
American Journal of Biomedical Engineering 2012, 2(2): 7-12 
DOI: 10.5923/j.ajbe.20120202.02 

 

Effect Assessment of Parkinson Disease on Default Mode 
Network of the Brain with ICA and SCA Methods in 

Resting State FMRI Data 

Mahdieh Ghasemi1, Ali Mahloojifar2,*, Mojtaba Zarei3 

1,2Electrical and Computer Engineering (ECE) Department, Tarbiat Modares University, Tehran, Iran 
3FMRIB Centre, John Radcliffe Hospital, Oxford OX3 9DU, UK & Imperial College London, Department of Clinical Neuroscience, 

London, UK 

 

Abstract  Parkinson’s disease (PD) is a progressive neurological disorder characterized by tremor, rigidity, and slowness 
of movements. Determining changes of spontaneous activity and connectivity of the brain is a critical step towards treatment 
of PD patients. Resting State functional Magnetic Resonance Imaging (RS-fMRI) is a non-invasive method that we use in this 
work to investigate changes of default mode network of the brain in PD. To this end, we apply two methods, Seed Correlation 
Analysis (SCA) and probabilistic independent Component Analysis (PICA). The results of advanced statistical group 
analysis on SCA values show that there is negative significant correlation between motor cortex and cerebellum in healthy, 
while this connection in PD is positive and not significant. This result implies the disturbance of equilibrium function of the 
brain in resting. Moreover, in both groups, there is significant positive correlation between areas located in basal ganglia. The 
results show that in healthy, there is not significant correlation between motor areas and basal ganglia, while in PD there are 
significant negative correlations between motor cortex and cerebellum with areas located in basal ganglia. The comparison of 
five ICs extracted by PICA showed lower DMN activation in basal ganglia. Finally, The result of our study show that the 
functional correlations between ROIs are more affected in PD than pattern maps of activity by PICA. 
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1. Introduction 
Parkinson's disease (PD) is a degenerative disorder of the 

central nervous system that often impairs the sufferer's mo-
tor skills, speech, and other functions. Parkinson's disease 
belongs to a group of conditions called movement disorders. 
It is characterized by muscle rigidity, tremor, a slowing of 
physical movement and a loss of physical movement (aki-
nesia) in extreme cases. The primary symptoms are the re-
sults of decreased stimulation of the motor cortex by the 
basal ganglia, normally caused by the insufficient formation 
and action of dopamine, which is produced specifically the 
substantia nigra[1]. While diagnosis of PD is essentially 
based on a set of clinical criteria that only provides accu-
racy of 82%, imaging markers such as MRI, PET and 
SPECT may help to improve accuracy of the diagnosis. 
Some researches consider anatomical and structural changes 
in T1-weighted and DTI images[2]. In recent years, func-
tional magnetic resonance imaging (fMRI) has been 
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extensively used on PD research for assessment of func-
tional activities and connectivity between areas.  

While Resting State analysis could reflect brain areas 
dysfunction more clearly, to date, due to movement defects 
of PD, most researches were limited in task-related neural 
activity changes and only few studies have investigated 
resting state fMRI[3]. Resting-state fMRI may therefore 
also serve as an indicator for dysfunctions in brain connec-
tivity, possibly allowing for improved detection of patho-
logical changes in the brain.  

While the resting state is an ill-defined condition, con-
sistent functional patterns across individuals should repre-
sent common default state activity. Because this network is 
typically deactivated during external stimulation, it has been 
termed the ‘default mode network’. Since most dysfunc-
tions are related to rest conditions, resting state fMRI in-
dentified significant disruptions in DMN co-activation in 
patient with PD. Hence, attempts have been made to apply 
resting state fMRI as a non-invasive available of PD. Cur-
rently; limited information is available on the influence of 
PD on DMN co-activation[3-5]. 

An important concern in studying DMNs is whether the 
method used for their identification is appropriately sensi-
tive. Either correlations of signal time courses between dif-
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ferent brain areas using region of interest analyses (ROI)[6] 
or data-driven extraction of DMN co-activation by inde-
pendent component analyses was used to determine DMN 
connectivity from fMRI data. Most studies only focused on 
one of these methods. Substantially different properties of 
both approaches, however, raise the question, which ap-
proach is more sensitive towards changes in DMN connec-
tivity. Methods based on direct correlations with 
time-courses of signal change identified from a ‘‘seed’’ 
voxel are limited to applications to regions for which there 
is an a priori expectation of a network pattern. Independent 
component analysis, on the other hand, is likely to be more 
comprehensive in detecting variation across a well-defined 
network. Based on these hypotheses, both approaches will 
most likely show different sensitivity profiles for the detec-
tion of small changes of DMN activity.  

