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Abstract

In this paper, a new formula of the spectral diéfgiation matrices is
presented. Therefore, the numerical solutions faghér-order differential
equations are presented by expanding the unknowuti@o in terms of monic
Chebyshev polynomials. The resulting systems efidirequations are solved
directly for the values of the solution at the erte points of the Chebyshev
polynomial of order N. The round-off errors durindpe calculations of
differentiation matrices elements are studied. Anbar of numerical examples
are provided in order to show the advantages of shggested differentiation
matrices through comparisons with other works.

Keywords. Monic Chebyshev polynomials, differentiation matround-off
error analysis.
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1 I ntroduction

The concept of the spectral methods is developdtiarast few decades and it
has proven to be a very useful tool in the numersmdution of differential
equations (DEs) [6,18]. The high-order ordinaryfetiéntial equations arise in
many applications. Examples include the transveits@tion of a uniform beam
that can be modeled by a fourth-order ODE; theatibn behavior of a ring-like
structure by a sixth-order ODE [13,21]; the bendih@ cylindrical barrel shell by
an eighth-order ODE [14]; and the thermal instapitif a horizontal layer of a
fluid heated from below under the effect of rotatiand a magnetic field by a
higher order ODE [3,4,7]. In additional, many erggring problems, such as the
deformation of a thin plate and the motion of adfjiare governed by fourth-order
partial differential equations (PDEs). Recently,clsualgorithms have been
designed, both for higher-order differential eqoiasi and more general first-order
systems [9,10]. Generally, problems involving haider ODEs and PDEs are
more difficult to solve than those with second-ord@DEs and PDEs,
respectively.

The differentiation matrices are now a popular foolthe solution of many types
of ordinary differential equations [12]. In recdotmulation, the basic idea is to
represent the solutiofi(x) by means of a truncated Chebyshev expansion,cand t
compute spatial derivatives 6{x) by analytic differentiation of the series [1].
The difficulty with these problems lies not in thpproximation of the differential
eqguation, but in the fact that the resulting systéraquations for the coefficients
of the Chebyshev series afu(x)/dx is dense. Gaussian elimination would
requireO(N®) operations, where N is the number of Chebysheesaged in the
discretization. Unfortunately, for many situatiasfsinterest, complex behavior of
the solution causes the condition number of théndrigrder problem and the
number of iterations to be large, so that directhmés would be preferable
provided that af©O(N) or O(N log N)operation count could be maintained. Also,
there are a number of difficulties associated wishuse. For boundary value
problems, the set of the collocation points istegldo the set of basis functions as
nodes of the quadrature formula which are usedher dcomputations of the
spectral coefficients. Furthermore, this approasiolves the solution of very ill-
condition linear systems of equations [12]. Fotanse, the condition number of
the pseudospectral first-order operator is propodi with N2; while the
condition number for the second-order operatorciaipy scales likev* [11].

The linear map ™) is known as the spectral differentiation matrixeTjprocess
of obtaining approximations to the derivative dliaction at collocation points;
can be expressed as a matrix-vector multiplicatiorSpectral
collocation/pseudospectral methods [5, 18] are knoovhave the capability to
proven an exponential rate of convergence as tideigrefined or the degree of
the interpolation polynomial is increased.

There are many works which have introduced aniefftadifferentiation matrices
such as [1,2,17]. Recently, the authors in [1Qjoiddtice a new explicit expression
of differentiation matrices by using an explicitrfaula for the derivatives of
Chebyshev polynomials at Chebyshev Gauss- Lob&ilL] points. While the
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authors in [9] have introduced an attempt to neffetintiation matrix based on
ultraspherical polynomials using two different set€ollocation points.

In matrix-vector multiplication, the total numberaperations ar@N?, while, the
matrix product can be computed ? operations by using Solomonoff's
algorithm [16]. It is important to remark that flargeN the direct implementation
of DMpresented in [1] suffers from cancellation, causiagge errors in the
elements of the matrig ™,

The authors in [1] show that the absolute erraheevaluation of elemeift); is
of orderO(N*e), wheree is the machine precision. In this work, we provate
improvement of orde®(N?¢).

