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Abstract

Decision makers operating in modern defence theatres reednprehend and reason with huge quantities
of potentially uncertain and imprecise data in a timely fash In this paper, an automatic information fusion
system is developed which aims at supporting a commandecsidn making by providing ¢hreat assessment
that is an estimate of the extent to which an enemy platforsepa@ threat based on evidence about its intent and
capability. Threat is modelled by a network of entities aeldtionships between them, while the uncertainties in the
relationships are represented by belief functions as difinéhe theory of evidence. To support the implementation
of the threat assessment functionality, an efficient vaduabased reasoning scheme, referred to ag\adential
network is developed. To reduce computational overheads, therezlperforms local computations in the network
by applying an inward propagation algorithm to the undedybinary join tree. This allows the dynamic nature
of the external evidence, which drives the evidential nekwto be taken into account by recomputing only the
affected paths in the binary join tree.
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. INTRODUCTION

Situation and threat assessment are two important interdkgmt information fusion concepts which are usually
treated jointly by the military command and controPj@rocess. According to [1], situation assessment estadslia
view of the battlespace in terms of the observed activiggents, manoeuvres, locations and organisational aspects
of the enemy force elements and from this view infers whatdppening or what is going to happen on the
battlefield. Threat assessment, on the other hand, estinia¢edegree of severity with which the engagement
events will occur and its significance is in proportion to therceived capability of the enemy to carry out its
hostile intent. An essential prerequisite for winning atleais for the decision maker (commander) to be aware of
the current situation and threat rapidly in order to act pripand in a timely fashion.

The amount of data and information potentially relevant awmdilable to a decision maker in modern warfare
far exceeds the human ability to review and comprehend timeatimely manner. Moreover, the decisions usually
have to be made under very stressful conditions which adlyeedfect humans and make them prone to error. All
this leads to the need for the development of an automatievlatge-based information fusion system that will
support the commander’s decision process in a reliablelyimnd consistent manner [2]. Similar problems exist
in other fields of human endeavour (management of commegoiarprises, medical diagnosis, etc), although the
military C?> domain is particularly challenging due to the inherentlgamplete, uncertain and imprecise data.

A review of the early (pre 1990s) attempts at building knalgle-based expert systems is presented in [1, Ch.9].
The main drawback with these early attempts was the lack ofeans and associated difficulties in handling
uncertain domain knowledge and imprecise or non-specifideece. The invention oBayesian network§3] in
the mid 1980s for knowledge representation and probabilisference represented the next important stepping
stone in the development of expert systems. Since then,dgayeetworks have been the main technique reported
in the literature for constructing situation assessmeht[§}, [6], threat assessment [7] and intent assessment [8]
[9] systems. Bayesian networks are based on the assumpioralt data (domain knowledge and accumulated
evidence) can be conveniently represented by probabilitgtfons. In reality, this may not always be the case and
so, as alternative to Bayesian networks, which rely on aesstation of the uncertain information in terms of
probability functions, other network-based systems [ID]] employing alternative uncertainty formalisms, such
as possibility theory [12], [13], [14] and the theory of esitte (or the belief function theory) [15], [16], have been
developed.

In 1989 Shenoy [17], [18] introduced the concept ofauation-based systeWBS) which provides a general



framework for managing uncertainty in expert systen¥®here exist specialisations of the VBS for each of the
three major theories of uncertainty, namely probabilitgaty, possibility theory and the theory of evidefick

a VBS, knowledge is represented by a network of variableslgapcorresponding to the entities of the domain
(and their states), and of links (edges) representing tlagorships between these entities. For solving a padicul
problem, we first need to build a network model in terms of ¢hesdes and links. Then we associatehiationto
each link which encapsulates the information (based on ooragh knowledge and prior information) about how to
propagate evidence and uncertainty from one entity to @nafla that link. Inference within a VBS is performed via
two operators calledombinationand marginalisation Combination corresponds to the aggregation of knowledge,
while marginalisation refers to the focussing (coarseniiyit. Typically, we draw inferences on a small subset
of variables within a valuation-based network. A “bruteef®’ approach to reasoning within a VBS would be to
compute the joint valuation for the entire network and themarginalise it to the subset of variables of interest
for decision making. The trouble with this approach, howgigethat it becomes computationally intractable even
for small scale problems. A better alternative to the bfatee approach is to compute the required marginals of
the joint valuation without explicitly computing the joinaluation.

In the Bayesian network context, several architecturegiae been proposed for exact computation of marginals
of multivariate discrete probability distributions. Onetbe pioneering architectures for computing marginals was
proposed by Pearl [3] for multiply connected Bayesian nétaadn 1988, Lauritzen and Spiegelhalter [21] proposed
an alternative architecture for computing marginals im jtiees (also known as junction or clique trees) that
applies to any Bayesian network. Subsequently, Jensen 24l [23] proposed a modification of the Lauritzen-
Spiegelhalter architecture, which is known as the Hugirhiggcture, since this architecture is implemented in
Hugin, a software tool developed by the same group. Thisitethre has been generalized by Lauritzen and
Jensen [24] so that it applies more generally to other dosnaioluding the Dempster-Shafer’s belief function
theory. Inspired by the work of Pearl, Shenoy and Shafer f{it4f adapted and generalized Pearl’s architecture to
the case of finding marginals of joint Dempster-Shafer béliactions in join trees. Later, motivated by the work
of Lauritzen and Spiegelhalter [21] for the case of probstil reasoning, they proposed the VBS framework for
computing marginals in join trees and established the sakmims that combination and marginalisation need to

In addition to being a framework for managing uncertaintyS$ have been used in optimisation problems, constraiigfaztion

problems, etc [18].
2Other examples of VBSs have been developed for handlingriaiceinformation, such agssumption-based systeffi®9] which are

based on propositional logic.



satisfy in order to make the local computation concept apple [25]. These axioms are satisfied for all three
major theories of uncertainty mentioned earlier. In 1997er®y [26] proposed a refinement of junction trees,
called binary join trees, designed to improve the compartati efficiency of the Shenoy-Shafer architecture. In this
paper we have chosen to focus on VBSs in the context of thenthefoevidence, due to the expressive power
of belief functions which can represent both classical pbility functions and possibility/necessity function&/[2
Ch.2]. This is particularly important when the valuatioreed to represent domain knowledge that is expressed in
the form of uncertain implication rules [28], [29]. In ord&r emphasise this aspect of our work, we refer to the
resulting reasoning networks asidential networksin the paper we develop a representative model of threat in
the context of air defence and implement it using an evidémetwork. Local computations in the network are
performed using the inward propagation algorithm on theyirjoin tree [30]. We introduce a modified version of
the standard inward propagation algorithm, which takes adcount the dynamic nature of input valuations (the
external evidence which drives the evidential network) egomputing only the affected paths in the binary join
tree.