Therefore, in the present study, we aimed (1) to charac-
terize the effects of PD on resting state DMN co-activation 
as assessed with fMRI by two mentioned methods and (2) 
to determine which method, ROI-based correlation analysis 
or data-driven ICA, is more sensitive to effects of PD. This 
information is a prerequisite to better understand the effects 
of PD on DMN. 

2. Methods 
In this research, We have applied Cross Correlation 

Analysis(CCA) and probabilistic ICA (PICA) to the char-
acterization of DMNs in resting brain BOLD datasets. Be-
fore their applications, some preprocessing steps are done. 
All data are first pre-processed using tools from the FMRIB 
Software Library (FSL, http://www.fmrib.ox.ac.uk/fsl)[7], 
applying the following procedures: slice-timing, head mo-
tion correction, mean-based intensity normalization of all 
volumes by the same factor and removing nonbrain tissue 
using BET also part of FSL. The first four volumes are dis-
carded to remove the initial transient effects. Further pre-
processing included, spatial normalization is done in two 
steps: coregistration to structural images with 7 DOF and 
then normalization to the MNI (Montreal Neurological In-
stitute) template with 12 DOF using FMRIB's Linear Image 
Registration Tool (FLIRT). Moreover data is temporally 
band-pass filtered (0.01–0.08 Hz) to reduce physiological 
noise. Following the pre-processing, the data are analyzed 
using the following methods. 

2.1. Cross Correlation Analysis 

Currently, two major analysis approaches are used for 
assessing functional correlation in resting-state data: voxel 
wise and ROI (seed) wise. Seed Correlation Analysis (SCA) 
is based on calculating cross-correlation coefficients of the 
time series in two particular seed region-of-interest (ROI). 
SCA thus requires strong a priori assumptions, as the defi-
nition of seeds. The mean time series within this ROI is 
considered as the reference time course. In our analysis, we 
remove Cerebro-Spinal Fluid (CSF) pulsation as covariate. 
The extracted time courses of each subject are then 

cross-correlated region by region; Pearson's correlation co-
efficients are calculated: 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑥𝑥,𝑦𝑦) = ∫ [𝑥𝑥(𝑡𝑡)−𝑥𝑥̅][𝑦𝑦(𝑡𝑡)−𝑦𝑦�]𝑑𝑑𝑡𝑡𝑇𝑇
0

[∫ [𝑥𝑥(𝑡𝑡)−𝑥𝑥̅]2 ∫ [𝑦𝑦(𝑡𝑡)−𝑦𝑦�]2𝑇𝑇
0 𝑑𝑑𝑡𝑡𝑇𝑇

0 ]1/2
     (2) 

where x and y are the time courses of two regions. For all 
regions, we have:  

𝑌𝑌1 = 𝛽𝛽11𝑌𝑌1 + 𝛽𝛽12𝑌𝑌2 + ⋯+ 𝛽𝛽1𝑛𝑛𝑌𝑌𝑛𝑛
⋮

𝑌𝑌𝑖𝑖 = 𝛽𝛽𝑖𝑖1𝑌𝑌1 + 𝛽𝛽𝑖𝑖2𝑌𝑌2 + ⋯+ 𝛽𝛽𝑖𝑖𝑛𝑛𝑌𝑌𝑛𝑛
⋮

𝑌𝑌𝑛𝑛 = 𝛽𝛽𝑛𝑛1𝑌𝑌1 + 𝛽𝛽𝑛𝑛2𝑌𝑌2 + ⋯+ 𝛽𝛽𝑛𝑛𝑛𝑛 𝑌𝑌𝑛𝑛

         (3) 

where Yi is the time course of region i, 1<i<n and n is the 
number of regions. Finally, square correlation matrices are 
generated (n×n) from these values for each subject. Indi-
vidual r-maps are normalized to Z-maps using Fisher’s Z 
transformation:  

𝑧𝑧 = 0.5𝑙𝑙𝑝𝑝𝑙𝑙 1+𝑝𝑝
1−𝑝𝑝

                (4) 
The most effective preprocessing and processing steps in 

implementation of SCA approach illustrated in Fig. 1[8]. 