The aim of this work is to present a techniqueetduce the condition number of
higher-order differentiation matrices as well asrmding occurred in large scale
of DM, For this reason, this works present two mainsd&rst, we investigate
the monic Chebyshev approximations based on masimpmials to avoid large
guantity of the rounding in higher-order derivaiveSecond, a direct
implementation of DY) are presented by using the previous implememtaifo
DW=1) without using matrix-matrix multiplication. Regand to these, the monic
Chebyshev polynomials are used here as a basisidnno obtain the monic
Chebyshev approximations at Chebyshev Gauss- lmb@EiGL) pointsy;.
Moreover, the proposed method will be used to apprate the derivatives of
some test functions and to obtain the numericalitgols of boundary value
problems of higher-order differential equations.

The rest of the paper is organized as followsektien 2, the definitions of monic
Chebyshev polynomials and some properties are dated; also the monic
Chebyshev differentiation matrices are presentednefv implementation of
computing the higher orders of differentiation neas are presented in section 3.
The round off errors resulting during computing thatries of the first three
differentiation matrices are analyzed, also weoihtice some techniques to reduce
the round off errors and test functions in secdorSome illustrative numerical
results of boundary value problems of higher-orddferential equations are
presented in section 5. The final section is fans@oncluding remarks.

2  TheMonic Chebyshev Differentiation Matrices

The classical expiration of differentiation matisx [15]

N2 + 1 o
P i=j=0,
_2N*+1 i=j=N
pP=1 G o )
_—2(1_sz), i=j+0,
¢ 1 L
L 20 —xp) ‘)
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wherex; = cos% , 1=0,,..,N is the Chebyshev Gauss-Lobatto (CGL) points
andcy =cy=2andc¢;=1fori=1,..,N — 1.
The monic Chebyshev polynomials of degreén =1,2,...) on [-1,1] are
defined by the formula:

Q,,(x) = 21" cos(ncos~1x).

Clearly,|Q,(x)| < 1forx € [-1,1].
By the definition, and using elementary trigonontetdentities, the recurrence
relation are given by

Q) =1, () =x Q) =x*—7,
and

Qn(x) =X Qn—l(x) —-1/4 Qn_z(X), n> 2.

The first few monic Chebyshev polynomials are:

Qs(x) =x3—3/4
Q,(x) =x*—x%2+1/8,

Qs(x) =x° — 5/4x3 +5/16 x,
Qe(x) =x°—-3/2x*+9/16 x> — 1/32.

Therefore, the monic Chebyshev polynomials fornom@ete orthogonal set on

1
the interval—-1 < x < 1 with respect to the weighting functior) = (1 — x?)7z .
The Rodrigue's formula of the monic Chebyshev patyials given by

_2(-D)"n! Zd_” _ 2y
Qn(x) —Wvl—x o (1—-x*)"z.

Let L?(—1,1) be the space of square integrable function deforgjd-1,1]. The
monic Chebyshev polynomials constitute an orthofjbasais with respect to the
inner product:

( 0 I #]
Q0 0w = [, 000, OW()dx = 4| 272 i=j#0 3
kn i=j=0
for the continuous orthogonality, and
0 i #]
N-1
(@@= 2 0G0y (Gin) = {270 =) %0 )
k=0

\v i=j=0.
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'7),k=01,..,N—1are

for the discrete orthogonalityyhere &, y = cos (

theN zeros ofQ, (x).
Now, let f(x) is a smooth function approximated by the monic @kbbv series
as the following:

2k+
2N

0

fG) = anQn(), 5)

n=0

Then them-thderivatives off (x) has series expansion of the form:

o]

FmE) = al 0,0, (6)

n=0
where the relation between the coefficieanff? anda,, is given by Doha [8],

o 2" o (k+m =2l (n+k+m—2)! (n+2k+m—2)
" _(m_l)!cnk—l (k—1!'(n+k—-1)! An+2k+m—2

(7)

a

wherecy =2,¢c,, =1,m=>1,n=0.

The relation between the monic Chebyshev polyn@raal their derivatives are
presented in the next theorem. However, the auth[@] has been introduced the
similar results but he used the ultraspherical pofyials as a basis function.

