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Abstract

Decision makers operating in modern defence theatres need to comprehend and reason with huge quantities

of potentially uncertain and imprecise data in a timely fashion. In this paper, an automatic information fusion

system is developed which aims at supporting a commander’s decision making by providing athreat assessment,

that is an estimate of the extent to which an enemy platform poses a threat based on evidence about its intent and

capability. Threat is modelled by a network of entities and relationships between them, while the uncertainties in the

relationships are represented by belief functions as defined in the theory of evidence. To support the implementation

of the threat assessment functionality, an efficient valuation-based reasoning scheme, referred to as anevidential

network, is developed. To reduce computational overheads, the scheme performs local computations in the network

by applying an inward propagation algorithm to the underlying binary join tree. This allows the dynamic nature

of the external evidence, which drives the evidential network, to be taken into account by recomputing only the

affected paths in the binary join tree.
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I. INTRODUCTION

Situation and threat assessment are two important interdependent information fusion concepts which are usually

treated jointly by the military command and control (C2) process. According to [1], situation assessment establishes a

view of the battlespace in terms of the observed activities,events, manoeuvres, locations and organisational aspects

of the enemy force elements and from this view infers what is happening or what is going to happen on the

battlefield. Threat assessment, on the other hand, estimates the degree of severity with which the engagement

events will occur and its significance is in proportion to theperceived capability of the enemy to carry out its

hostile intent. An essential prerequisite for winning a battle is for the decision maker (commander) to be aware of

the current situation and threat rapidly in order to act properly and in a timely fashion.

The amount of data and information potentially relevant andavailable to a decision maker in modern warfare

far exceeds the human ability to review and comprehend them in a timely manner. Moreover, the decisions usually

have to be made under very stressful conditions which adversely affect humans and make them prone to error. All

this leads to the need for the development of an automatic knowledge-based information fusion system that will

support the commander’s decision process in a reliable, timely and consistent manner [2]. Similar problems exist

in other fields of human endeavour (management of commercialenterprises, medical diagnosis, etc), although the

military C2 domain is particularly challenging due to the inherently incomplete, uncertain and imprecise data.

A review of the early (pre 1990s) attempts at building knowledge-based expert systems is presented in [1, Ch.9].

The main drawback with these early attempts was the lack of a means and associated difficulties in handling

uncertain domain knowledge and imprecise or non-specific evidence. The invention ofBayesian networks[3] in

the mid 1980s for knowledge representation and probabilistic inference represented the next important stepping

stone in the development of expert systems. Since then, Bayesian networks have been the main technique reported

in the literature for constructing situation assessment [4], [5], [6], threat assessment [7] and intent assessment [8],

[9] systems. Bayesian networks are based on the assumption that all data (domain knowledge and accumulated

evidence) can be conveniently represented by probability functions. In reality, this may not always be the case and

so, as alternative to Bayesian networks, which rely on a representation of the uncertain information in terms of

probability functions, other network-based systems [10],[11] employing alternative uncertainty formalisms, such

as possibility theory [12], [13], [14] and the theory of evidence (or the belief function theory) [15], [16], have been

developed.

In 1989 Shenoy [17], [18] introduced the concept of avaluation-based system(VBS) which provides a general
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framework for managing uncertainty in expert systems1. There exist specialisations of the VBS for each of the

three major theories of uncertainty, namely probability theory, possibility theory and the theory of evidence2. In

a VBS, knowledge is represented by a network of variables (nodes) corresponding to the entities of the domain

(and their states), and of links (edges) representing the relationships between these entities. For solving a particular

problem, we first need to build a network model in terms of these nodes and links. Then we associate avaluationto

each link which encapsulates the information (based on our domain knowledge and prior information) about how to

propagate evidence and uncertainty from one entity to another via that link. Inference within a VBS is performed via

two operators calledcombinationandmarginalisation. Combination corresponds to the aggregation of knowledge,

while marginalisation refers to the focussing (coarsening) of it. Typically, we draw inferences on a small subset

of variables within a valuation-based network. A “brute-force” approach to reasoning within a VBS would be to

compute the joint valuation for the entire network and then to marginalise it to the subset of variables of interest

for decision making. The trouble with this approach, however, is that it becomes computationally intractable even

for small scale problems. A better alternative to the brute-force approach is to compute the required marginals of

the joint valuation without explicitly computing the jointvaluation.

In the Bayesian network context, several architectures [20] have been proposed for exact computation of marginals

of multivariate discrete probability distributions. One of the pioneering architectures for computing marginals was

proposed by Pearl [3] for multiply connected Bayesian networks. In 1988, Lauritzen and Spiegelhalter [21] proposed

an alternative architecture for computing marginals in join trees (also known as junction or clique trees) that

applies to any Bayesian network. Subsequently, Jensen et al. [22], [23] proposed a modification of the Lauritzen-

Spiegelhalter architecture, which is known as the Hugin architecture, since this architecture is implemented in

Hugin, a software tool developed by the same group. This architecture has been generalized by Lauritzen and

Jensen [24] so that it applies more generally to other domains including the Dempster-Shafer’s belief function

theory. Inspired by the work of Pearl, Shenoy and Shafer [11]first adapted and generalized Pearl’s architecture to

the case of finding marginals of joint Dempster-Shafer belief functions in join trees. Later, motivated by the work

of Lauritzen and Spiegelhalter [21] for the case of probabilistic reasoning, they proposed the VBS framework for

computing marginals in join trees and established the set ofaxioms that combination and marginalisation need to

1In addition to being a framework for managing uncertainty, VBSs have been used in optimisation problems, constraint satisfaction

problems, etc [18].
2Other examples of VBSs have been developed for handling uncertain information, such asassumption-based systems[19] which are

based on propositional logic.



3

satisfy in order to make the local computation concept applicable [25]. These axioms are satisfied for all three

major theories of uncertainty mentioned earlier. In 1997, Shenoy [26] proposed a refinement of junction trees,

called binary join trees, designed to improve the computational efficiency of the Shenoy-Shafer architecture. In this

paper we have chosen to focus on VBSs in the context of the theory of evidence, due to the expressive power

of belief functions which can represent both classical probability functions and possibility/necessity functions [27,

Ch.2]. This is particularly important when the valuations need to represent domain knowledge that is expressed in

the form of uncertain implication rules [28], [29]. In orderto emphasise this aspect of our work, we refer to the

resulting reasoning networks asevidential networks. In the paper we develop a representative model of threat in

the context of air defence and implement it using an evidential network. Local computations in the network are

performed using the inward propagation algorithm on the binary join tree [30]. We introduce a modified version of

the standard inward propagation algorithm, which takes into account the dynamic nature of input valuations (the

external evidence which drives the evidential network) by recomputing only the affected paths in the binary join

tree.

The paper is organised as follows. Section 2 describes valuation-based systems and the algorithms for local

computation. Section 3 reviews the main concepts and tools from the theory of evidence. Section 4 develops the

entities and relationships of a threat model cast in terms ofan evidential network. Section 5 presents the numerical

analysis and results for the proposed reasoning scheme. Finally, Section 6 discusses the conclusions drawn from

the study and possible avenues for further research.