 
Figure 1.  Recommended resting-state functional connectivity fMRI 
preprocessing methodology 

Finally, the statistical analyses such as averaging and 
student t-test are applied for group inference:  

𝑡𝑡 = 𝑥𝑥̅−𝜇𝜇
𝑆𝑆/√𝑛𝑛

                   (5) 

𝑡𝑡 = 𝑋𝑋1����−𝑋𝑋2����

𝑆𝑆𝑋𝑋1𝑋𝑋2 .�2
𝑛𝑛

                 (6) 

𝑆𝑆𝑋𝑋1𝑋𝑋2 = �𝑆𝑆𝑋𝑋1
2 +𝑆𝑆𝑋𝑋2

2

2
                (7) 

where X1 and X2 are the samples, µ and S are related to 
mean and Standard Deviation of samples respectively and n 
is the number of samples.  
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2.2. Probabilistic ICA 

Independent component analysis (ICA) is becoming a 
popular exploratory method for analyzing complex data such 
as that from fMRI experiments. ICA views the 4D data as a 
sum of a set of spatiotemporal components, each of which 
consists of a spatial map modulated in time by that compo-
nent’s associated time course. It attempts to separate the 
different components by making the assumption that the 
spatial maps are statistically independent of each other, and, 
having different time-courses, they will ideally each repre-
sent a different artefact or activation pattern. By using the 
entire 4D dataset at once in this multivariate analysis, this 
kind of approach does not need to be fed any temporal model. 
In attempting to find RSNs in fMRI data, it is preferable to 
use a methodology that does not require the additional ex-
perimental sessions, extra analysis steps, and potential bias 
associated with activation-derived seeding. 

The application of ‘‘model-free’’ methods such as ICA, 
however, has previously been restricted both by the view that 
results can be hard to interpret, and by the lack of ability to 
quantify statistical significance for estimated spatial maps. 
Beckmann and Smith[9] proposed a probabilistic ICA (PICA) 
model for fMRI which models the observations as mixtures 
of spatially non-Gaussian signals and artefacts in the pres-
ence of Gaussian noise. It was demonstrated in the same 
work that using an objective estimation of the amount of 
Gaussian noise through Bayesian analysis of the number of 
activation and (non-Gaussian) noise sources, the problem of 
overfitting can be overcome. The approach proposed for 
estimating a suitable model order also allows for a unique 
decomposition of the data and reduces problems of inter-
pretation.  

3. Experimental Results 
3.1. Subjects 

Ten PD patients and ten age- and sex-matched healthy 
subjects were recruited. The experiments were undertaken 
with the understanding and written consent of each subject, 
with the approval from the local ethics committee, and in 
compliance with national legislation and the Declaration of 
Helsinki. Patients were scanned while taking their medica-
tion as usual. All patients were assessed clinically and 
scored according to the Hoehn and Yahr scale. 

Data were acquired on a 3T Siemens MRI system at John 
Radcliffe Hospital, Oxford, UK (at the Oxford Centre for 
Functional Magnetic Imaging of the brain). For each subject, 
a structural high resolution T1-weighted with flip angle:18o 
and 91×109×91 matrix size, and 120 volumes resting state 
functional T2-weighted images with parameters: slice 
thickness=3mm, resolution=3mm×3mm, TE=30ms, 
TR=3000ms were acquired. 

3.2. Data Analysis 

SCA results: Based on the pathophysiology model of 

Parkinson Disease in[10], eight ROIs in each hemisphere are 
chosen and investigated in this study. Table 1 shows ROIs 
with their Abbreviations. Motor cortex have made by the 
primary motor cortex, Premotor cortex and supplementary 
motor area. For preparing the mask of ROIs, three following 
steps are required: 

● Extracting the ROIs using the FSL atlases. 
● Splitting ROIs in left and right hemisphere using the 

fslmaths commands. 
● Binarization the weighted masks with 50% threshold. 
After ROI extraction, the averaging time course of each 

ROI calculates. The extracted signal time courses of each 
subject are then cross-correlated region by region, Pearson's 
correlation coefficients are calculated and square correlation 
matrices are generated (16×16) from these values for each 
subject. To compare quantitative r-values, we performe 
two-tailed two-sample t-test (P≤.05) between patients and 
healthy subjects. 

