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Dendritic cells (DCs) are highly efficient antigen-presenting cells. The migratory properties of DCs give them the capacity to be
a sentinel of the body and the vital role in the induction and regulation of adaptive immune responses. Therefore, it is important
to understand the mechanisms in control of migration of DCs to lymphoid and nonlymphoid tissues. This may provide us novel
insight into the clinical treatment of diseases such as autoimmune disease, infectious disease, and tumor.The chemotacticGprotein-
coupled receptors (GPCR) play a vital role in control of DCsmigration. Here, we reviewed the recent advances regarding the role of
GPCR in control of migration of subsets of DCs, with a focus on the chemokine receptors. Understanding subsets of DCsmigration
could provide a rational basis for the design of novel therapies in various clinical conditions.

1. Introduction

Migration of immune cells is a fundamental biological pro-
cess involved in normal physiology. This process increases
the chance that lymphocytes will encounter the antigen and is
also critical to the development of an inflammatory response.
Abnormal immune cells migration is always associated with
the development and progression of autoimmune diseases
[1–3]. Many studies have provided strong support for this
idea, and clinical studies have indicated that pharmacological
inhibitors on immune cells migration can be highly effective
in certain disease conditions [4, 5].

Dendritic cells (DCs) are highly efficient antigen-pre-
senting cells (APC). Several subsets of DCs exist in mice
and humans with distinct immunological activities, tissue
distribution, and migratory properties. Following uptake of
Antigen and in response to inflammatory signals, DCs reside
within peripheral tissue becomemature andmigrate to lymph
nodes where they initiate the acquired immunity [6]. In
addition to activating the immune response, DCs are also
decisive in creating tolerance [7]. The migratory properties

of DCs give them capacity to be a sentinel of the body in
recognizing the alloantigens, xenoantigens, autoantigens, and
neoantigens, and give them the vital role in the induction
and regulation of adaptive immune responses. Therefore, it
is important to understand the mechanisms in control of
migration of DCs, which may provide us novel insight into
the clinical treatment of diseases such as autoimmunedisease,
infectious disease, and tumor.

G protein-coupled receptors (GPCR), the 7 trans-
membrane receptors, encoded by more than 800 genes, are
activated by a large variety of factors ranging from small
amines to hormones and chemokines [8]. Chemokines are
the most well-known factors in the induction of immune
cell migration, and all chemokine receptors identified so far
are membrane-bound GPCRs. Besides chemokines, several
bioactive lipids or hormones such as Sphingosine 1-phosphate
(S1P), Lysophosphatidic acid (LPA), and angiotensin II can
also regulate the migration of DCs by binding to receptors
coupled to G proteins [9–11]. GPCRs play a central role in
control of DCs migration. In this review, we focused on the
role of chemokine receptors in control of migration of DCs.
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Figure 1: Schematic illustration of routes ofmigration ofmouseDCs. DC precursors are released from the BM into the blood; DC progenitors
can also be found in multiple locations including the thymus, blood, lymph, and most visceral organs. DC precursors seeded peripheral
lymphoid tissues and nonlymphoid tissues and differentiated them into committed DCs. cDCs in peripheral tissues can access afferent lymph
upon receiving a mobilization signal and travel to the draining LNs during both inflammation and steady-stated. pDCs travel to the LNs and
spleen via hematogenous route. Some DCs might exit lymph nodes (LN) and start a still undefined pathway to recirculate. The circulating
DCs in the blood contain both DC precursors and differentiated DC subsets, which are a mixture of newly generated cells from the BM and
experienced DCs which have reentered the circulation from peripheral tissues.

2. Subsets of Dendritic Cells and Routes of
Dendritic Cells Trafficking

Definition of subsets of DCs is still evolving with new
technology. Dendritic cell was first discovered in peripheral
lymphoid organs in the late 1970s [12]. Soon after that, DCs
populate in nonlymphoid tissue such as Langerhans cell (LC)
were identified. Classical mouse DCs in lymphoid tissue
were further subdivided into two subsets by the presence
or absence of CD8 expression (CD8+ and CD11b+ cDCs),
and DCs in nonlymphoid tissue were subdivided by the
expression of integrin CD103 (CD103+ CD11b− and CD11b+
cDCs) [13, 14]. However, human DCs did not express CD8,
they can be split into CD1c+ and CD141+ subsets which share
homology with mouse classical DCs expressing either CD11b
(CD1c+ DCs) or CD8/CD103 (CD141+ DCs) [15].

In recent years, a population of DCs which morpho-
logically resemble plasma cells but, upon exposure to viral
stimuli, produce enormous amounts of interferon (IFN)-𝛼,
was identified and named as plasmacytoid dendritic cells
(pDCs). The definition of classical DCs (cDCs) then came
out which referred to DCs other than pDCs. DCs can also be
classified intomyeloidDCs and lymphoidDCs based on their
origin. Phenotype characteristics and immune function of

subsets of DCs were summarized byMerad et al. [16]. Subsets
of DCs are different in migratory routes.