II. VALUATION BASED SYSTEMS

A. Networks and axioms for local computation

A valuation based system is a framework for knowledge representation and inference. Real-world problems are

modelled in this framework by a network of interrelated entities, called variables. The relationships between variables

(possibly uncertain or imprecise) are represented by the functions called valuations. The two basic operations for

performing inference in a VBS are combination and marginalization. Throughout the paper we will deal with

discrete-valued variables characterised by finite sets of possible values. Letx denote a variable in a VBS; the set

of its possible values will be denoted byΘx and referred to as theframeof x.

In a nutshell, a VBS [18] consists of a 5-tuple{V,ΘV,ΦV,⊕, ↓}, whereV denotes the set of all variables in

the model,ΘV = {Θx : x ∈ V} is the set of frames of all variables,ΦV = ∪{ΦD : D ⊆ V} denotes the set of
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all valuations,⊕ is the combination operator and↓ is the marginalization operator. Further explanation follows.

• Variables and Frames. For a subset of variablesD ⊆ V, frameΘD denotes the Cartesian product of the

values of the variablesx ∈ D, that isΘD

△
= ×{Θx : x ∈ D}, with × denoting the Cartesian product. The

elements ofΘD are referred to asconfigurations. For example, supposeD = {x, y, z} is a subset of variables

in a VBS, and that their frames are specified as follows:Θx = {x1, x2}, Θy = {y1, y2} andΘz = {z1, z2}.

Then the frame ofD consists of8 configurations and is given by:

ΘD = {(x1 y1 z1), (x1 y1 z2), . . . , (x2 y2 z2)}.

• Valuations. Valuations are primitives in the VBS framework. A valuation ϕ represents some knowledge about

the possible values of a set of variablesD. More precisely, givenD ⊆ V, a valuationϕ : ΘD → [0, 1] is

a function mapping the frame ofD into the interval[0, 1]. The set of variables, on which the valuation is

defined, will be denoted asd(ϕ) and called the “domain” ofϕ. The symbolΦD denotes the set of valuations

for the set of variablesD, that isΦD

△
= {ϕ : d(ϕ) = D}.

• Combination. Combination⊕ is a binary function on valuations,⊕ : (ΦV,ΦV) → ΦV. Given two

valuationsϕ1, ϕ2 ∈ ΦV defined on the domainsD1 ⊆ V andD2 ⊆ V, respectively, the combinationϕ1⊕ϕ2

is a valuation on domainD = D1 ∪D2. Formally we write this asd(ϕ1 ⊕ ϕ2) = d(ϕ1) ∪ d(ϕ2) = D1 ∪D2.

• Marginalization. Marginalization↓ is a binary operation and is used for focusing the knowledge onto a smaller

domain,↓: (ΦV, 2V) → ΦV. If ϕ is a valuation for the domainD ⊆ V and D1 ⊆ D, thenϕ↓D1 is a

valuation on the domainD1. Hence, it follows thatd(ϕ↓D1) = D1.

Instead of marginalization another basic operation calledvariable eliminationcan be defined and denoted asϕ−x △
=

ϕ↓d(ϕ)\{x} with x ∈ V. Note thatx /∈ d(ϕ) impliesϕ−x = ϕ.

The straightforward (“brute-force”) approach for making inference in a valuation network is to compute the

joint valuation onV, that is to combine sequentially all the valuations in the model and then to marginalize

this joint valuation to the sub-domain of interestD
o afterwards. However, when there are many variables in the

model, computing the joint valuation directly becomes computationally intractable. Clearly the number of variables

increases with each combination and the complexity grows exponentially with the number of variables. For instance,

if there aren variables and each variable can assumem different values (i.e. each variable hasm configurations

in its frame), then there aremn configurations in the joint domain of all variables. One way for reducing this

complexity is to take advantage of the local structure of theproblem. In most cases, complex problems can be
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decomposed into sub-problems involving a smaller number ofvariables. Furthermore, only a few variables are often

of interest for decision making, while the remaining ones are auxiliary (non-interesting) variables, used only to

model the problem. The fundamental idea of local computation [3], [18], [21], [22], [23], [24], [30] is to exploit

the local structure of the problem to calculate the marginals of the joint valuation without explicitly computing the

joint valuation. This is done by combining the valuations onsmall groups of variables, such that the non-interesting

variables are eliminated one-by-one. At the end of this process the final result is the valuation on the variables of

interest. This is possible if the following axioms are satisfied [25], [26].

1) Commutativity and associativity of combination: combination is commutative and associative inΦV.

2) Order of deletion does not matter: if ϕ ∈ ΦV is a valuation andx1 andx2 are two variables inD = d(ϕ),

then (ϕ↓(D\{x1}))↓(D\{x1,x2}) = (ϕ↓(D\{x2}))↓(D\{x1,x2}).

3) Distributivity of marginalization over combination: if ϕ1, ϕ2 ∈ ΦV are valuations with domainsD1

and D2, respectively, andx is a variable such thatx ∈ D2 but x /∈ D1 then (ϕ1 ⊕ ϕ2)
↓((D1∪D2)\{x}) =

ϕ1 ⊕ (ϕ
↓(D2\{x})
2 ).

Axiom 2 says that if a valuation has to be marginalized to a smaller sub-domain, then the order in which the

variables are eliminated is irrelevant. Axiom 3 is the fundamental axiom for the local computation. It states that the

valuationϕ1⊕ (ϕ
↓(D2\{x})
2 ) can be obtained without computing(ϕ1⊕ϕ2). This property allows substantial savings

on computational resources, because the combination(ϕ1 ⊕ϕ2) is on the frame of the variables inD1 ∪D2, while

the combinationϕ1 ⊕ (ϕ
↓(D2\{x})
2 ) is on the frame of(D1 ∪D2)\{x}.

Notice that, like the junction tree algorithm for Bayesian networks, this method is not an approximation. In fact,

if these axioms are satisfied, the result obtained by applying the local computation paradigm is exactly equivalent

to that provided by the brute-force approach. For all major theories of uncertainty it can be proved that combination

and marginalization satisfy the axioms for local computation [25]. In the next section, we describe an algorithm

for performing inference via a VBS using local computation.

B. Fusion algorithm

The core of the VBS is thefusion algorithm[18], [30], which allows to perform inference via a VBS usinglocal

computation. LetΨ = {ϕ1, ϕ2, . . . , ϕr} ⊆ Φ be a given set of valuations andDo ⊆ V, with V = d(ϕ1)∪ d(ϕ2)∪

· · · ∪ d(ϕr), the domain of interest for decision making. The fundamental operation of the fusion algorithm is to

delete successively all variablesx ∈ ∆, where∆
△
= V\Do is the set of variables of no interest in the VBS. The
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variables can be deleted in any sequence, since according toAxiom 2 all deletion sequences lead to the same result.

However, different deletion sequences can imply a different computational burden. Finding an optimal elimination

sequence is an NP-complete problem [18], but there exist several heuristics for finding a good elimination sequence

[29], [31], [32].