Theorem 2.1 The derivatives of the monic Chebyshev polynorar@given by

n-m

@ = ) BRe, k=m ®)
k=
(k+n—m0)even
with
2™ (s—k+m-Dl(s+m—-1)!

m __
bien = (i—Dlcy (s)! (s — k)! ©)
where2s =n+k —m.
Proof. Them-thderivative of (5) is given by
Fm@ =) ao™@. (10)

l=m

From (7) and (6) we get:

™) =
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Ak +2n+m-2 Qk (x)

nm+m-2)(k+n+m-2)1(k+2n+m—2)
Z(m—l)'ckz n-D'k+n-1)!

Ifwesetl=k+2n+m—2and2p =1+ k —m we get

£ (x)
Z - D e, (11
(m 1)| kG
(l+k—m)even
where
m @—k+m-D!(p+m-1)!
rkl = a.
p!(p —K)!
We observe that
Zm

=g, = Wbl

Then from (10) and (11) we get

0 0 0

YD e =) ae™w.

k=0 l=k+m I=m
(1+k—m)even

By equating the coefficients af, [ > m, so we get the proof. 0o

In the next, the monic Chebyshev approximation Ieen introduced at (CGL)
points to approximate the derivatives of the smdutictionsf (x). Consider the
differential equation in the form:

L(f) =g,
where L is the differential operator. The solutiof(x) can generally be
approximated by a truncated expansfp(x) given by

N
fuG) = fiey (), (12)
j=0

the functionsg;(x) form a complete set of all orthogonal polynons#gl, If £,,
corresponds to the projection of the operatbronto®y, then the monic
Chebyshev approximation method consists in enfgrifie equation

Ly(fn) =g

at a given set of (CGL) points. Then
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N
Lnfi= ) fi$™ .
j=0
The interpolating polynomidl,, f; can be expressed in terms of series expansion
of the monic Chebyshev polynomials. By using theo(&), them-th derivatives
of the interpolating polynomial will be as the fols:

S

-m

N N
1
Lnf, =NZZ (226,60, b7, 00 () Qi ()] ;-

k=0
(k+n—-m)even

We approximate the derivative f{x) at (CGL) pointsy;, i = 0,1, ..., N by

[F™]=D™[f], m=12..N

where D™ = [dl.(]'.”)],i,j =0,1,..,N are the square matrices of ordef + 1)
and their entries are given by:

N
am =Y Z
ij N
n=m

The first three derivatives of the matiiX™ are given by:

n-m
Zzn_lenblrcr,ann(xj)Qk (xi)-
k

=0
(k+n—m)even

9. N n-1 22n 0
dij = ﬁz Qn(x])Qk(xl) (13)
n=1 k=0
(n+k)odd
N -2
0. 22n 10 n(n _kz)
di(f '= ﬁjz Z - Qn (%) Qr(x) (14)
Ck
n=2 k=0
(n+k)even
N n-—3 k-1
0; 22" 9, nk(n? — k?)
d;}) = ﬁjz - Qn(x)Qu(x) , (15)
CrCr
n=3 k=0 =0
(n+k)even (k+l)odd

wheref, = 0y =%,0j =1forj=12,..,N—1.

3  Computing of D(®P)

To get the higher orders of derivative matricescae use explicit expressions
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D@ = Df,

which is not always satisfied, as was shown in.[I®this section, a direct
implementation of the higher derivatives [20] basadcardinal monic Chebyshev
polynomial are investigated. The solutif(x) of a differential equatio(f) =

g can generally be approximated as the followingagspon:

N
fn(x) = Z a;wpy,j (x),
where =
N
Wy () = sz [22716,00(1)0n ()], (16)

is the cardinal basis functions of monic Chebyspelynomial which form a
complete set of the approximating spa@g and satisfy at (CGL) points the
following relationship:

wy,j(xx) =0, 0=<jk=<N

the coefficients; are simply associated with the valuesfpfat x;. The discrete

operator Ly can be represented bgV + 1) x (N + 1) matrix D® whose
coefficients are given by:

DI =wd(x), 0<kj<N.

We present a numerical method for computiig’ based on the cardinal basis
functions to avoid the rounding of errors as shawtie next theorem.

Theorem 3.1 Forp >0 and0 < k,j < N we have

( 2N—1
B+ M) K=
(p+1) _
ij - { 1 b
p+ ik 2k p@) _ @) -
ka_xj [( D7 Dk =Dy | ke # J.
where
P /p k+1
my(x) = z ( ) (1 —x*)pk Tk Qn(x)
X
k=0 \k

andb; = 2 if j = N andb; = 1 otherwise.