The paper is organised as follows. Section 2 describes t@ibased systems and the algorithms for local
computation. Section 3 reviews the main concepts and toois the theory of evidence. Section 4 develops the
entities and relationships of a threat model cast in termanoévidential network. Section 5 presents the numerical
analysis and results for the proposed reasoning schemallyi-iSection 6 discusses the conclusions drawn from

the study and possible avenues for further research.

[I. VALUATION BASED SYSTEMS
A. Networks and axioms for local computation

A valuation based system is a framework for knowledge regmadion and inference. Real-world problems are
modelled in this framework by a network of interrelated tesi, called variables. The relationships between vagbl
(possibly uncertain or imprecise) are represented by thetifions called valuations. The two basic operations for
performing inference in a VBS are combination and marghadion. Throughout the paper we will deal with
discrete-valued variables characterised by finite setwe$iple values. Let denote a variable in a VBS; the set
of its possible values will be denoted 16y, and referred to as thigame of .

In a nutshell, a VBS [18] consists of a 5-tupl&’, ®v, ®v, D, |}, whereV denotes the set of all variables in

the model,®v = {®, : z € V} is the set of frames of all variable®y = U{®p : D C V} denotes the set of



all valuations,® is the combination operator andis the marginalization operator. Further explanationofol.

o Variables and Frames. For a subset of variable® C V, frame ®p denotes the Cartesian product of the
values of the variables € D, that is®p 2 x{@®, : z € D}, with x denoting the Cartesian product. The
elements 0@, are referred to asonfigurations For example, suppodd = {z,y, z} is a subset of variables
in a VBS, and that their frames are specified as follo®s: = {z1,z2}, ®, = {y1,y2} and®, = {21, 22 }.

Then the frame oD consists of§ configurations and is given by:

Op = {(z1y121), (T1Y1 22), ..., (B2 Y2 22) }.

« Valuations. Valuations are primitives in the VBS framework. A valuatip represents some knowledge about
the possible values of a set of variabBs More precisely, giverD C V, a valuationy : ®p — [0,1] is
a function mapping the frame dD into the interval[0, 1]. The set of variables, on which the valuation is
defined, will be denoted a#¢) and called the “domain” of. The symbol®p denotes the set of valuations
for the set of variable®, that is®p 2 {¢:d(p) =D}.

« Combination. Combination® is a binary function on valuationsp : (®y,®y) — ®vy. Given two
valuationsy, o € ®v defined on the domain®; C V andD> C V, respectively, the combinatiop, & ¢
is a valuation on domai = D; U D,. Formally we write this asl(¢1 @ ¢2) = d(p1) Ud(p2) = D1 UDs.

« Marginalization. Marginalization| is a binary operation and is used for focusing the knowledde a smaller
domain, |: (®v,2Y) — ®v. If ¢ is a valuation for the domaild C V andD; C D, theny'Pt is a
valuation on the domaii;. Hence, it follows thati(x*P1) = D;.

Instead of marginalization another basic operation caliible eliminationcan be defined and denoted@as” 2
eH@\} with 2 € V. Note thatz ¢ d(p) implies o~ = .

The straightforward (“brute-force”) approach for making@rence in a valuation network is to compute the
joint valuation onV, that is to combine sequentially all the valuations in thedaicand then to marginalize
this joint valuation to the sub-domain of interddf afterwards. However, when there are many variables in the
model, computing the joint valuation directly becomes catafionally intractable. Clearly the number of variables
increases with each combination and the complexity groysrentially with the number of variables. For instance,
if there aren variables and each variable can assumdlifferent values (i.e. each variable hasconfigurations
in its frame), then there arex™ configurations in the joint domain of all variables. One way feducing this

complexity is to take advantage of the local structure of pheblem. In most cases, complex problems can be



decomposed into sub-problems involving a smaller numbeaoébles. Furthermore, only a few variables are often
of interest for decision making, while the remaining ones auxiliary (non-interesting) variables, used only to
model the problem. The fundamental idea of local computaid, [18], [21], [22], [23], [24], [30] is to exploit
the local structure of the problem to calculate the margiélthe joint valuation without explicitly computing the
joint valuation. This is done by combining the valuationssomall groups of variables, such that the non-interesting
variables are eliminated one-by-one. At the end of this gsedhe final result is the valuation on the variables of

interest. This is possible if the following axioms are d&i$ [25], [26].

1) Commutativity and associativity of combination: combination is commutative and associativefiry.

2) Order of deletion does not matter: if ¢ € ®v is a valuation and:; andz, are two variables iD = d(yp),
then (@HP\z D) ID\z122}) — (HD\{z2}) )LD \{z1,22})

3) Distributivity of marginalization over combination: if 1,02 € Py are valuations with domain®,
and D,, respectively, and: is a variable such that € D, but z ¢ D; then (p; @ @) H(P1UP\zh) —
1 ® ().

Axiom 2 says that if a valuation has to be marginalized to allemaub-domain, then the order in which the

variables are eliminated is irrelevant. Axiom 3 is the fuméatal axiom for the local computation. It states that the

valuationp; @ (goé(Dz\{r})) can be obtained without computirig © ¢2). This property allows substantial savings
on computational resources, because the combin&fipr ¢2) is on the frame of the variables D; U D3, while

the combinationp; & (goé(Dz\{r})) is on the frame ofD; U D2)\{z}.

Notice that, like the junction tree algorithm for Bayesiaagtworks, this method is not an approximation. In fact,
if these axioms are satisfied, the result obtained by apgplthie local computation paradigm is exactly equivalent
to that provided by the brute-force approach. For all mdjeoties of uncertainty it can be proved that combination

and marginalization satisfy the axioms for local compuotatj25]. In the next section, we describe an algorithm

for performing inference via a VBS using local computation.

B. Fusion algorithm

The core of the VBS is th&usion algorithm[18], [30], which allows to perform inference via a VBS usilogal
computation. LeWwr = {1, p9,...,p,} C P be a given set of valuations add C 'V, with V = d(¢1) Ud(p2) U
U d(¢r), the domain of interest for decision making. The fundameoperation of the fusion algorithm is to

delete successively all variablesc A, where A = V\D? is the set of variables of no interest in the VBS. The



variables can be deleted in any sequence, since accordixgdm 2 all deletion sequences lead to the same result.
However, different deletion sequences can imply a diffecemputational burden. Finding an optimal elimination
sequence is an NP-complete problem [18], but there existrakkeuristics for finding a good elimination sequence
[29], [31], [32].