In the fusion algorithm, the marginal of the joint valuationis computed by successively eliminating all the

variables in∆. With respect to the variablex ∈ ∆ to be eliminated, two subsets of valuations can be defined

Ψx
△
= {ϕ ∈ Ψ : x ∈ d(ϕ)} andΨx̄

△
= {ϕ ∈ Ψ : x /∈ d(ϕ)}

As a consequence of axiom 3, only the valuations inΨx are affected by the elimination ofx. Thus, the remaining

set of valuations after eliminatingx from Ψ is

Fusx{ϕ1, ϕ2, . . . , ϕr}
△
= {⊕Ψx}

↓(S\{x}) ∪Ψx̄
△
= {ϕr+1} ∪Ψx̄ (1)

whereS
△
=

⋃

ϕi∈Ψx

d(ϕi). Note that theFusx operation in (1) amounts to the union of all valuations not involving

x together with the single valuationϕr+1. The latter is obtained by combining all valuations involving x and then

marginalizing the resulting valuation toS\{x}. The valuation on the domain of interestD
o can thus be obtained

by recursively applying the fusion algorithm and deleting all variables in∆ = {x1, x2, . . . , xm}, i.e.

(ϕ1 ⊕ ϕ2 ⊕ · · · ⊕ ϕr)
↓Do

= ⊕
{

Fusxm

{

Fusxm−1
{. . . Fusx1

{ϕ1, ϕ2, . . . , ϕr}}
}}

(2)

This technique allows a reduction in the computational loadfor two reasons: the beliefs are combined on local

domains and the variable elimination keeps the domains of the combined beliefs, i.e.d(ϕ1 ⊕ϕ2) = d(ϕ1)∪ d(ϕ2),

to a reasonably small size.

a) Example 1.:Let us consider the set of valuations{ϕ1, ϕ2, ϕ3, ϕ4} defined respectively on the domains

d(ϕ1) = {x1, x2}, d(ϕ2) = {x2, x3}, d(ϕ3) = {x3, x4}, d(ϕ4) = {x4, x1}, wherex1, . . . , x4 are the variables of

the problem. Assume thatx1 is the decision variable, i.e.Do = {x1}. Then it follows that∆ = {x2, x3, x4} is the

set of variables of no interest. The objective is to apply thefusion algorithm to compute the combined valuation

(ϕ1 ⊕ ϕ2 ⊕ ϕ3 ⊕ ϕ4)
↓Do

. The steps of the fusion algorithm are the following:

1) ϕ5 = (ϕ1 ⊕ ϕ2)
↓(d(ϕ1)∪d(ϕ2))\{x2}, Fusx2

= {ϕ5} ∪Ψx̄2
= {ϕ3, ϕ4, ϕ5}

whered(ϕ5) = (d(ϕ1) ∪ d(ϕ2))\{x2} = {x1, x3} is the domain ofϕ5.

2) ϕ6 = (ϕ3 ⊕ ϕ5)
↓(d(ϕ3)∪d(ϕ5))\{x3}, Fusx3

= {ϕ6} ∪Ψx̄3
= {ϕ4, ϕ6}

whered(ϕ6) = (d(ϕ3) ∪ d(ϕ5))\{x3} = {x1, x4}
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3) ϕ7 = (ϕ4 ⊕ ϕ6)
↓(d(ϕ4)∪d(ϕ6))\{x4}, Fusx4

= {ϕ7} ∪Ψx̄4
= {ϕ7}

whered(ϕ7) = (d(ϕ4) ∪ d(ϕ6))\{x4} = {x1}

At the end of the last step the valuationFusx4
, defined on the domain of interest{x1}, represents the solution of

the problem. �

C. Dynamic fusion

The fusion algorithm (2) works well if the valuations are static (invariant in time). However, we may want to

compute the marginal of the variables of interest more than once, for example every time one or more valuations

in the VBS change. In this case, we would need to repeat the application of the fusion algorithm every time any

of the valuations inΨ is changed. This would clearly be inefficient, since it wouldresult in a lot of duplication in

computation. To avoid this, it is more efficient to representthe VBS in the form of a binary join tree (BJT) and

then to propagate the changes. A binary join tree is a join tree such that no node has more than three neighbors,

one parent and two children. The binary join tree construction process is based on the fusion algorithm and the

idea that all combinations between valuations should be carried out on a binary basis, i.e. two-by-two.

A BJT is a binary tree(N,E) of nodesN = {n1, n2, . . . , nf} and edgesE = {(n,m) : n,m ∈ N,n 6= m}. A

node without children is called aleaf. A node without a parent is called aroot. As such, a BJT is only a graphical

representation of the fusion algorithm [18]. For this reason, like in the fusion algorithm, the structure of the BJT

(i.e. nodes and edges) strongly depends on the elimination sequence∆.

A BJT has the following characteristics.

• To each nodeni a subset of variablesDi ⊆ V and a valuationϕ(ni), such thatd(ϕ(ni)) = Di are associated.

• The domain of the root of the BJT is such thatD
o ⊆ d(root).

• Edges represent the order in which the valuations must be combined (in order to calculate the valuation of the

root onDo).

• Nodes and edges represent steps of the fusion algorithm.

• A BJT has to satisfy the Markov property, which means thatDi ∩Dj ⊆ Dk for every pair of nodesni and

nj and for every nodenk ∈ Path(ni, nj), wherePath(ni, nj) denotes the set of nodes on the path between

ni andnj.

Note that the Markov property is one of the most important properties of the BJT, as will be discussed in Sec.
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V-A. An algorithm for building a BJT is given in appendix .

In a BJT, marginals are computed by means of a message-passing scheme among the nodes. Initially only the

valuations of leaves of the BJT are specified. The process of propagating the valuations from the leaves toward

the root of a BJT is calledinward propagation[18], [30] and can be implemented with the algorithm reported in

appendix . The key feature of the BJT and inward propagation is that the combination operator is applied only at

the non-leaf nodes of the tree, between their left and right children. The advantage of using inward propagation

on a BJT instead of the fusion algorithm lies in the ability tore-use the computations of the inward phase if the

marginals need to be re-computed. In this way, every time oneor more valuations of the leaves of the BJT change,

the inward phase re-calculates the valuations for all the nodes in the BJT which are affected by the change. That

is, if ni is the leaf whose valuation has changed, then the inward phase re-computes the valuations of all the nodes

of the BJT alongPath(ni, root).

Suppose the BJT has been constructed for the domain of interestDo, and the inward propagation has been carried

out. Let us also assume that the domain of interest has changed. One way to carry out the inference would be

to create a new BJT and to perform again inward propagation. However, there is a more efficient alternative, the

so calledoutward propagation[30]. Outward propagation distributes the knowledge from the root to the leaves of

the tree, by reversing the direction in which the messages are passed between nodes [30]. Note that in the threat

assessment problem the setD
o is fixed and hence outward propagation is not used in the sequel.

In summary, a BJT can be seen as a data structure which allows the intermediate results of the combination

process to be saved and the marginals to be computed efficiently.

III. B ELIEF FUNCTIONS AS VALUATIONS

A VBS with valuations expressed by belief functions (as defined in the theory of evidence) will be referred to

as anevidential network. The theory of evidence satisfies all of the VBS axioms for local computation listed in

Sec.II-A. In this section we review the main components and tools of the theory of evidence.

Let frameΘh = {h1, h2, . . . , hn} define a finite set of possible values of variableh in an evidential network.