Proof. From [5] we get
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N
mﬁﬂ—ﬁZmewwm%@H

2N71 (1 —x?) dQy(x)
biN?(x —x;)  dx

= (-

Let0 <j < Nandp = 0. Since

2N—1 (_1)]+1

b;N?

dQN (x) — (x

(1 - x?) =2 = (x = 1)ow, (),

we have
(x =)o) + (0 + Dol ()

_ oN-1 (_1)j+1 l(l L d0Qy(x) (p+2)

b;N?

2N-1 (— 1)1+1 p+2 ) dk+1
Tkz_o . (1 — x?)pi+2 Tkt v ().

Forx = x; we get

ZN—l (_1)]+1 (p+1) (p+1)
—— i Mpaa() = (0 + Doy V(%) = (0 + 2D,
J
where
pt2 p + 2 dk+1
Mp12(X) = Z ( ) (1 — x?)pk+2 Akt Qn (x).
k=0 k

which proves the theorem for the diagonal elemehx®+1)

29

(17)

(18)

If we apply (17) with(p + 1) instead of (p + 2) andx = x;, with k # j we have

2N—1 (_1)]+1
b;N?

= (xk - x])DgH) + (p + 1)D(p)

By using (18) we have

(1) *(p + 1) D“’) (e —x)DE™ + (0 + DDY,

Mps1(0) = (0 — 1) TV () + ( + Do) ()

(19)
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which proves the theorem fér- j. o

4  Error Analysis and Performance | mprovement

It is known that for the larg¥, the cancellation happened during the calculation
of the elements of the differentiation matrix cagsiarge errors [1]. The authors
in [6] have presented the spacing of (CGL) pointarnthe boundary of
orderO(1/N?). This spacing gives a small truncation error m#ds to large
round off errors. In this section, the main advgataf using monic Chebyshev
polynomials is that the truncation leads to de@eafsround-off values. In Ref.
[1], Baltensperger and Trummer show that the eimdhe elementD}; has the
large effect on the round-off error is of ord&iN*5).
While in this paper, the round-off error has be¢ndied in case of monic
Chebyshev polynomials and compared with [1].
Assume that

Xy = X, + Op,

is the exact (CGL) points where, is the computed value and,is the
corresponding error with,, approximately equals to machine precision With
max{|8,|}. The round-off error for the first three derivass/is summarized in
Table (1) as the following:

Table 1: Round-off error for the first three derivatives

Error bound Ref.[1]. Monic Chebyshev polynomials

For first derivatives

W _ @ _ 8NV w8 .
Doy = Doy =—6 | dof —dy 35(1_3N+2N)
Vs

For second derivatives

. )
@ @) 64N 4P —dY < — (245N
Doy =Doy =—%—6 15
™ —5N3 4+ 2N%)
For third derivatives 12 d — 4 < 2 (6 — 14N —
D(3)* @ _ 512N 5 01 T

o TYo T4 9|7 35N 7N* 7N°
—N* + -———+N%
2 2 2 2

The construction of spectral differentiation maggdas been the subject of much
discussion since it is sensitive to rounding etrrororder to reduce the effects of
rounding errors, several modifications to the mad@leebyshev matrix (13) has

been presented as the following [11].
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Negative sum trick

This trick comes from the observation that the \dgive of a constant must be

zero. This means that:
N
1 _ .
Zdij =0, i=01,..,N
j=0

To enforce that condition we compute the diagon#ies of the matrix to satisfy

N
a’ == a. (20)
=0

The diagonal elements computed with (20) will ncactly be equal zero, but the
overall effects of rounding errors are minimized.

Flipping trick

The error which incurred in the evaluation of diffietiation matrix near = —1
is significantly larger wher = 1, even if the matrix is symmetric. In other words,
if i andj are small, thead™ can be computed accurately at the same timeias if

ij

andj are neaV, then the evaluation afl.(jl) is less accurate. This can be utilized

by evaluatingdl.(}) in the upper half of the matrix and then by flippibhgo take
advantage of the following symmetry property [16].