In the fusion algorithm, the marginal of the joint valuatiem computed by successively eliminating all the

variables inA. With respect to the variable € A to be eliminated, two subsets of valuations can be defined
A A
U, ={peW:zecdlp)} and¥; ={pc ¥z ¢d(y)}

As a consequence of axiom 3, only the valuation@ip are affected by the elimination af Thus, the remaining

set of valuations after eliminating from ¥ is
A . A
Fus, {1,509, .-, ¢,} S {0V U@ = (o, 1} U, (1)

whereS 2 U d(y;). Note that theF'us, operation in (1) amounts to the union of all valuations neblaing
pieEW,

x together with the single valuatiop, ;. The latter is obtained by combining all valuations invalyiz and then

marginalizing the resulting valuation ®\{x}. The valuation on the domain of interé® can thus be obtained

by recursively applying the fusion algorithm and deletitigvariables inA = {x1, zo,..., 2}, i.€.

(pr@ @ @ )P =@ {Fus,, {Fuss, ,{... Fuss, {1,902, 0,11} } 2)

This technique allows a reduction in the computational Ié@dtwo reasons: the beliefs are combined on local
domains and the variable elimination keeps the domainseottimbined beliefs, i.el(p; & ¢2) = d(p1) Ud(p2),
to a reasonably small size.

a) Example 1.:Let us consider the set of valuatiod$, p2, v3, 94} defined respectively on the domains
d(p1) = {x1, 22}, d(p2) = {xe, x5}, d(ps) = {x3,24}, d(ps) = {z4,21}, Wherezq, ..., x4 are the variables of
the problem. Assume that; is the decision variable, i.@° = {z1}. Then it follows thatA = {z9, z3, x4} is the
set of variables of no interest. The objective is to apply ftson algorithm to compute the combined valuation

(01 D 2 ® 3 ® p4)¥P°. The steps of the fusion algorithm are the following:
D g5 = (p1 @ po)Hdle)0dleMed - Pus,, = {05} U Wg, = {3, 04, 05}
whered(ys) = (d(¢1) Ud(p2))\{z2} = {x1, 23} is the domain ofps.

2) e = ((103 D (705)¢(d(903)Ud(995))\{x3}7 FUSIS = {@6} @] \Ilf,g — {@4’ (106}

whered(gpg) = (d(ps) Ud(ps))\{zs} = {1, 24}



3) 7 = (pa @ g U)oz - s, = {7} U s, = {pr}
whered(p7) = (d(pa) U d(ps))\{z4} = {z1}
At the end of the last step the valuatidfus,,, defined on the domain of intere§t; }, represents the solution of

the problem. |

C. Dynamic fusion

The fusion algorithm (2) works well if the valuations aretigtdinvariant in time). However, we may want to
compute the marginal of the variables of interest more thaepfor example every time one or more valuations
in the VBS change. In this case, we would need to repeat thicappn of the fusion algorithm every time any
of the valuations in¥’ is changed. This would clearly be inefficient, since it wordgult in a lot of duplication in
computation. To avoid this, it is more efficient to represtre VBS in the form of a binary join tree (BJT) and
then to propagate the changes. A binary join tree is a joia $tech that no node has more than three neighbors,
one parent and two children. The binary join tree constoucpirocess is based on the fusion algorithm and the
idea that all combinations between valuations should beechout on a binary basis, i.e. two-by-two.

A BJT is a binary treg N, E) of nodesN = {n,ns,...,ns} and edges = {(n,m) : n,m € N,n # m}. A
node without children is called laaf. A node without a parent is calledraot. As such, a BJT is only a graphical
representation of the fusion algorithm [18]. For this ragdike in the fusion algorithm, the structure of the BJT
(i.e. nodes and edges) strongly depends on the eliminaéiquenceA.

A BJT has the following characteristics.

« To each node:; a subset of variableB; C V and a valuatiorp(n;), such thati(¢(n;)) = D; are associated.

« The domain of the root of the BJT is such tHat C d(root).

« Edges represent the order in which the valuations must bdio@uh (in order to calculate the valuation of the
root on D?).

« Nodes and edges represent steps of the fusion algorithm.

« A BJT has to satisfy the Markov property, which means ath D; C D, for every pair of nodes;; and
n; and for every nodey, € Path(n;,n;), where Path(n;,n;) denotes the set of nodes on the path between
n; andn;.

Note that the Markov property is one of the most importantpprtes of the BJT, as will be discussed in Sec.



V-A. An algorithm for building a BJT is given in appendix .

In a BJT, marginals are computed by means of a message-passiame among the nodes. Initially only the
valuations of leaves of the BJT are specified. The processagfagating the valuations from the leaves toward
the root of a BJT is callethward propagation18], [30] and can be implemented with the algorithm repdrite
appendix . The key feature of the BJT and inward propagasidhat the combination operator is applied only at
the non-leaf nodes of the tree, between their left and rigfiiieen. The advantage of using inward propagation
on a BJT instead of the fusion algorithm lies in the abilityrésuse the computations of the inward phase if the
marginals need to be re-computed. In this way, every timeasrmaore valuations of the leaves of the BJT change,
the inward phase re-calculates the valuations for all thdesdn the BJT which are affected by the change. That
is, if n; is the leaf whose valuation has changed, then the inwardepieasomputes the valuations of all the nodes
of the BJT alongPath(n,,root).

Suppose the BJT has been constructed for the domain ofshiafe and the inward propagation has been carried
out. Let us also assume that the domain of interest has cta@yee way to carry out the inference would be
to create a new BJT and to perform again inward propagatioweder, there is a more efficient alternative, the
so calledoutward propagatiorf30]. Outward propagation distributes the knowledge fréma toot to the leaves of
the tree, by reversing the direction in which the messagepassed between nodes [30]. Note that in the threat
assessment problem the 38t is fixed and hence outward propagation is not used in the geque

In summary, a BJT can be seen as a data structure which allmvitermediate results of the combination

process to be saved and the marginals to be computed effjcient

[11. BELIEF FUNCTIONS AS VALUATIONS

A VBS with valuations expressed by belief functions (as dsfiin the theory of evidence) will be referred to
as anevidential networkThe theory of evidence satisfies all of the VBS axioms formlammputation listed in
Sec.ll-A. In this section we review the main components amaistof the theory of evidence.

Let frame®;, = {hy,he,...,h,} define a finite set of possible values of variablén an evidential network.
Elementary values; (: = 1,...,n) of the frame®;, are assumed to be mutually exclusive and exhaustive so
thatn = |®;| is the cardinality of the frame. The beliefs about the actualie of the variablé: are expressed
on the subsets 0®;. The set containing all possible subsets®j, i.e. the power set 0o®;, is denoted by

20 — {0 . H C ©,}; its cardinality is2". In this formalism, belief is represented by a so-calledidaslief



assignment (BBA)n : 2€» — [0, 1], that satisfies g, m(H) = 1. Thus forH C ©;, m(H) is the part of the
belief that supportd? (i.e. the fact that the true value @fis in H), but due to the lack of further information,
does not support any strict subset#f The subsetd] such thatm(H) > 0 are referred to afocal elementsf the
BBA. The state of complete ignorance about the varigbie represented by wacuousBBA defined asn(H) =1

if H = ©; and zero otherwise. Since the valuations in the evidengdhorks are BBAs, we denote them in the

sequel bym in place ofp.