Elementary valueshi (i = 1, . . . , n) of the frameΘh are assumed to be mutually exclusive and exhaustive so

that n = |Θh| is the cardinality of the frame. The beliefs about the actualvalue of the variableh are expressed

on the subsets ofΘh. The set containing all possible subsets ofΘh, i.e. the power set ofΘh, is denoted by

2Θh = {H : H ⊆ Θh}; its cardinality is2n. In this formalism, belief is represented by a so-called basic belief
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assignment (BBA)m : 2Θh → [0, 1], that satisfies
∑

H⊆Θh
m(H) = 1. Thus forH ⊂ Θh, m(H) is the part of the

belief that supportsH (i.e. the fact that the true value ofh is in H), but due to the lack of further information,

does not support any strict subset ofH. The subsetsH such thatm(H) > 0 are referred to asfocal elementsof the

BBA. The state of complete ignorance about the variableh is represented by avacuousBBA defined asm(H) = 1

if H = Θh and zero otherwise. Since the valuations in the evidential networks are BBAs, we denote them in the

sequel bym in place ofϕ.

A. Combination

The combination operator in the theory of evidence is carried out using Dempster’s rule of combination. Let the

BBA mD1

1 be defined on a domain (subset of variables)d(m1) = D1 ⊆ V. Similarly let mD2

2 be another BBA

defined on a domaind(m2) = D2 ⊆ V. If d(m1) ≡ d(m2) = D, the two BBAs are combined directly using

Dempster’s rule [15]:

(mD

1 ⊕mD

2 )(A) =

∑

B∩C=A

mD
1 (B) mD

2 (C)

1−
∑

B∩C=∅

mD
1 (B) mD

2 (C)
(3)

whereA,B,C are subsets of the frame defined by the Cartesian product of the variables inD; i.e. A,B,C ⊆ ΘD.

If the two domains are different,D1 6= D2, then before we apply Dempster’s rule, we must extend both BBAs to

the joint domainD1 ∪ D2 in such a way that they express the same information before and after the extension

(hence referred to as thevacuous extensionand denoted by↑). The vacuous extension ofmD1

1 to D1 ∪ D2 is

defined as [18]

m
D1↑(D1∪D2)
1 (C) =



















mD1

1 (A) if C = A×ΘD2
, A ⊆ ΘD1

0 otherwise.

(4)

b) Example 2.:SupposeV = {x, y, z} with framesΘx = {x1, x2}, Θy = {y1, y2} andΘz = {z1, z2}. Let

D1 = {x}, andD2 = {y, z}, i.e. ΘD1
= Θx andΘD2

= {(y1 z1), (y1 z2), (y2 z1), (y2 z2)}. Let the BBAmD1

1 be

defined such thatmD1

1 ({x1}) = 0.7 andmD1

1 ({x1, x2}) = 0.3. Then the vacuous extension ofmD1

1 to D1 ∪D2

is given by:mD1↑(D1∪D2)
1 ({(x1 y1 z1), (x1 y1 z2), (x1 y2 z1), (x1 y2 z2)}) = 0.7 with the remaining belief of0.3

assigned toΘD1∪D2
= {(x1 y1 z1), (x1 y1 z2), (x1 y2 z1), (x1 y2 z2), (x2 y1 z1), (x2 y1 z2), (x2 y2 z1), (x2 y2 z2)}.

�

Dempster’s rule of combination in the general case of possibly non-identical domains is then defined as:

mD1

1 ⊕mD2

2 = m
D1↑(D1∪D2)
1 ⊕m

D2↑(D1∪D2)
2 . (5)
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B. Marginalisation

Marginalisation is a projection of a BBA defined on domainD onto a BBA defined on a coarser domainD′ ⊆ D.

Formally we write:

mD↓D′

(A) =
∑

B↓A

mD(B) (6)

where the summation in (6) is over allB ⊆ ΘD such that the configurations inB reduce to the configurations in

A ⊆ ΘD′ by the elimination of variablesD \D′.

c) Example 3.:Let D = {x, y, z} and D
′ = {x, z}, with the frames of variablesΘx = {x1, x2}, Θy =

{y1, y2} andΘz = {z1, z2, z3}. Suppose BBAmD has three focal sets:

mD({(x1 y1 z1)}) = 0.6

mD({(x1 y1 z1), (x1 y2 z2)}) = 0.3

mD({(x1 y1 z1), (x1 y2 z1), (x1 y2 z2)}) = 0.1.

Then:

mD↓D′

({(x1 z1)}) = 0.6

mD↓D′

({(x1 z1), (x1 z2)}) = 0.4

�

Remark. Marginalization is the inverse operation of extension, but, in general, extension is not the inverse of

marginalization. For instance, consider a valuationϕ and three generic setsD1, D2 andD3 such thatd(ϕ) = D2

andD1 ⊆ D2 ⊆ D3; then it turns out that(ϕ↑D3)↓D2 = ϕ but, in general,(ϕ↓D1)↑D2 6= ϕ.

C. Representation of uncertain implication rules

Often expert knowledge is expressed in the form of uncertainimplication rules, such as “if A then B” with a

certain degree of confidence. Suppose there are two disjointdomains,D1 andD2 with associated framesΘD1
and

ΘD2
, respectively. Formally, an implication rule is an expression of the form

A ⊆ ΘD1
⇒ B ⊆ ΘD2

. (7)

Furthermore, let us assume that this implication rule is valid only in a certain percentage of cases, i.e. with a

probability (confidence)p such thatp ∈ [α, β], with 0 ≤ α ≤ β ≤ 1.
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An implication rule can be expressed by a BBA using the principle of minimum commitment[33] and its

instantiation referred to as theballooning extension[33], [28]. Thus the implication rule of (7) can be expressed

by a BBA consisting of3 focal sets on the joint domainD1 ∪D2 [29]:

mD1∪D2(C) =



































α, if C = (A×B) ∪ (Ac ×ΘD2
)

1− β, if C = (A×Bc) ∪ (Ac ×ΘD2
)

β − α, if C = ΘD1∪D2

(8)

whereAc is the complement ofA in ΘD1
, and accordinglyBc is the complement ofB in ΘD2

.

d) Example 4.: Let D1 = {x}, D2 = {y}, Θx = {x1, x2, x3}, Θy = {y1, y2, y3}, A = {x1, x2} and

B = {y2}. Then the BBA representation of the ruleA ⇒ B with confidencep ∈ [α, β] is given by:

m{x,y}({(x1 y2), (x2 y2), (x3 y1), (x3 y2), (x3 y3)}) = α

m{x,y}({(x1 y1), (x1, y3), (x2 y1), (x2, y3), (x3 y1), (x3 y2), (x3 y3)}) = 1− β

m{x,y}({(x1, y1), (x1, y2), (x1, y3), (x2, y1), (x2, y2), (x2, y3), (x3, y1), (x3, y2), (x3, y3)}) = β − α.

�

Note that in the special caseα = β, the BBA has only two focal sets. Implication rules are sometimes used to

express the valuations (BBAs) on the leaf nodes of a BJT.

D. Pignistic transformation

Belief functions cannot be directly used for decision making [34], hence we need to introduce a mapping of

a belief measure to a probability measure. The pignistic transformation is the only such mapping satisfying the

requisite linearity property [34]. LetmD be a BBA defined on a subset of variablesD with corresponding frame

ΘD. The pignistic transform ofmD is defined for every element of the frameθ ∈ ΘD as follows [34]:

BetP (θ) =
∑

θ∈A⊆ΘD

1

|A|

mD(A)

1−mD(∅)
. (9)

BetP is the probability measure that we use for decision making onthe domain of interestDo ⊆ V within

evidential networks.