W _ _ 40
dij - _dN—i,N—j

Test functions

Consider the test functionf (x) = cos (x) and f,(x) = x(1 — e?¥), f3(x) =

1+ sin(2x?), x € [-1,1]. In the following tables “maximum error” always
refers to the maximum difference between approxonaand exact values at the
Gauss—Lobatto points. Tables (2)-(4) represent nfaximum absolute error
obtained by using monic Chebyshev approximationshe first three derivatives
of the three test functions compared with the atassnethod.

Table 2: The maximum absolute error of the first threadgives of

1(x) = cos (x)
First derivative Second derivative Third derivative

Eq. 1 Eq.13 Eq.1 Eq.14 Eq.1 Eq.15

12 | 2.1D-13 | 1.1D-13 | 1.8D-11 | 1.2D-11 | 7.5D-10 | 5.7D-10
16 | 4.4D-14 | 2.1D-14 | 5.4D-13 | 1.2D-12 | 2.1D-10 | 8.7D-11
32 | 3.1D-12 | 1.7D-12 | 1.3D-10 | 6.8D-10 | 3.0D-07 | 8.9D-07
64 | 1.3D-11 | 1.3D-12 | 3.8D-08 | 7.2D-10 | 2.8D-05 | 1.1D-07
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128 3.5D-10 | 9.3D-13 | 2.5D-10 | 3.2D-10 9.1D-03 5.8D-08
256 9.5D-09 | 1.6D-12 | 2.2D-04 | 2.3D-10 | 3.2D-00 | 4.3D-08
512 | 9.7D-08 | 4.8D-13 | 2.1D-03 | 2.0D-10 | 5.3D+02 | 3.0D-08

Table 3: The maximum absolute error of the first threadgives of

fo(x) = x(1 —e*)

First derivative Second derivative Third derivative

N Eqg. 1 Eqg.13 Eq.1 Eqg.14 Eq.1 Eqg.15
12 1.3D-07 | 1.3D-07 | 1.2D-05 | 1.2D-05 5.3D-04 5.3D-04
16 3.2D-12 | 3.5D-12 | 5.7D-10 | 6.2D-10 | 4.6D-08 | 4.8D-08
32 3.8D-11 | 2.3D-11 | 1.6D-08 | 7.0D-09 3.6D-06 8.8D-07
64 1.5D-10 | 5.1D-12 | 3.3D-07 | 3.1D-09 3.3D-04 4.5D-07
128 4.1D-09 | 45D-12 | 3.0D-05 | 1.3D-09 1.1D-01 2.1D-07
256 8.9D-08 | 6.5D-13 | 2.6D-03 | 1.2D-09 | 3.8D+01 | 1.9D-07
512 1.1D-06 | 4.9D-12 | 1.1D-01 | 1.4D-09 | 6.3D+03 | 2.0D-07

Table 4: The maximum absolute error of the first threadgives of

f3(x) =1+ sin (2x?)
First derivative Second derivative Third derivative
N

Eqg. 1 Eqg.13 Eq.1 Eqg.14 Eq.1 Eq.15
12 1.2D-04 | 1.2D-04 | 1.2D-02 1.2D-02 5.1D-01 5.1D-01
16 6.1D-07 | 6.1D-07 | 1.0D-04 | 1.0D-04 8.0D-03 8.0D-03
32 1.1D-11 | 5.0D-12 | 4.7D-09 | 2.3D-09 1.1D-06 2.9D-07
64 45D-11 | 5.8D-12 | 9.8D-08 | 1.9D-09 9.8D-05 2.7D-07
128 1.2D-09 | 4.5D-12 | 9.0D-06 | 1.4D-09 3.2D-02 1.8D-07
256 1.3D-08 | 1.5D-12 | 3.7D-04 | 3.5D-10 5.4D-00 6.1D-08
512 1.6D-07 | 4.3D-13 | 1.6D-02 | 3.1D-10 | 9.0D+02 | 4.8D-08

From Tables (2)-(4) we observe that the use ofsihhggested matrix leads to
highly accurate results better than those obtalmedsing classical matrix. Our
proposed formulae show better results than thodeir@u via the classical
formulae for large number of points. Also we nadbtatf the higher derivatives
approximated by using monic Chebyshev approximatiorore accurate than
those computed by classical method.



Numerical Solutions of Monic Chebyshev... 33

5 Numerical Results

In this section, we present some numerical regaltdoundary value problems
obtained by using the monic Chebyshev approximatitm show that the
suggested method is more accurate than the classéthod.