A. Combination

The combination operator in the theory of evidence is cdroiet using Dempster’s rule of combination. Let the
BBA m?"' be defined on a domain (subset of variablég),) = D; C V. Similarly let m3* be another BBA
defined on a domaia(msy) = Do C V. If d(my) = d(my) = D, the two BBAs are combined directly using

Dempster’s rule [15]:
BHEC; AmP(B) my (C)
D D A) = = 3
BNC=0
where A, B, C are subsets of the frame defined by the Cartesian produceofatiables inD; i.e. A, B,C C Op.

If the two domains are differenl); # D5, then before we apply Dempster’s rule, we must extend botAB®B
the joint domainD; U D, in such a way that they express the same information befadeaéter the extension
(hence referred to as theacuous extensioand denoted byt). The vacuous extension @h?l to Dy UDy is
defined as [18]

D .
mll(A) IfC:AX(")]j)z,Ag@)D1
m]131T(D1UD2)(C) _ (4)

0 otherwise.
b) Example 2.:SupposeV = {z,y, z} with frames®, = {z1,z2}, Oy = {y1,y2} and @, = {z1, 22}. Let
D; = {z}, andD, = {y, 2}, i.e. Op, = O, andOp, = {(y1 21), (1 22), (y2 21), (y2 22)}. Let the BBAmP" be
defined such that?' ({z1}) = 0.7 andm®* ({1, 2,}) = 0.3. Then the vacuous extension of>' to D; U D

is given by: m?lT(DlUD2)({(x1 y121), (1 Y1 22), (T1 92 21), (X1 Y2 22)}) = 0.7 with the remaining belief 0f).3

assigned t®p,up, = {(z1y121), (T1y1 22), (T1Y2 21), (T1Y2 22), (T2y1 21), (B2 Y1 22), (T2y2 21), (T2y2 22)}.

Dempster’s rule of combination in the general case of pbssibn-identical domains is then defined as:

mll:)l ® mQDz _ mllle(DlUDz) @ mQDzT(DlUDz). (5)
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B. Marginalisation

Marginalisation is a projection of a BBA defined on dom&onto a BBA defined on a coarser domdm C D.
Formally we write:

mPP(4) =) " mP(B) (6)

BlA

where the summation in (6) is over &l C ®p such that the configurations i reduce to the configurations in
A C Op: by the elimination of variable® \ D’.
c) Example 3.:Let D = {z,y,2} and D’ = {z, z}, with the frames of variable®, = {z1,22}, ®, =
{y1,y2} and @, = {z1, 20, 23}. Suppose BBAnP has three focal sets:
mP ({(z19y121)}) = 0.6
mP ({(z1y1 21), (21 y2 22)}) = 0.3
mP ({(z1y121), (2192 21), (21 Y2 22)}) = 0.1

Then:

mP’ ({(2121)}) = 0.6
mPW' ({(z1 21), (21 22)}) = 0.4
[
Remark. Marginalization is the inverse operation of extension,, batgeneral, extension is not the inverse of

marginalization. For instance, consider a valuatipand three generic seid;, D, andD3 such thatd(¢) = D,

andD; C Dy C Dj3; then it turns out thato!™2)4P= = ¢ but, in general(p*P:)™P2 £

C. Representation of uncertain implication rules

Often expert knowledge is expressed in the form of unceitajlication rules, such as “if A then B” with a
certain degree of confidence. Suppose there are two digjomtinsD; andD» with associated frame®p, and

®p,, respectively. Formally, an implication rule is an expresf the form
Ag@D] :>Bg@D2. (7)

Furthermore, let us assume that this implication rule isdvahly in a certain percentage of cases, i.e. with a

probability (confidencep such thatp € [a, 5], with 0 < a < g < 1.
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An implication rule can be expressed by a BBA using the ppieciof minimum commitmeni33] and its
instantiation referred to as tHeallooning extensiof33], [28]. Thus the implication rule of (7) can be expressed

by a BBA consisting of3 focal sets on the joint domaiB®; U D, [29]:
a, if C=(AxB)U(A®x Op,)

mPYPHC) =01 _ 8 if C = (A x BY)U(A° x ©Op,) ©

ﬁ — Q, |f C = ®D1UD2
where A€ is the complement ol in ®p,, and accordinglyB¢ is the complement oB in Gp,.
d) Example 4. Let Dl = {1‘}, D2 = {y}, @x = {xl,xg,xg}, @)y = {yl,yg,yg}, A = {xl,xg} and

B = {y2}. Then the BBA representation of the rule= B with confidencep € [«, /5] is given by:

mt ({(21 ), (w292), (@3 1), (w3 92), (2393)}) = @
m" ({(21 1), (1, 93), (2291, (22, 93), (w3 91), (23 92), (23 93)}) =1 — B
m{x,y}({(wh yl)? (x17y2)7 (‘Tla y3)7 (x27 y1)7 (‘T27 y2)7 (x27 y3)7 (‘T37 yl)? (‘T37 y2)7 (x?n y3)}) =p-a.

[
Note that in the special case = 3, the BBA has only two focal sets. Implication rules are somes$ used to

express the valuations (BBAs) on the leaf nodes of a BJT.

D. Pignistic transformation

Belief functions cannot be directly used for decision mgkjB4], hence we need to introduce a mapping of
a belief measure to a probability measure. The pignistiosfi@mation is the only such mapping satisfying the
requisite linearity property [34]. Let»P be a BBA defined on a subset of variabB®swith corresponding frame
Op. The pignistic transform ofnP is defined for every element of the frarfiec ©p as follows [34]:

Bap@) = Y L MW ©)

— D)
9eACOD A1 =mP(0)

BetP is the probability measure that we use for decision makingthen domain of interesD° C 'V within

evidential networks.

IV. THREAT MODEL

In this section we introduce a model of threat in the contdéxroair-to-air engagement which draws on ideas

from [1] and [35]. The model is shown in the form of an evidahtietwork in Fig.1, where the variables are
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represented by circular nodes and the valuations (BBAs)i&ayaind shapes. The list of variables with explanations
and frame definitions is given in Table |I. Each valuation nimeonnected by edges to the subset of variables
which define its domain. For example, the domain of valua(®BA) m, consists of variables T, HI and C. Any

pair of variables which are not directly connected are agslito be conditionally independent. The domain of

interest for decision making is the singlet®d¥ = {T}.