Table 1.  Eight Selected ROIs in Each Hemisphere with their Abbrevia-
tions 

ROIs Abbreviation 

Thalamus THA 

Caudate CAU 

Putamen PUT 

Pallidum PAL 

Hippocampus HIPP 

Prefrontal Cortex PFC 

cerebellum CER 
motor cortex(primary motor 

cortex+ Premotor cortex+ Sup-
plementary motor area) 

MC(M1+PMC+SMA) 

After ROI extraction, the averaging time course of each 
ROI calculates. The extracted signal time courses of each 
subject are then cross-correlated region by region, Pearson's 
correlation coefficients are calculated and square correlation 
matrices are generated (16×16) from these values for each 
subject. To compare quantitative r-values, we performe 
two-tailed two-sample t-test (P≤.05) between patients and 
healthy subjects. Normality of data is confirmed by calcu-
lating skewness and kurtosis as well as Kolmo-
gorov–Smirnov tests. Details of the results are listed in 
TABLEs II, where the averaging r-values and T and corre-
sponding p values are presented. Moreover, we also do 
kruskal-wallis analysis as a non-parametric test to ensure the 
accuracy of t-test results and we found that non-parametric 
analysis confirms parametric results. Considering the results, 
the following achieved could be highlight: 
• In healthy group, there is negative significant correlation 

between motor cortex and cerebellum, while this connection 
in PD patients is positive and not significant. This result 
implies the disturbance of equilibrium function of the brain 
in resting state which is the most important factor in tremor. 
Inter group analysis with p=0.014 and t=-2.708 confirm this 
result. 
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Table 2.  Averaging of R-Values and Result of Group Statistical Analysis in Functional Correlation of Selected ROIs in Left Hemisphere 

ROIs NC group PD group Group Comparison 
ROI1 ROI2 r-value p-value r-value p-value p-value T statistics Nonparametric test 

L_CAU L_CER -0.011 0.851 -0.278 0.017 0.033 2.335 0.023 
L_CAU L_HIPP -0.132 0.257 0.0818 0.497 0.195 -1.344 0.226 
L_CAU L_MC -0.113 0.292 -0.162 0.043 0.697 0.395 0.821 
L_CAU L_PALL 0.002 0.984 0.030 0.808 0.860 -0.178 0.597 
L_CAU L_PFC -0.047 0.584 0.092 0.140 0.185 -1.383 0.364 
L_CAU L_PUT 0.222 0.083 0.259 0.024 0.808 -0.245 0.650 
L_CAU L_THAL 0.020 0.851 0.231 0.178 0.286 -1.102 0.364 
L_CER L_HIPP 0.266 0.135 -0.222 0.023 0.018 2.689 0.010 
L_CER L_MC -0.099 0.320 0.055 0.342 0.179 -1.410 0.041 
L_CER L_PALL 0.160 0.342 -0.373 0.004 0.012 2.845 0.010 
L_CER L_PFC -0.193 0.245 -0.205 0.055 0.946 0.067 0.545 
L_CER L_PUT 0.194 0.254 -0.431 0.0003 0.0037 3.520 0.004 
L_CER L_THAL 0.049 0.611 -0.169 0.030 0.074 1.907 0.174 
L_HIPP L_MC -0.020 0.857 -0.161 0.101 0.335 0.991 0.406 
L_HIPP L_PALL 0.368 0.088 0.291 0.022 0.734 0.346 0.705 
L_HIPP L_PFC -0.111 0.511 -0.040 0.588 0.698 -0.396 0.762 
L_HIPP L_PUT 0.388 0.030 0.311 0.028 0.695 0.397 0.762 
L_HIPP L_THAL 0.228 0.037 0.114 0.340 0.451 0.770 0.762 
L_MC L_PALL -0.091 0.336 -0.199 0.013 0.348 0.966 0.545 
L_MC L_PFC 0.311 0.006 0.176 0.025 0.235 1.229 0.226 
L_MC L_PUT 0.024 0.869 -0.203 0.024 0.184 1.397 0.326 
L_MC L_THAL -0.161 0.040 -0.249 0.003 0.351 0.957 0.406 

L_PALL L_PFC -0.065 0.700 -0.049 0.730 0.942 -0.073 0.705 
L_PALL L_PUT 0.870 0.0001 0.919 4.7e-07 0.762 -0.308 0.326 
L_PALL L_THAL 0.645 0.0001 0.756 0.0003 0.512 -0.669 0.597 
L_PFC L_PUT -0.081 0.643 -0.050 0.638 0.877 -0.156 0.762 
L_PFC L_THAL -0.098 0.423 -0.017 0.730 0.539 -0.631 0.705 
L_PUT L_THAL 0.573 0.001 0.539 3.3e-05 0.812 0.242 0.605 

 

• In both groups, there is significant positive correlation 
between areas located in basal ganglia such as THALL, PUT, 
PALL and CAU. 
• In healthy, there isn’t significant correlation value be-

tween motor areas and basal ganglia areas, while in PD 
group there are significant negative correlations between 
motor cortex and cerebellum with areas located in basal 
ganglia (p-value<0.05 and |r|>0.169). Negative functional 
connectivity in PD implies decreasing activity in one regions 
and increasing in the other. We found in previous research 
that there are hyperactivation in motor cortex and hypoac-
tivation in basal ganglia.  
• The only exception is significant negative connectivity 

between MC and THAL in both groups and both hemi-
spheres.  