IV. T HREAT MODEL

In this section we introduce a model of threat in the context of an air-to-air engagement which draws on ideas

from [1] and [35]. The model is shown in the form of an evidential network in Fig.1, where the variables are
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represented by circular nodes and the valuations (BBAs) by diamond shapes. The list of variables with explanations

and frame definitions is given in Table I. Each valuation nodeis connected by edges to the subset of variables

which define its domain. For example, the domain of valuation(BBA) m1 consists of variables T, HI and C. Any

pair of variables which are not directly connected are assumed to be conditionally independent. The domain of

interest for decision making is the singletonDo = {T}.

Fig. 1. A model of threat assessment

According to the threat model in Fig.1, variable T (threat) depends on the degree of hostile intent (HI) of the

opponent and on its capability (C). Assuming the threat linearly related to both HI and C, we may choose to

represent the valuationm1 by the following rule: T=HI+C. Consider in the Cartesian product space T×HI ×C the

set of triples(t, h, c), such thatt = h+c, where according to the frames of the variables in Table I,t ∈ {0, . . . , 10},

h ∈ {0, . . . , 6} andc ∈ {0, . . . , 4}. Then we can represent the ruleT = HI + C by the following BBA:

m1({(0, 0, 0), (1, 0, 1), . . . , (4, 0, 4),

(1, 1, 0), (2, 1, 1), . . . , (5, 1, 4),

. . .

(6, 6, 0), (7, 6, 1), . . . , (10, 6, 4)}) = 1. (10)
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TABLE I

Variables of the threat assessment model

Variable Description Frame Explanation

T Threat {0, 1, . . . , 10} 0 none,10 highest degree of T

HI (Hostile) Intent {0, 1, . . . , 6} 0 none (benign),6 highest degree of HI

C Capability {0, 1, 2, 3, 4} 0 none,4 highest degree of C

EM Evasive manoeuvre {0, 1} 0 is false,1 is true

FCR Fire Control Radar {0, 1} 0 is OFF,1 is ON

CM Countermeasures {0, 1} 0 is false,1 is true

PC Political climate {0, 1} 0 is peace,1 is war

NF Non-friendly platform {0, 1} 0 is false,1 is true

IFFS Correct IFF squawking {0, 1} 0 is false,1 is true

FPA Flight plan agreement {0, 1} 0 is false,1 is true

PT Platform type {0, 1, . . . , 5} E.g. 0 is EuroFighter,1 is FA-22 raptor, etc.

WER Weapon Engagement range{0, 1, 2} 0 is small,1 medium,2 long range

I Imminence {0, 1, 2} 0 is low, 1 medium,2 is high

This BBA has a single focal set consisting of35 triples (t, h, c).

The degree of hostile intent (HI) is proportional to the evidence that the target (opponent) behaves in a hostile

manner. In particular, the target may perform evasive manoeuvres (EM), it may employ countermeasures (CM),

such as deception jamming or chaff, we may have evidence thatit is not a friendly (NF) platform, and most

importantly, its fire-control-radar (FCR) could be turned on (meaning it intends to fire a weapon soon). In addition,

the political climate (PC) has an influence on the HI variablein the sense that the climate of political tension

means that the target is more likely to have a hostile intent.The relationship between the six variables mentioned

(HI,EM,FCR,CM,PC,NF), is captured by the valuationm2. How this relationship may be represented bym2 depends

on many factors (doctrine, engagement rules, etc), but for the sake of illustration we adopt the following simple

rule: HI = EM+2·FCR+CM+PC+NF. This rule reflects the fact that the FCR variable is weighted higher than other

variables in contributing to the HI. The adopted rule is represented by the BBAm2 defined on a 6 dimensional

product space HI×EM×FCR×CM×PC×NF as follows:

m2({(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 1), (1, 0, 0, 0, 1, 0),

(2, 0, 0, 0, 1, 1), (1, 0, 0, 1, 0, 0) . . . , (2, 0, 1, 0, 0, 0), . . . , (6, 1, 1, 1, 1, 1)}) = 1 (11)
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Thusm2 has a single focal set consisting of32 six-tuples.

Identification friend or foe (IFF) is a radio interrogator device for positive identification of friendly aircraft.

Variable IFFS is true if the target responds correctly to theinterrogation. In order to define the valuationm3 on

domain{NF, IFFS}, suppose that we have confidence that in95% to 100% of the cases if the IFFS is true, than the

target is indeed a friend (i.e. NF= 0). On the other hand, suppose the evidence indicates that thelack of response

to the IFF interrogation (IFFS=0) is due to the non-friendly(NF= 1) target only in10 to 30% of the cases. We

can then summarise “expert” knowledge about the domain{NF, IFFS} by the following set of independent rules:

(IFFS= 1) ⇒ (NF = 0) with confidence between0.95 and1

(IFFS= 0) ⇒ (NF = 1) with confidence between0.10 and0.30

Then according to Sec.III-C, each of the rules above can be represented by a BBA; when the BBAs are combined

by Dempster’s rule, we obtain the following valuation on theproduct space NF× IFFS:

m3 ({ (0, 0), (0, 1), }) = 0.6650

m3 ({ (0, 0), (0, 1), (1, 0) }) = 0.1900

m3 ({ (0, 1), (1, 0) }) = 0.0950

m3 ({ (0, 0), (0, 1), (1, 1) }) = 0.0350

m3 ({ (0, 1), (1, 0), (1, 1) }) = 0.0050

m3 ({ (0, 0), (0, 1), (1, 0), (1, 1) }) = 0.0100

(12)

Flight plans are plans filed by pilots with the local aviationauthority prior to flying. They generally include basic

information such as departure and arrival points, estimated time, etc. If there is evidence that an air target is flying

in accordance with a flight plan (variable FPA= 1), then this is a strong indication that it is a friend (or neutral),

i.e. NF= 0. Suppose we can again summarise expert knowledge about the domain{FPA,NF} by the following set

of rules:

(FPA= 1) ⇒ (NF = 0) with confidence between0.95 and1

(FPA= 0) ⇒ (NF = 1) with confidence between0.10 and0.30

As described above, these two rules can be translated to the corresponding BBAm4 on its domain{FPA,NF}.

Suppose we have at our disposal a sensor such as an electronicsupport measures (ESM) system, which can

report on the platform type (PT) variable. Valuationm5 captures the expert knowledge which relates the PT to the
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NF variable. Suppose this knowledge is represented by the following implication rule:

(NF = 1) ⇒ (PT∈ {3, 4, 5}) with confidence between0.50 and1.

This rule represents our prior knowledge (e.g. from intelligence sources) that non-friendly aircraft in the battlespace

of interest are of type3, 4 or 5, with confidence at least of50%.

For each PT, it is usually known a priori what types of weapons(and its capabilities) it carries [36]. Variable

m6 represents the relationship between the weapons engagement range (WER) variable and the PT. Supposem6

is defined by the following set of rules:

(PT∈ {0, 1}) ⇒ (WER= 0) with confidence between0.40 and1

(PT∈ {2, 3}) ⇒ (WER∈ {1, 2}) with confidence between0.40 and1

(PT∈ {4, 5}) ⇒ (WER= 2) with confidence between0.40 and1.