Fig. 1. A model of threat assessment

According to the threat model in Fig.1, variable T (threatpednds on the degree of hostile intent (HI) of the
opponent and on its capability (C). Assuming the threatdiherelated to both HI and C, we may choose to
represent the valuatiom; by the following rule: T=HI+C. Consider in the Cartesian gwat space & HI x C the
set of triples(t, h, ¢), such that = h+ ¢, where according to the frames of the variables in Tabtecl {0, ..., 10},

h €{0,...,6} andc € {0,...,4}. Then we can represent the rdle= HI + C by the following BBA:

m1({(0,0,0),(1,0,1),...,(4,0,4),

(1,1,0),(2,1,1),...,(5,1,4),

(6,6,0),(7,6,1),...,(10,6,4)}) = 1. (10)
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TABLE |

Variables of the threat assessment model

Variable  Description Frame Explanation

T Threat {0,1,...,10} 0 none,10 highest degree of T

HI (Hostile) Intent {0,1,...,6} 0 none (benign)6 highest degree of HI
C Capability {0,1,2,3,4} 0 none,4 highest degree of C

EM Evasive manoeuvre {0,1} 0 is false,1 is true

FCR Fire Control Radar {0,1} 0 is OFF,1 is ON

CM Countermeasures {0,1} 0 is false,1 is true

PC Political climate {0,1} 0 is peace,l is war

NF Non-friendly platform {0,1} 0 is false,1 is true

IFFS Correct IFF squawking {0,1} 0 is false,1 is true

FPA Flight plan agreement {0,1} 0 is false,1 is true

PT Platform type {0,1,...,5} E.g. 0 is EuroFighter,l is FA-22 raptor, etc.
WER Weapon Engagement range{0, 1,2} 0 is small,1 medium,2 long range

| Imminence {0,1,2} 0 is low, 1 medium,2 is high

This BBA has a single focal set consisting 3 triples (¢, h, ¢).

The degree of hostile intent (HI) is proportional to the evide that the target (opponent) behaves in a hostile
manner. In particular, the target may perform evasive mavies (EM), it may employ countermeasures (CM),
such as deception jamming or chaff, we may have evidenceitthatnot a friendly (NF) platform, and most
importantly, its fire-control-radar (FCR) could be turned (meaning it intends to fire a weapon soon). In addition,
the political climate (PC) has an influence on the HI variableahe sense that the climate of political tension
means that the target is more likely to have a hostile int€hé relationship between the six variables mentioned
(HI,EM,FCR,CM,PC,NF), is captured by the valuati@a. How this relationship may be representedty depends
on many factors (doctrine, engagement rules, etc), buthersiake of illustration we adopt the following simple
rule: HI = EM+2FCR+CM+PC+NF. This rule reflects the fact that the FCR véeigbweighted higher than other
variables in contributing to the HI. The adopted rule is esgnted by the BBAn. defined on a 6 dimensional

product space HHEMxFCRxCMxPCxNF as follows:

m»({(0,0,0,0,0,0),(1,0,0,0,0,1),(1,0,0,0, 1,0),

(2,0,0,0,1,1),(1,0,0,1,0,0)...,(2,0,1,0,0,0),...,(6,1,1,1,1,1)}) =1 (11)
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Thusmy has a single focal set consisting 8 six-tuples.

Identification friend or foe (IFF) is a radio interrogatorvite for positive identification of friendly aircraft.
Variable IFFS is true if the target responds correctly to ititerrogation. In order to define the valuatiomn; on
domain{NF, IFFS}, suppose that we have confidence tha@ift to 100% of the cases if the IFFS is true, than the
target is indeed a friend (i.e. NE 0). On the other hand, suppose the evidence indicates théddtkef response
to the IFF interrogation (IFFS=0) is due to the non-frien{yF= 1) target only in10 to 30% of the cases. We

can then summarise “expert” knowledge about the donhiR, IFFS} by the following set of independent rules:

(IFFS=1) = (NF = 0) with confidence betweef®.95 and 1

(IFFS=0) = (NF = 1) with confidence betwee®.10 and0.30

Then according to Sec.llI-C, each of the rules above can pesented by a BBA; when the BBAs are combined

by Dempster’s rule, we obtain the following valuation on fireduct space Nk IFFS:

ms  ({ (0,0), (0,1), }) = 0.6650
ms ({ (0,0), (0,1), (1,0) 1= 0.1900
ms  ({ (0,1), (1,0) 1= 0.0950 w2
ms  ({ (0,0), (0,1), (1,1) })= 0.0350
ms ({ (0,1), (1,0), (1,1) }) = 0.0050

ms ({ (0,0), (0,1), (1,0), (1,1) })= 0.0100
Flight plans are plans filed by pilots with the local aviataurthority prior to flying. They generally include basic
information such as departure and arrival points, estichtitee, etc. If there is evidence that an air target is flying
in accordance with a flight plan (variable FRPA1), then this is a strong indication that it is a friend (or malt
i.e. NF= 0. Suppose we can again summarise expert knowledge aboubithai{ FPA NF} by the following set

of rules:

(FPA=1) = (NF = 0) with confidence betweef.95 and1
(FPA=0) = (NF = 1) with confidence betweef.10 and0.30
As described above, these two rules can be translated toothesponding BBAm, on its domain{FPA NF}.

Suppose we have at our disposal a sensor such as an elecupgort measures (ESM) system, which can

report on the platform type (PT) variable. Valuationy captures the expert knowledge which relates the PT to the
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NF variable. Suppose this knowledge is represented by tl@viag implication rule:
(NF=1)= (PTe {3,4,5}) with confidence betwee®.50 and 1.

This rule represents our prior knowledge (e.g. from ingelfice sources) that non-friendly aircraft in the battlespa
of interest are of typ&, 4 or 5, with confidence at least ¢f0%.

For each PT, it is usually known a priori what types of weaprd its capabilities) it carries [36]. Variable
mg represents the relationship between the weapons engagesnge (WER) variable and the PT. Suppoesg

is defined by the following set of rules:

(PTe {0,1}) = (WER = 0) with confidence betweet.40 and 1
(PTe {2,3}) = (WER € {1,2}) with confidence betwee®.40 and1

(PTe {4,5}) = (WER = 2) with confidence betwee®.40 and 1.

Variable C (capability) in our threat model is related to #MER and to the imminence (I) of an attack. The
degree of imminence is measured by the distance, headingpee®dl of the target, and according to Table | can be
low, medium or high. We define valuation; by the following rule on the product spacex?tWER x |I: C=WER+I.
This rule captures the simple notion that the capabilityighhif the WER is large and the imminence is high.

Thusmy is a BBA given by:
m7({(07 0, 0)7 (17 0, 1)7 (27 0, 2)7 (17 1, 0)7 (27 1, 1)7 (37 1, 2)7 (27 2, 0)7 (37 2, 1)7 (47 2, 2)}) =1

Valuationsmy, mao, ..., my represent our prior domain knowledge of the problem. Thearaimg valuationsnsg,
mo, ..., M5, referred to asnput valuations are the drivers of the evidential network for threat assess. Input
valuations are initially represented by vacuous BBAs. Agemevidence (from the surveillance sensors and other
external sources) about the intruder and the situationrbecavailable, input valuations change and become more
informative. The next section will present the numericaules obtained using the described evaluation network

for various combinations of input valuations.