PICA results: The averaging number of components ex-
tracted by ICA from healthy group was 36.3 and for PD was 
35. This included scanner-related artefacts such as EPI 
ghosting and physiological artefacts such as cardiac pulsa-
tion. Fig. 2 illustrates the ANOVA analysis for number of 
extracted ROIs for two groups. This figure indicates that IC 
numbers isn’t a discriminative parameter between two 
groups. 

After the separate single-subject PICA analyses, in order 
to combine the results from different subjects, we also have 
done group PICA[9] with 0.7 threshold and 37 ICs are ex-
tracted in each group. Spatial consistency between different 

IC maps was quantified by finding the spatial pair-wise 
correlation coefficient of each IC map from one group with 
each map of another group. Then we select five spatial maps 
in each group which have less correlation with IC maps in 
another group. High correlations between ICs in two groups 
indicate common BOLD activity and mostly related to 
physiological noises. Fig.3 and 4 show these patterns in 
healthy and PD groups respectively. So for comparing ICs in 
two groups, we just focused on these five patterns. To un-
derstand the anatomical information of these resting fluc-
tuations, the 5 distinct patterns from each group were regis-
tered individually into common brain space maps using 
PICA. 

  

Figure 2.  ANOVA analysis for IC number between healthy (first value) 
and PD (second value) 
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As the figures show, the peak of coherence from the maps 
in healthy group mostly corresponds to a region in the 
probabilistic thalamic atlas in FSL with strongest connec-
tivity to the basal ganglia. By contrast, the anatomical lo-
calization of highlight cluster in IC maps of PD (Fig. 4) 
corresponds to a region that connects most anatomically 
strongly with motor cortex and basal ganglia cluster has 
weak BOLD signal. 

 
Figure 3.  Five IC maps selected from 37 extracted ICs of healthy which 
have less spatial correlation with extracted ICs of PD group. Background is 
ch2 

 
Figure 4.  Five IC maps selected from 37 extracted ICs of PD which have 
less spatial correlation with extracted ICs of healthy group. Background is 
ch2 

4. Conclusions 
In this paper, we used two analysis methods of resting 

state fMRI data (SCA and PICA) for investigating the 
changes of DMN activity in Parkinson Disease. For this 
purpose, we extract some ROIs based on pathophysiology of 
PD and apply SCA methods in regions. The statistical group 
analysis of pair-wise correlation shows that there is negative 
significant correlation between motor cortex and cerebellum 
in healthy, while this connection in PD patients is positive 
and not significant. This result implies the disturbance of 
equilibrium function of the brain in resting state which is the 
most important factor in tremor. Moreover, in both groups, 
there is significant positive correlation between areas located 
in basal ganglia such as THALL, PUT, PALL and CAU. The 
results show that in healthy, there is not significant correla-
tion value between motor areas and basal ganglia, while in 

PD group there are significant negative correlations between 
motor cortex and cerebellum with areas located in basal 
ganglia. Negative functional connectivity in PD implies 
decreasing activity in one regions and increasing in the other. 
This result confirms our previous research that there are 
hyperactivation in motor cortex and hypoactivation in basal 
ganglia. 

In our study, we additionally extended analysis using a 
relatively unbiased approach based on probabilistic ICA[9]. 
We identified five distinct patterns of ICs among 37 ex-
tracted ICs in each group which have less correlation with 
each other. The PICA method clearly distinguishes these 
patterns of activity from those associated with cardio- res-
piratory motion of the brain. The comparison of group PICA 
maps showed lower DMN activation in basal ganglia. The 
PICA approach offers specific advantages relative to corre-
lation-based analysis with ‘‘seeding’’ of a region identified 
by a prior.  

The result of our study show that the functional correla-
tions between ROIs are more affected in PD than pattern 
maps of activity. However, these methods could potentially 
provide information on functional systems and the dynamics 
of interactions within them. They also may prove to be a 
useful probe for functional alterations in the brain as a con-
sequence of changes in brain state, disease, or pharmacol-
ogical interventions. 
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