Variable C (capability) in our threat model is related to theWER and to the imminence (I) of an attack. The

degree of imminence is measured by the distance, heading andspeed of the target, and according to Table I can be

low, medium or high. We define valuationm7 by the following rule on the product space C×WER× I: C=WER+I.

This rule captures the simple notion that the capability is high if the WER is large and the imminence is high.

Thusm7 is a BBA given by:

m7({(0, 0, 0), (1, 0, 1), (2, 0, 2), (1, 1, 0), (2, 1, 1), (3, 1, 2), (2, 2, 0), (3, 2, 1), (4, 2, 2)}) = 1.

Valuationsm1, m2, . . . , m7 represent our prior domain knowledge of the problem. The remaining valuationsm8,

m9, . . . , m15, referred to asinput valuations, are the drivers of the evidential network for threat assessment. Input

valuations are initially represented by vacuous BBAs. As more evidence (from the surveillance sensors and other

external sources) about the intruder and the situation become available, input valuations change and become more

informative. The next section will present the numerical results obtained using the described evaluation network

for various combinations of input valuations.

V. NUMERICAL RESULTS AND ANALYSIS

In this section we apply the VBS framework to determine the degree of threat posed by a hypothetical intruder

in the considered air-to-air engagement problem. According to Table I, the degree of threat takes integer values in

the range from0 to 10 (0 being no threat, 10 being highest threat).
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In Sec. IV we have introduced the main components of the VBS framework for the problem of interest. The set

of variables consists of13 elements,V = {T, HI, C, EM, FCR, CM, PC, NF, IFFS, FPA, PT, WER, I}; the set of

all valuations (BBAs) consists of15 elements,ΦV = {m1,m2, . . . ,m15}, the domain of interest is the singleton

D
o = {T} and the set of variables to be eliminated is∆ = V\{T}.

The following steps describe the process for solving the problem in the VBS framework.

1) construct the binary join tree;

2) initialize the leaves of the BJT with the BBAs;

3) apply the inward propagation algorithm;

4) marginalise the belief of the root of the BJT toDo;

5) apply the pignistic transformation.

A. The Binary Join Tree

Only three pieces of information are necessary to build a BJT: the set of variables of interest for decision making

D
o; the set of variables to be eliminated∆ and the set of the valuationsΦV with associated domains. The BJT

constructed for the threat assessment problem is shown in Fig. 2. This BJT is a result of application of the algorithm

presented in Appendix . The nodes in the BJT are labelled by integer numbers from1 to 29. The leaves of the

tree (the nodes labelled from1 to 15) represent the original valuations specified by the setΦV. The remaining

nodes in the BJT represent the intermediate steps of the fusion algorithm; as such they specify the order in which

the valuations must be combined in order to calculate the valuation for the variable T. The vertical labels next to

the nodes of the BJT denote the domains (the subsets of variables) of the nodes. The following comments provide

further explanation on the construction of the BJT in Fig. 2.

• Consider the first two variables in the elimination sequence, namely IFFS and FPA. These variables are included

in the domains of the nodes3, 4, 12 and13 whose BBAs are the first to be combined. The subtree of nodes

{3, 4, 12, 13, 16, 17, 28} represents the intermediate steps of this combination process. Node16 represents the

combination of3 and 12, node17 the combination of4 and 13, and finally node28 the combination of16

and17. These steps are described in (13).

m16 = m3 ⊕ m
↑{NF, IFFS}
12 , d(m16) = {NF, IFFS}

m17 = m4 ⊕ m
↑{NF, FPA}
13 , d(m17) = {NF, FPA}

m28 =
(

m
↑{NF, IFFS, FPA}
16 ⊕ m

↑{NF, IFFS, FPA}
17

)↓{NF}
, d(m28) = {NF}

(13)
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• The BJT satisfies the Markov property defined in Sec. II-C. In fact, considering for example the subtree of

nodes{1, 7, 15, 20, 21}, it can be seen that the variable C is contained in the domainsof nodes1 and7, but

also in the domain of all nodes in the path between1 and 7, i.e. Path(1, 7) = {1, 7, 20, 21}. A BJT which

does not satisfy this property cannot be a representation ofthe fusion algorithm. For example, let us assume

that the domain of node20 does not include C; this means that C has been eliminated during the combination

of the BBAs of nodes7 and15. If this were true, before combining the valuations at node20 with node1 to

produce the BBA for node21 (the domain of1 contains C), we should again extend the domain of node20

to a new domain containing C. Since marginalization produces a loss of information (coarsening), which can

no longer be recuperated with the extension operation (see the remark at the end of Sec. III-B), the BBA of

node21 would be incorrect, i.e. it would be different from(m1 ⊕m7 ⊕m15)
↓{T,HI,C,WER}.

The BJT in Fig. 2 was obtained with the following variable elimination sequence: IFFS, FPA, I, C, EM, FCR,

CM, PC, PT, WER, HI, NF. As it has already been explained in section II-B, finding the optimal elimination

sequence is an NP-complete problem but there exist several heuristics for finding a good elimination sequence

problem. The previous elimination sequence has been calculated by means of theOne Step Look Ahead - Smallest

Clique, Fewest Focal sets(OSLA-SCFF) heuristic [31, p.61]. This heuristic chooses the variable to be eliminated

by minimizing the cardinality of the domain and the number offocal sets associated with the nodes of the BJT.

Note that a different elimination sequence would result in adifferent BJT. For example, the BJT in Fig. 3 was

obtained with the elimination sequence IFFS, FPA, I, EM, FCR, CM, PC, PT, WER, NF, C, HI which has been

calculated by applying theOne Step Look Ahead - Fewest Fill-ins(OSLA-FFI) heuristic [31, p.60]. Note that the

final result of the application of inward propagation algorithm is independent of the elimination sequence and, thus,

of the structure of the BJT. As it will be discussed in sectionV-E, the difference between the application of inward

propagation to different BJTs is only in the computational time required to calculate the result.

B. Three extreme cases

To apply the inward propagation algorithm, the valuations of the leaves of the tree must be initialized first. The

BBAs of the nodes from1 to 7 have been already defined in Sec. IV. For the input valuations, nodes from8 to

15, in this section we consider three “extreme” cases: (1) total ignorance; (2) high degree of threat and (3) low

degree of threat. The BBAs for the input valuations in all three cases are given in Table II. For the case of the total

ignorance, all input valuations are represented by vacuousBBAs. For the case of a high (low) threat, all BBAs
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are singletons taking high (low) threat values. Furthermore, in all three extreme cases we consider static reasoning,

that is input valuations do not change with time. A dynamic case will be discussed in Sec.V-C.

TABLE II

The input belief for the no information, high degree of threat and low degree of threat cases

no information high threat low threat

BBA domain focal set mass focal set mass focal set mass

m8 EM {0, 1} 1 {1} 1 {0} 1

m9 FCR {0, 1} 1 {1} 1 {0} 1

m10 CM {0, 1} 1 {1} 1 {0} 1

m11 PC {0, 1} 1 {1} 1 {0} 1

m12 IFFS {0, 1} 1 {0} 1 {1} 1

m13 FPA {0, 1} 1 {0} 1 {1} 1

m14 PT {0, 1, 2, 3, 4, 5} 1 {5} 1 {0} 1

m15 I {0, 1, 2} 1 {2} 1 {0} 1

The output of inward propagationis the BBA of node 29, defined on domain{T,NF}. This BBA is then

marginalised to domain{T} and finally transformed to the pignistic probability. Fig. 4shows the resulting (pignistic)

probability mass function (PMF) for the degrees of threat (from 0 to 10) in all three cases. From this figure it can

be seen that the results are in agreement with the inputs and our intuition. When there is no information (total

ignorance), the resulting BBA on domain{T} is a vacuous BBA and hence all degrees of threat have the same

probability. This means that the prior valuationsm1, . . . ,m7 are balanced, that is they assume that all the degrees

of threat are initially equally probable. For the low and high threat cases we also obtain good results, in agreement

with input valuations. Notice, however, that in the low (high) threat case the probability of the degree0 (10) is less

than1.0. This is due to the intrinsic uncertainty in the prior valuationsm1 to m7 (representing expert knowledge).