V. NUMERICAL RESULTS AND ANALYSIS

In this section we apply the VBS framework to determine thgréele of threat posed by a hypothetical intruder
in the considered air-to-air engagement problem. AccardtinTable |, the degree of threat takes integer values in

the range from to 10 (0 being no threat, 10 being highest threat).
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In Sec. IV we have introduced the main components of the VB&i&work for the problem of interest. The set
of variables consists of3 elementsV = {T, HI, C, EM, FCR, CM, PC, NF, IFFS, FPA, PT, WER}; Ithe set of
all valuations (BBAs) consists af5 elements®y = {mq,mas,...,m15}, the domain of interest is the singleton
D¢ = {T} and the set of variables to be eliminatedAs= V\{T'}.

The following steps describe the process for solving thédlgra in the VBS framework.

1) construct the binary join tree;

2) initialize the leaves of the BJT with the BBAs;

3) apply the inward propagation algorithm;

4) marginalise the belief of the root of the BJT Iyf;

5) apply the pignistic transformation.

A. The Binary Join Tree

Only three pieces of information are necessary to build a Bl set of variables of interest for decision making
De; the set of variables to be eliminate and the set of the valuatioriBy, with associated domains. The BJT
constructed for the threat assessment problem is showmyir2Frhis BJT is a result of application of the algorithm
presented in Appendix . The nodes in the BJT are labelled tggér numbers from to 29. The leaves of the
tree (the nodes labelled fromto 15) represent the original valuations specified by the 8¢t The remaining
nodes in the BJT represent the intermediate steps of therfadgorithm; as such they specify the order in which
the valuations must be combined in order to calculate theatiin for the variable T. The vertical labels next to
the nodes of the BJT denote the domains (the subsets of lemjalf the nodes. The following comments provide

further explanation on the construction of the BJT in Fig. 2.

« Consider the first two variables in the elimination sequenaenely IFFS and FPA. These variables are included
in the domains of the nodes 4, 12 and 13 whose BBAs are the first to be combined. The subtree of nodes
{3,4,12,13,16, 17,28} represents the intermediate steps of this combinationegeodNodel 6 represents the
combination of3 and 12, node17 the combination oft and 13, and finally node28 the combination ofi 6
and17. These steps are described in (13).

mgNR IFFS} , d(myg) = {NF, IFFS}

mig = ms D
miy = my & mE)NF’ FPA} 5 d(m17) = {NF, FPA} (13)

WHNF}
S (mIéNF, IFFS, FPA} o mENF, IFFS, FPA}) 7 d(ng) _ {NF}
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o The BJT satisfies the Markov property defined in Sec. II-C.dct,fconsidering for example the subtree of
nodes{1,7,15,20,21}, it can be seen that the variable C is contained in the donaim®desl and 7, but
also in the domain of all nodes in the path betwéeand 7, i.e. Path(1,7) = {1,7,20,21}. A BJT which
does not satisfy this property cannot be a representatigheofusion algorithm. For example, let us assume
that the domain of nod20 does not include C; this means that C has been eliminatedglthe combination
of the BBAs of node¥ and 15. If this were true, before combining the valuations at n@devith nodel to
produce the BBA for node1 (the domain ofl contains C), we should again extend the domain of rzide
to a new domain containing C. Since marginalization prodwcéoss of information (coarsening), which can
no longer be recuperated with the extension operation feeemark at the end of Sec. 1lI-B), the BBA of

node21 would be incorrect, i.e. it would be different frofm, @ my @ mys)HHHLEWER}

The BJT in Fig. 2 was obtained with the following variablenghation sequence: IFFS, FPA, |, C, EM, FCR,
CM, PC, PT, WER, HI, NF. As it has already been explained irtisedI-B, finding the optimal elimination
sequence is an NP-complete problem but there exist sevetaistics for finding a good elimination sequence
problem. The previous elimination sequence has been esdtliby means of th®ne Step Look Ahead - Smallest
Clique, Fewest Focal sef®©SLA-SCFF) heuristic [31, p.61]. This heuristic choodes variable to be eliminated
by minimizing the cardinality of the domain and the numberfadfal sets associated with the nodes of the BJT.
Note that a different elimination sequence would result idifeerent BJT. For example, the BJT in Fig. 3 was
obtained with the elimination sequence IFFS, FPA, I, EM, FCR, PC, PT, WER, NF, C, HI which has been
calculated by applying th®ne Step Look Ahead - Fewest Fill-if@SLA-FFI) heuristic [31, p.60]. Note that the
final result of the application of inward propagation altfum is independent of the elimination sequence and, thus,
of the structure of the BJT. As it will be discussed in sechbR, the difference between the application of inward

propagation to different BJTs is only in the computationalet required to calculate the result.

B. Three extreme cases

To apply the inward propagation algorithm, the valuatiohthe leaves of the tree must be initialized first. The
BBAs of the nodes from to 7 have been already defined in Sec. IV. For the input valuatinodes froms to
15, in this section we consider three “extreme” cases: (1)l igtaorance; (2) high degree of threat and (3) low
degree of threat. The BBAs for the input valuations in alethcases are given in Table Il. For the case of the total

ignorance, all input valuations are represented by vaclBB5&s. For the case of a high (low) threat, all BBAs
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are singletons taking high (low) threat values. Furtheemaor all three extreme cases we consider static reasoning,

that is input valuations do not change with time. A dynamisecwill be discussed in Sec.V-C.

TABLE I

The input belief for the no information, high degree of thraad low degree of threat cases

no information high threat low threat
BBA | domain focal set massg focal set masg focal set massg
ms EM {0,1} 1 {1} 1 {0} 1
my FCR {0,1} 1 {1} 1 {0} 1
mio CM {0,1} 1 {1} 1 {0} 1
mii PC {0,1} 1 {1} 1 {0} 1
mi2 | IFFS {0,1} 1 {0} 1 {1} 1
mis FPA {0,1} 1 {0} 1 {1} 1
mia PT {0,1,2,3,4,5} 1 {5} 1 {0} 1
mis [ {0,1,2} 1 {2} 1 {0} 1

The output ofinward propagationis the BBA of node 29, defined on domaiT,NF}. This BBA is then
marginalised to domaifiT} and finally transformed to the pignistic probability. Figsldows the resulting (pignistic)
probability mass function (PMF) for the degrees of thresedr(f0 to 10) in all three cases. From this figure it can
be seen that the results are in agreement with the inputs anchiwition. When there is no information (total
ignorance), the resulting BBA on domaji} is a vacuous BBA and hence all degrees of threat have the same
probability. This means that the prior valuatioms, . .., m7; are balanced, that is they assume that all the degrees
of threat are initially equally probable. For the low andhifreat cases we also obtain good results, in agreement
with input valuations. Notice, however, that in the low (mighreat case the probability of the degfegl0) is less

than1.0. This is due to the intrinsic uncertainty in the prior valoas m; to my; (representing expert knowledge).

