞpsðxLeft2 ÞpsðxLeft3 ÞptðxLeft4 Þ
þð1=6ÞpsðxLeft1 ÞptðxLeft2 ÞptðxLeft3 ÞpsðxLeft4 Þ
þð1=6ÞpsðxLeft1 ÞptðxLeft2 ÞpsðxLeft3 ÞptðxLeft4 Þ
þð1=6ÞpsðxLeft1 ÞpsðxLeft2 ÞptðxLeft3 ÞptðxLeft4 Þ;

ðA6Þ

is the weighted sum of the likelihoods for all six equally
likely possible combinations of standard and test distribu-
tion locations. The expression

pðxRightkTestOnLeftÞ ¼ psðxRight1 ÞpsðxRight2 ÞpsðxRight3 ÞpsðxRight4 Þ;
ðA7Þ

provides the likelihood of the observed luminances under
the standard distribution.
For notational simplicity, the combinations of locations

in each term on the right-hand side of Equation A6 can be
represented as a set of combinations of two t and two s
characters, where t in the ith location indicates that the ith
patch on the left is drawn from the test distribution,
pt(xi

Left), and s indicates that the ith patch on the left is
drawn from the standard distribution, ps(xi

Left). Let C be a
matrix of the set of combinations of t and s in Equation A6
whose rows are Ca for the six combinations a = 1, 2, I 6.

Within a given row Ca, the columns are indexed by i = 1,
2, 3, 4. We write

C ¼

t t s s

t s t s

t s s t

s t t s

s t s t

s s t t

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

; ðA8Þ

where the individual entries may be denoted by Cai.
Equation A6 can then be represented as

pðxLeftkTestOnLeftÞ ¼ ð1=6Þ
X
CaZC

Y4
i¼1

pCai
ðxLefti Þ:

ðA9Þ

Combining Equations A7 and A9 into Equation A5, we
obtain

logðpðxkTestOnLeftÞ ¼ logð1=6Þ þ logð
X
CaZC

Y4
i¼1

pCai
ðxLefti ÞÞ

þ
X4
i¼1

logðpsðxRighti ÞÞ: ðA10Þ

We can generalize Equation A10 to the case of k test
distribution patches displayed at n possible patch loca-

tions. In this case, there are N =
n
k

� �
possible test patch

arrangements and we obtain

logðpðxkTestOnLeftÞÞ ¼ logð1=NÞ þ logð
X
CaZC

Yn
i¼1

pCai
ðxLefti ÞÞ

þ
Xn
i¼1

logðpsðxRighti ÞÞ: ðA11Þ

A similar equation can be written for log(p
(xªTestOnRight)). The log likelihoods are then compared
as in Equation A1.
In a separate simulation, Equation A11 was modified by

using Equation A4 for every instance of pt(x) to model
observer uncertainty in the parameters of the test dis-
tribution. The weights for signal level were again taken from
observers’ empirical test distribution parameter probabil-
ity histograms from the corresponding experimental
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condition. Because of computational limitations, this
simulation was done only for the 1-, 2-, and 3-test-patch
cases. As with the corresponding simulations for the
location-known case, we found little effect of test level
uncertainty and we report results for the case where there
was no uncertainty about test illuminant level.
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1
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