C. Dynamic reasoning example

In a realistic air-to-air engagement scenario the input valuations will change over time as the new pieces of

evidence (from surveillance sensors and other external sources) about the intruder become available. As a result,

whenever an input valuation is modified, the degree of threatis supposed to change. In our evidential network

initially we set all input valuations to be vacuous BBAs, representing the initial state of ignorance. Then, every

time an input valuation is changed, the network re-computesthe valuations of all the nodes of the BJT along the
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Fig. 4. Pignistic probability mass function for variable T (threat) in extreme cases: (a) total ignorance case; (b) low threat case; (c) high

threat case

affected path of the tree. For example if the massm15 changes, only the masses of the nodes20, 21, 26, 27 and

29 must be re-computed (see Fig. 2).

Consider an example of a sequence of incoming evidence shownin Table III. At time t1 we feed into the network

the current state of the political climate (PC) representedby BBA m11. For argument’s sake, let this BBA reflect a

state of political tension in the region, so that the belief mass given to the state of war is0.7, while the remaining

0.3 is assigned to ignorance. Then at timet2 some evidence about the EM variable becomes available; it appears

that the target is performing an evasive manoeuvre, so we assign a belief mass of0.8 to true and0.2 to the state of
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ignorance. Each time a new piece of evidence is available, the situation becomes more informative (less uncertain)

which is reflected by the pignistic PMF of threat, shown in Fig5. Note how this PMF evolves from being totaly

uninformative at timet0 to becoming concentrated (”peaky”) at timet9. At this last time instant the degree of

threat with the highest probability is8 (on the scale from0 to 10).

TABLE III

The sequence of incoming evidence driving the evidential network

Time BBA domain focal set mass

t1 m11 PC {1} 0.7

{0, 1} 0.3

t2 m8 EM {1} 0.8

{0, 1} 0.2

t3 m15 I {0, 1} 0.7

{0, 1, 2} 0.3

t4 m13 FPA {1} 0.9

{0, 1} 0.1

t5 m15 I {1} 0.8

{0,1,2} 0.2

t6 m14 PT {2} 0.6

{3} 0.3

{4} 0.1

t7 m12 IFFS {0} 0.9

{0, 1} 0.1

t8 m10 CM {1} 0.9

{0, 1} 0.1

t9 m9 FCR {1} 0.8

{0, 1} 0.2

D. Sensitivity analysis

Sensitivity analysis studies the effect of the changes in the input valuations on the valuation of the output (decision)

variable. In this way, sensitivity analysis helps us to identify which inputs are more influential on decision making

and how they affect the decision process. Inward propagation on a BJT is used for performing sensitivity analysis

in a VBS, because it can rapidly re-compute the valuation of the decision variable when a valuation of one of
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Fig. 5. Pignistic probability mass function for variable T (threat) in a dynamic situation (from timet0 to t9)

the leaf nodes in the BJT changes. As previously noted, when achange happens, we simply need to propagate

the valuations inwards from the modified node to the root of the BJT (see Stage2 in Appendix ). The following

algorithm describes the steps for performing a sensitivityanalysis in a VBS.

1) Change the valuation of the input variablex;

2) Execute Stage2 of inward propagation with updated inputUI = {x} and calculate the valuation for the

decision variable;

3) Evaluate the effect of the change on the valuation of the decision variable.

For the dynamic reasoning problem described in the previoussection, we investigate how the change of the input

BBAs on three variables (EM, FCR and FPA) affects the BBA of the decision variable T. Table IV presents the

results of the sensitivity analysis for this case. Input BBAs on EM, FCR and FPA take two contrasting values:

either all mass is assigned totrue or to false. Comparing the resulting pignistic PMFs of the threat variable for

the considered cases, it can be seen that the most influentialvariable is FCR; when the BBA of FCR goes from
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m({1}) = 1 to m({0}) = 1, the pignistic probability of threat T changes more than in the other two cases. This

observation is not surprising, since FCR is weighted higherthan the other variables in contributing to the HI, see

(11).

TABLE IV

SENSITIVITY ANALYSIS RESULTS

Threat - Pignistic Probability

var mass 0 1 2 3 4 5 6 7 8 9 10

EM m8({T})=1 0 0 0.06 0.02 0.06 0.15 0.21 0.23 0.23 0.08 0.01

EM m8({F})=1 0 0.01 0.02 0.06 0.15 0.21 0.22 0.23 0.08 0.01 0

FCR m9({T})=1 0 0 0 0.01 0.06 0.16 0.22 0.23 0.23 0.09 0.01

FCR m9({F})=1 0.01 0.06 0.16 0.22 0.23 0.23 0.09 0.01 0 0 0

FPA m13({T})=1 0 0 0.01 0.03 0.08 0.16 0.21 0.22 0.22 0.06 0

FPA m13({F})=1 0 0 0.01 0.026 0.07 0.14 0.19 0.20 0.20 0.15 0.02

E. Computational complexity

As we explained earlier, the reasoning for threat assessment can be carried out without using the VBS framework,

that is by directly computing the joint belief on the domainΘV followed by marginalisation of the resulting belief

to the domain of T. The advantage of using the VBS framework isthe computational efficiency. From Table I it

can be seen that the number of configurations in the joint frame of ΘV is 2661120 (i.e. the Cartesian product of

the frames of the single variables). This is a huge number compared with the number of elements of the maximum

domains in the two BJTs shown in Figs.2 and 3. In the BJT obtained by applying the OSLA-SCFF heuristic (Fig.2),

the number of elements of the maximum domain is only1155 (for node21). This number is even lower for the BJT

obtained by applying the OSLA-FFI heuristic (Fig.3). In this case, the maximum domain has only385 elements

(for nodes1 and29).

Since the joint belief forΘV is defined on the power set ofΘV, for computing the joint belief we need to

calculate, in the worst case, the masses for all the22661120 elements of the power set. When we attempted this

“brute force” approach for threat assessment on the joint domain, our computer could not complete this task after

48 hours of processing. By contrast, using the VBS framework, the threat assessment was carried out on the same

computer in just5 seconds for the BJT obtained by applying the OSLA-SCFF heuristic and3 seconds for the BJT

obtained by applying the OSLA-FFI heuristic.
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We point out that although for the adopted threat assessmentmodel the OSLA-FFI heuristic allows to compute the

solution faster than OSLA-SCFF, in general this may not be true: the computational complexity and the effectiveness

of the heuristic for sequence elimination depend strongly on the structure of the problem. The general rule is: the

more complex are the interdependencies among the variables, the smaller is the advantage in using the VBS. Real

complex reasoning systems, with hundreds or even thousandsof variables, are usually characterised by very localised

structures. As the computational complexity grows exponentially with the domain size, the VBS framework can

solve problems that otherwise would be computationally intractable.