C. Dynamic reasoning example

In a realistic air-to-air engagement scenario the inputiatns will change over time as the new pieces of
evidence (from surveillance sensors and other externatespabout the intruder become available. As a result,
whenever an input valuation is modified, the degree of thigaupposed to change. In our evidential network
initially we set all input valuations to be vacuous BBAs, negenting the initial state of ignorance. Then, every

time an input valuation is changed, the network re-comptitesvaluations of all the nodes of the BJT along the
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Fig. 4. Pignistic probability mass function for variable fhrgat) in extreme cases: (a) total ignorance case; (b) hoaat case; (c) high

threat case

affected path of the tree. For example if the masg changes, only the masses of the nofles21, 26, 27 and
29 must be re-computed (see Fig. 2).

Consider an example of a sequence of incoming evidence simoWable 1ll. At time¢; we feed into the network
the current state of the political climate (PC) represege®BA mq,. For argument’s sake, let this BBA reflect a
state of political tension in the region, so that the beliefssigiven to the state of war (s7, while the remaining
0.3 is assigned to ignorance. Then at timsesome evidence about the EM variable becomes availablepgap

that the target is performing an evasive manoeuvre, so wgreadelief mass 0.8 to true and).2 to the state of
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ignorance. Each time a new piece of evidence is availabdesitination becomes more informative (less uncertain)
which is reflected by the pignistic PMF of threat, shown in BigNote how this PMF evolves from being totaly
uninformative at timet, to becoming concentrated ("peaky”) at timg At this last time instant the degree of

threat with the highest probability & (on the scale from) to 10).

TABLE 1l

The sequence of incoming evidence driving the evidentimlark

Time BBA domain focal set mass

t1 m11  PC {1} 0.7
{0,1} 0.3
t» ms EM {1} 0.8
{0,1} 0.2
t3 mis | {0,1} 0.7
{0,1,2} 0.3
ta miz  FPA {1} 0.9
{0,1} 0.1
ts mis | {1} 0.8
{0,1,2 0.2
te mi  PT {2} 0.6
{3} 0.3
{4} 0.1
tr mi2  IFFS {0} 0.9
{0,1} 0.1
ts mio CM {1} 0.9
{0,1} 0.1
to my FCR {1} 0.8
{0,1} 0.2

D. Sensitivity analysis

Sensitivity analysis studies the effect of the changesérirthut valuations on the valuation of the output (decision)
variable. In this way, sensitivity analysis helps us to tifgrwhich inputs are more influential on decision making
and how they affect the decision process. Inward propagativa BJT is used for performing sensitivity analysis

in a VBS, because it can rapidly re-compute the valuationhef decision variable when a valuation of one of



23

2 02 o 02 202
S 2 e
0 0 0
0 5 10 0 5 10 0 5 10
threat threat threat
t3 t4 t5
0.3 0.3 0.3
o 0.2 o 0.2 o 02
o o <}
0 0 0
0 5 10 0 5 10 0 5 10
threat threat threat
t6 t7 t8
0.3 0.3 0.3
o 0.2 o 0.2 o 0.2
o <} <}
I | | | (| [ A | || | _-IIIIIII_
0 0 0
0 5 10 0 5 10 0 5 10
threat threat threat
&
0.3
o 0.2
e
201
0
0 5 10

threat

Fig. 5. Pignistic probability mass function for variable fhrgat) in a dynamic situation (from timg to ¢o)

the leaf nodes in the BJT changes. As previously noted, whehaage happens, we simply need to propagate
the valuations inwards from the modified node to the root ef BIT (see Stage in Appendix ). The following
algorithm describes the steps for performing a sensitigitglysis in a VBS.
1) Change the valuation of the input variabig
2) Execute Stage@ of inward propagation with updated inpit/ = {z} and calculate the valuation for the
decision variable;

3) Evaluate the effect of the change on the valuation of thasam variable.

For the dynamic reasoning problem described in the prevdeation, we investigate how the change of the input
BBAs on three variables (EM, FCR and FPA) affects the BBA & tlecision variable T. Table IV presents the
results of the sensitivity analysis for this case. Input BBé&n EM, FCR and FPA take two contrasting values:
either all mass is assigned taue or to false Comparing the resulting pignistic PMFs of the threat Jagafor

the considered cases, it can be seen that the most influgatiable is FCR; when the BBA of FCR goes from
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m({1}) = 1 to m({0}) = 1, the pignistic probability of threat T changes more thanhe bther two cases. This
observation is not surprising, since FCR is weighted highan the other variables in contributing to the HI, see

(11).

TABLE IV

SENSITIVITY ANALYSIS RESULTS

Threat - Pignistic Probability

var mass 0 1 2 3 4 5 6 7 8 9 10

EM  ms({T})=1 0 0 0.06 002 006 015 021 0.23 023 0.08 0)01
EM  ms({F})=1 0 0.01 002 006 015 021 0.22 0.23 0.08 0.01 0

FCR mo({T})=1 0 0 0 001 006 0.16 0.22 023 023 0.09 0p1
FCR mo({F})=1 | 0.01 0.06 0.16 0.22 0.23 0.23 0.09 0.01 0 0 D

FPA  mu3({T})=1 0 0 0.01 0.03 008 016 0.21 022 0.22 0.06 D

FPA  miz({F})=1 0 0 0.01 0.026 0.07 014 019 020 0.20 0.15 0{02

E. Computational complexity

As we explained earlier, the reasoning for threat assedstaarbe carried out without using the VBS framework,
that is by directly computing the joint belief on the dom#&, followed by marginalisation of the resulting belief
to the domain of T. The advantage of using the VBS frameworthéscomputational efficiency. From Table 1 it
can be seen that the number of configurations in the jointdrafim®~; is 2661120 (i.e. the Cartesian product of
the frames of the single variables). This is a huge numbepeoed with the number of elements of the maximum
domains in the two BJTs shown in Figs.2 and 3. In the BJT obthby applying the OSLA-SCFF heuristic (Fig.2),
the number of elements of the maximum domain is drily5 (for node21). This number is even lower for the BJT
obtained by applying the OSLA-FFI heuristic (Fig.3). Insliase, the maximum domain has o8B5 elements
(for nodesl and29).

Since the joint belief for®v, is defined on the power set @~,, for computing the joint belief we need to
calculate, in the worst case, the masses for allX#&'12° elements of the power set. When we attempted this
“brute force” approach for threat assessment on the joimalo, our computer could not complete this task after
48 hours of processing. By contrast, using the VBS framewdné,threat assessment was carried out on the same
computer in jusb seconds for the BJT obtained by applying the OSLA-SCFF kgarand3 seconds for the BJT

obtained by applying the OSLA-FFI heuristic.
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We point out that although for the adopted threat assessmagiel the OSLA-FFI heuristic allows to compute the
solution faster than OSLA-SCFF, in general this may not be:tthe computational complexity and the effectiveness
of the heuristic for sequence elimination depend stronglyth® structure of the problem. The general rule is: the
more complex are the interdependencies among the varjahkesmaller is the advantage in using the VBS. Real
complex reasoning systems, with hundreds or even thousdndsiables, are usually characterised by very localised
structures. As the computational complexity grows exptiaty with the domain size, the VBS framework can
solve problems that otherwise would be computationallyaittible.