Example 5.1 Consider the following linear secondeodifferential equation:

" . 4 ex
u (x) — 4u (%) + 4u(x) = exp (x) — —pz,
1+exp
with the Dirichlet boundary conditions
u(-1)=u(1) =0.
The exact solution is
@) = sinh (1) ) exp
ulx) = exp (x) sinh (2) exp (2%) 1+ exp?’

The monic Chebyshev approximation of this equason

N N

4 exp
ZO dl-zju(xj) - 420 dilju(xj) + 4u(x;) = exp (x;) _Texpz'
Jj= Jj=

Table (5) show that, the maximum absolute errortted monic Chebyshev
approximations are compared with the result byai&g. (1) and Ref. [10] and
it is shown that our method is more accurate.

Table5: The maximum absolute error for example (5.1)

N Eq. (1) Ref. [10] monic Chebyshev
16 1.5D-07 1.5D-07 1.5D-07
32 1.4D-07 1.4D-07 1.5D-07
64 1.2D-06 7.4D-07 1.4D-07
128 7.3D-04 6.9D-04 1.4D-07
512 8.2D-02 2.7D-03 5.8D-09

The monic Chebyshev approximations are used to soleestample (5.1) at N
=32 and obtain the results as shown in Fig.1 wlachfirms that themonic
Chebyshev method gives almost the same solutitimeaanalytic method
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¥l

Exact solution

—0— Approximate solution

08 -06

04 02

02 04 06 08 1
#{i)

Fig.1. The solution of example (5.1) with N=32

Example 5.2 Consider the following Robin boundary value problem

u'(x) +xexp (—x)u(x) =exp (x)+x, —1<x<1,
. 2
u(x) +ulkx)=—,

x =-1,
exp

u@x)—u(x)=0, x=1,

which has the exact solutioni(x) =exp (x) +.The monic Chebyshev
approximation of this equation is:

N
Z dZu(x;) + xiexp (—x)u(x;) =exp (x;)) +x;, —1<x<1,
j=0

and the boundary conditions is given by

N

2
ZO dyju(x) +u(=1) = preeg
]:

N

2
ZO d,l\,]u(x]) + u(l) = % .
]:

Fig.2. Presents the accuracy of the approximatmntion with the exact for
example (5.2) at N=32.
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N=32

251

Exact solution
—<0— Approximate solution

05F

(i)

Fig.2. The solution of example (5.2) with N=32

Example5.3 Consider the following boundary value problem:

64u® () + 40x + Dux) = [x* - x* — 25x — 47]exp (0.5(x + 1)),

ux)=u(x)-1=0, x=-1,
u'(x)+exp=0, x=1,

which has the exact solution
u(x) = 4(1 — x*)exp (0.5(x + 1)).

The monic Chebyshev approximation of this equaton

35

N
642 diu(x;) + 40 + Dulx) =[x} — x7 — 25x; — 47]exp (0.5(x; + 1)),
=0

the boundary conditions are given by

N
Z doju(x) —1=0,
=0

and

N
Z dyju(x;) +exp=0.
=0

-1<x<1,
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The problem has been solved using monic Chebyspprvoximations, classic
pseudospectral approximations and by using methd@ef. [10] at N=32. The
results are shown in Fig.3.

061
05t
04r

03

y-anis

0z2r

o1k

—+— Exact
—&— Monic Chebyshey
—&— Ref [10]
—=—Eq[]

0d

_D‘] 1 1 1 1 1 1 1 1 1 ]
-1 08 06 04 02 1} 0z 04 06 08 1

Fig.3. The solution of example (5.3) with N=32

5] Conclusion

In this paper the differentiation matrix based dme tmonic Chebyshev
polynomialsQ,,(x) is presented. The main advantage of these polyaisnsi that
the size of the monic polynomial i$/2""1 , n > 1 and this becomes smaller as
the degreen increases. The degreemonic polynomial with the smallest
maximum on[—1,1] is the modified Chebyshev polynomigl(x). This result is
used in approximate higher-order differential agadions and can be applied to
obtain an improvement interpolation scheme.

The tables present a comparison of the maximumlateserror resulting from the
proposed method and those obtained by Eq.(1) affilBle It shows favorable
agreement and it is always more accurate than tteiments.
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