In addition to the structure of the network, the computational complexity of an evidential network depends on

the cores, i.e. the sets of focal elements of the belief functions to be combined. Note that the number of focal sets

is also problem-dependent.

Finally another computational advantage of the VBS, as discussed earlier, is the possibility of re-computing the

valuation of the decision variable when one or more inputs change. In this case the inward propagation re-computes

only the valuations of those nodes of the BJT that belong to the path connecting the leaves with changed valuations

to the root of the BJT.

VI. CONCLUSION

The paper has presented an automatic data fusion system for determining threat assessment in the context of air

defence. Based on expert knowledge, the threat has been modelled by a network of entities (representing target

behaviours or critical events) and their mutual relationships. The uncertain and imprecise prior information, expert

knowledge and incoming evidence supplied by the surveillance sensors and other sources of information have been

expressed as belief functions. The determination of threatassessment has been performed within the framework

of valuation-based systems using local computations on thebinary join tree via the inward propagation algorithm.

The result is an inference engine capable of the timely and accurate processing of vast amounts of data in support

of a commander’s decision making. One of the major contributions of this paper has been to endow the inference

engine with the capacity to manage efficiently time varying information, which is typically encountered in situation

and threat assessment problems.

Our plans for future work are twofold. In terms of threat assessment, we will consider the refinement of the

threat model to capture the threat assessment process more realistically and to cater for networks with more entities

and larger frames (for example, the frame of platform types can have hundreds of elements). However, since the
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inference engine that we have developed is independent of the threat assessment application, it can also be applied

in other domains provided that the variables for the given problem, the relationships that hold between them and

the values they may assume based on prior information, sensor data and expert knowledge, can be identified. As

such, we also plan to investigate the suitability of the approach for other defence and intelligence problems such

as combat identification and possibly border protection andsituation awareness for homeland security.
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APPENDIX

Let Ψ = {ϕ1, ϕ2, . . . , ϕr} be a given set of valuations andDo ⊆ V, with V = d(ϕ1)∪ d(ϕ2)∪ · · · ∪ d(ϕr), the

domain of interest. Let us introduce the following notation[30]:

L(n) : left child of noden, or nil if n is a leaf;

R(n) : right child of noden, or nil if n is a leaf;

F (n) : parent of noden, or nil if n is the root of the tree;

d(n) : domain of the valuation for the noden;

root : root of the BJT.

(14)

The algorithm for constructing a BJT is as follows [30].

1: Initialization:

2: Define the initial set of nodeNψ = {n1, n2, . . . , nr} with d(ni) = d(ϕi), L(ni) = nil, R(ni) = nil andF (ni) = nil.

3: Fix the set of variables to be eliminated∆ = V −D
0.

4: function CONSTRUCT ABJT(Nψ,∆)

5: N = ∅; ∆c = ∅; root = nil;
6: repeat
7: if ∆ = ∅ then
8: Nx = Nψ;
9: else

10: select the next variable to be eliminated,x ∈ ∆, using some heuristic;

11: Nx = {n ∈ Nψ : x ∈ d(n)};
12: end if
13: while |Nx| > 1 do ⊲ while the cardinality ofNx is greater than1
14: generate a new noden with F (n) = nil;

15: select distinctn1, n2 ∈ Nx;

16: F (n1) = n; F (n2) = n;
17: L(n) = n1; R(n) = n2;
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18: d(n) = (d(n1) ∪ d(n2))−∆
c;

19: Nx = (Nx\{n1, n2}) ∪ {n};
20: N = N ∪ {n1, n2};

21: end while
22: if ∆ = ∅ then
23: root = n;

24: else
25: ∆ = ∆\{x}; ∆c = ∆

c ∪ {x};

26: Nψ = {n ∈ Nψ : x /∈ d(n)} ∪ {n};
27: end if
28: until root 6= nil

29: N = N ∪ {n};
30: return N

31: end function

The tree resulting from this procedure is a BJT with2r − 1 nodes,N = {n1, n2, . . . , n2r−1}, such thatDo ⊆

d(root). The only degree of freedom in the BJT construction algorithm is the order in which the variables are

eliminated (Step 10).

The objective of the inward propagation algorithm is to compute the valuations for the variables of inter-

est. Consider again the set of valuationsΨ = {ϕ1, ϕ2, . . . , ϕr}, the domain of interestDo and the setN =

{n1, n2, . . . , n2r−1} of nodes of the BJT constructed by the algorithm given in appendix . The inward propagation

is performed in two stages. In Stage1, which is executed only once, the valuations are propagatedfrom the leaves

towards the root of the BJT [30]. Stage 2 is performed every time the valuations of one or more leaves of the BJT

change. In this case, inward propagation re-computes only the valuations of those nodes of the BJT that belong to

the path connecting the leaves with changed valuations to the root of the BJT. The steps of the algorithm for the

inward propagation are as follows.

1: Initialization:
2: Initialize Leaves = {n ∈ N : n is a leaf}.

3: if stage=1then
4: ϕs = nil;
5: UI = Leaves;

6: else
7: UI = {n ∈ Leaves : valuation is changed w.r.t. the previous time};

8: end if
9: function INWARD PROPAGATION(Leaves, N, stage, UI, ϕ, ϕs)

10: if stage=1then ⊲ It is the first time that inward propagation is performed

11: Setnext = {n ∈ N : L(n) ∈ Leaves andR(n) ∈ Leaves}.

12: for n ∈ Leaves do
13: ϕs(n) = ϕ(n)↓d(F (n));

14: end for
15: else ⊲ inward propagation has been already performed at least one time

16: next = ∅;

17: for n ∈ N do
18: if L(n) ∈ UI or R(n) ∈ UI then
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19: Setnext = next ∪ n.

20: end if
21: end for
22: end if

23: visitN = ∅ ⊲ indicates the nodes visited during the inward propagation

24: while |next| > 0 do ⊲ while next is not empty
25: extract an elementn from next;

26: visitN = visitN ∪ n; next = next− n;
27: ϕ(n) = ϕs(L(n))⊕ ϕs(R(n));

28: ϕs(n) = ϕ(n)↓d(F (n));

29: if n 6= root then
30: DomF = d(F (n));

31: else
32: DomF = d(dv)

33: end if
34: ϕs(n) = ϕ(n)↓DomF ;
35: if stage=1then ⊲ It is the first time that inward propagation is performed

36: for n ∈ N do
37: if (n /∈ Leaves) and (n /∈ next) and (n /∈ visitN) then
38: if (L(n) ∈ Leaves or L(n) ∈ visitN ) and (R(n) ∈ Leaves or R(n) ∈ visitN ) then
39: next = next ∪ n;
40: end if
41: end if
42: end for
43: else
44: for n ∈ N do
45: if (n /∈ UI) and (n /∈ next) and (n /∈ visitN) then
46: if (L(n) ∈ visitN) or (R(n) ∈ visitN) then
47: next = next ∪ n;
48: end if
49: end if
50: end for
51: end if
52: end while
53: return ϕ, ϕs ⊲ ϕs(root) is the valuation for the decision variables

54: end function
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