In addition to the structure of the network, the computatiacomplexity of an evidential network depends on
the cores, i.e. the sets of focal elements of the belief fanstto be combined. Note that the number of focal sets
is also problem-dependent.

Finally another computational advantage of the VBS, asudised earlier, is the possibility of re-computing the
valuation of the decision variable when one or more inputangle. In this case the inward propagation re-computes
only the valuations of those nodes of the BJT that belongegtith connecting the leaves with changed valuations

to the root of the BJT.

VI. CONCLUSION

The paper has presented an automatic data fusion systeretinndning threat assessment in the context of air
defence. Based on expert knowledge, the threat has beenlletbty a network of entities (representing target
behaviours or critical events) and their mutual relatigpshThe uncertain and imprecise prior information, expert
knowledge and incoming evidence supplied by the surveitasensors and other sources of information have been
expressed as belief functions. The determination of thasaessment has been performed within the framework
of valuation-based systems using local computations orbitary join tree via the inward propagation algorithm.
The result is an inference engine capable of the timely awdrate processing of vast amounts of data in support
of a commander’s decision making. One of the major contidiost of this paper has been to endow the inference
engine with the capacity to manage efficiently time varyimigimation, which is typically encountered in situation
and threat assessment problems.

Our plans for future work are twofold. In terms of threat asseent, we will consider the refinement of the
threat model to capture the threat assessment process eatisgically and to cater for networks with more entities

and larger frames (for example, the frame of platform typas lcave hundreds of elements). However, since the
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inference engine that we have developed is independenedhteat assessment application, it can also be applied
in other domains provided that the variables for the givesbjam, the relationships that hold between them and
the values they may assume based on prior information, selata and expert knowledge, can be identified. As
such, we also plan to investigate the suitability of the apph for other defence and intelligence problems such

as combat identification and possibly border protection sihéation awareness for homeland security.
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APPENDIX

Let ¥ = {p1,p2,..., ¢} be a given set of valuations add’ C 'V, with V = d(p1) Ud(p2) U---Ud(p,), the

domain of interest. Let us introduce the following notat{80]:

L(n) : left child of noden, or nil if n is a leaf

R(n) : right child of noden, or nil if n is a leaf

F(n): parent of node, or nil if n is the root of the tree (14)
d(n) : domain of the valuation for the node

root : root of the BJT

The algorithm for constructing a BJT is as follows [30].

1: Initialization:

2: Define the initial set of nod®, = {ni,n2,...,n.} with d(n;) = d(p:), L(n;) = nil, R(n;) = nil and F(n;) = nil.
3: Fix the set of variables to be eliminateX = V — D°.

4: function CONSTRUCT ABJT(IN,A)

5: N = 0; A° =0; root = nil;

6: repeat

7: if A =0 then

8: N, = Ny;

9: else

10: select the next variable to be eliminatedec A, using some heuristic;
11 N, ={n €Ny :z cd(n)};

12: end if

13: while |N,| > 1 do > while the cardinality ofN, is greater thar
14: generate a new nodewith F'(n) = nil;

15: select distinciiy, ne € Ny;

16: F(n1) =n; F(n2) =n;

17: L(n) =n1; R(n) = na;
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18: d(n) = (d(n1) Ud(n2)) — AS;

19: N, = (N;\{n1,n2}) U {n};

20: N:Nu{nhnz};

21: end while

22: if A =0 then

23: root = n;

24: else

25: A = A\{z}; A° =AU {z};

26: Ny={neNy:z¢dn)}tu{n};
27: end if

28: until root # nil
290 N =NU{n}
30: return N

31: end function

The tree resulting from this procedure is a BJT with— 1 nodes,N = {nj,ns,...,n9-—1}, such thatD? C
d(root). The only degree of freedom in the BJT construction algoritis the order in which the variables are
eliminated (Step 10).

The objective of the inward propagation algorithm is to comepthe valuations for the variables of inter-
est. Consider again the set of valuatior's= {1, ¢9,..., 9.}, the domain of interesD° and the sefN =
{n1,nq9,...,n9—1} of nodes of the BJT constructed by the algorithm given in agpe. The inward propagation
is performed in two stages. In Staggewhich is executed only once, the valuations are propadabed the leaves
towards the root of the BJT [30]. Stage 2 is performed evengtthe valuations of one or more leaves of the BJT
change. In this case, inward propagation re-computes belyaluations of those nodes of the BJT that belong to
the path connecting the leaves with changed valuationseadbt of the BJT. The steps of the algorithm for the
inward propagation are as follows.

1: Initialization:

2: Initialize Leaves = {n € N : n is a leaf.
3: if stage=1then

4. s = nil;

5 UI = Leaves;

6: else

7: UI = {n € Leaves : valuation is changed w.r.t. the previous tijne

8: end if

9: function INWARD PROPAGATION Leaves, N, stage, Ul, ¢, ©s)

10: if stage=1then > It is the first time that inward propagation is performed
11: Setnext = {n € N : L(n) € Leaves and R(n) € Leaves}.

12: for n € Leaves do

13: ps(n) = p(n)+4F ™)

14: end for

15: ese > inward propagation has been already performed at leastiome t
16: next = (;

17: for n € N do

18: if L(n) € UI or R(n) € UI then
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19: Setnext = next Un.

20: end if

21: end for

22: end if

23: visitN = () > indicates the nodes visited during the inward propagation
24:  while |next| > 0 do > while next is not empty
25: extract an element from next;

26: visitN = visit N U n; next = next — n;

2 p(n) = s(L(n)) © ¢s(R(n));

28: ps(n) = p(n) D,

29: if n # root then

30: DomF = d(F(n));

31: else

32: DomF = d(dy)

33: end if

34: ps(n) = p(n)*PomE;

35: if stage=1then > It is the first time that inward propagation is performed
36: for n € N do

37: if (n ¢ Leaves) and (n ¢ next) and (n ¢ visitN) then

38: if (L(n) € Leaves or L(n) € visitN) and (R(n) € Leaves or R(n) € visitN) then

39: next = next Un;

40: end if

41: end if

42: end for

43: else

44: for n € N do

45: if (n¢ UI) and(n ¢ next) and(n ¢ visitN) then

46: if (L(n) € visitN) or (R(n) € visitN) then

47: next = next Un,;

48: end if

49: end if

50: end for

51: end if

52: end while

53: return ¢, @ > @s(root) is the valuation for the decision variables

54: end function
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