Most of the conclusions about the migration of DCs
came from researches on mouse DCs. All DCs are thought
to be ultimately derived from bone marrow (BM) [17].
Many DCs begin their journey with their release from the
BM into the blood. Circulating DCs in the blood contain
both DC precursors and differentiated DC subsets, which
are a mixture of newly generated cells from the BM and
experienced DCs. DCs in the blood subsequently traffic to
lymphoid andnonlymphoid tissues. DCs in peripheral tissues
such as skin, lung, and intestine migrate to draining lymph
nodes to initiate acquired immunity during inflammation
state, and this migration also happens in steady-state. A
small fraction of these experienced DCs can reenter into the
blood circulation and begin another cycle of journey. Unlike
cDCs, pDCs are rarely found in peripheral tissues except
for the intestine and enter the LN via the high endothelial
venules (HEV) instead of afferent lymphatics. pDCs have
been reported to migrate to sites of inflammation and to
infiltrate tumors as well as solid organ transplants [18]. The
routes of migration of mouse DCs are schematic illustrated
in Figure 1.
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3. Chemokine Receptors and DCs Migration

Chemokines are small molecular weight chemoattractant
peptides first identified and characterized as being induced
at sites of inflammation and thought to orchestrate the
influx of leucocytes to the inflamed tissue. To date, more
than 40 chemokines have been identified and classified into
four families, C, CC, CXC, and CX3C, according to the
motif displayed by the first two of four cysteine residues at
the N terminus of the molecule [19]. The specific effect of
chemokines is mediated by their G protein-coupled recep-
tors. DCs migration is largely mediated by the interaction of
chemokines with their G protein-coupled receptors. Selective
expression of chemokine receptors on DCs tightly regulates
the normal and inflammatory trafficking within lymphoid
and nonlymphoid tissues [20].

There are 18 chemokine receptors that have been identi-
fied so far, receptors for fractalkine (CX3CR1) and lympho-
tactin (XCR1), 5 receptors that selectively bind certain CXC
chemokines named as CXCR1 to CXCR5, 9 receptors which
bind to CC chemokine named as CCR1 to CCR9, D6 which
has been termed as CCR10 by some research group, and
receptor which can bind to both CXC and CC chemokines
known as theDuffy antigen receptor for chemokines (DARC)
[21].

Studies on the in vitro derived DCs (CD34+ stem cell
or bone marrow-derived DCs) found that immature DCs
can express CCR1, CCR2, CCR5, CCR6, CXCR1, CXCR2,
and CXCR4, with these expression patterns differing some-
what among DC subsets. However, chemokine receptors
expression profile from the in vitro study may not accurately
mirror the changes that occur on DCs in vivo. It has been
indicated that several chemokine receptors including CCR1,
CCR2, CCR3, CCR5, CCR6, CCR7, CCR9, CCR10, CXCR3,
CXCR4, CXCR5, and ChemR23 are involved in control of
different subsets of DCs recruitment to periphery tissues and
migration to secondary lymphoid tissues or migration within
lymphoid tissues.

3.1. Chemokine Receptors and Mouse DCs Migration

3.1.1. CCR1. Expression of CCR1 can be detected on imma-
ture DCs. Its ligand CCL9, also known as MIP-𝛾, is consti-
tutively secreted by the follicle-associated epithelium (FAE)
within the dome regions of the Peyer’s patches in mouse, and
it may play a role in the recruitment of CD11b+ DCs in the
dome regions of the Peyer’s patches in addition to the CCR6-
dependent manner [22]. Study also indicated the possible
role of CCR1 as well as CCR5 in regulation of recruitment
of immature DC precursors into resting airway tissues and
during acute bacterial-induced inflammation by using Met-
RANTES, which retained high binding affinity to CCR1
and CCR5. However, the effect of CCR1 in control of DCs
migration appeared to depend on the nature of the eliciting
stimulus, because the recruitment of DCs was not affected
by Met-RANTES in inflammation induced by Sendai virus
infection and after aerosol challenge of sensitized animals
with the soluble recall Ag OVA [23]. These data suggest that
CCR1 might play a role in recruitment of immature DCs to

periphery tissues during both steady-state and inflammatory-
state. However, all of these conclusions came from some
indirect data, the direct effect of CCR1 in the DCs migration
still needs to be proved.

3.1.2. CCR2. CCR2 is expressed on immature DCs, and its
expression can be also detected in mature DCs [54]. Its main
ligand is CCL2 [55]. Several studies demonstrated the central
role of CCR2 in the recruitment of DCs to the lung during
inflammation by using CCR2 knockout mice. Robays and his
colleague showed that CCR2 was involved in the recruitment
of DCs in the lung during allergic inflammation and may
mediate the release of DC precursors into the bloodstream,
and CCR2 was critical in inducing Th2 responses [24,
25]. However, controversy existed about the role of CCR2
in the Th1 or Th2 induction. In the situation of fungal
pathogen and mycobacterium tuberculosis infection, CCR2
was shown to be involved in recruitment of myeloid DCs and
CD11cdim/intermediate DCs to the lung, respectively, and it was
supposed to mount Th1 immune responses [26, 27]. Besides
the role of CCR2 in the immature DCs trafficking, it can also
regulate the migration of some activated DCs to the draining
LNs. Study using CCR2-null mice showed that migration
of Langerhans cell from skin to draining lymph nodes was
impaired with reduced Th1-inducing DCs (CD8𝛼+ DC) in
the spleen and impaired infection-induced relocalization of
CD11c+ DC from the marginal zone (MZ) to the T cell areas
in spleen [28].

3.1.3. CCR5. CCR5 is the major HIV-1 coreceptors for R5
strains. CCR5 is shown to be expressed by immature blood
DCs in human, and in vitro maturation of blood DCs
resulted in median 3-fold increases in CCR5 expression [56].
Its ligands CCL3, CCL4, and CCL5 are produced in the
inflamed LNs of humans and/or mice [57, 58]. In mice, the
role of CCR5 in the migration of pDCs to LNs has been
demonstrated by several studies. By using CCR5 deficient
pDCs (derived from BMof CCR5 −/−mice), Diacovo proved
that migration of pDCs from blood to inflamed peripheral
lymph nodes relied in part on CCR5 rather than CXCR3 [29].

3.1.4. CCR6. CCR6 is expressed by immature DCs, different
in subsets of DCs (absent from CD8𝛼+ lymphoid DC), and
the expression level of CCR6 decreases progressively as DCs
mature [59]. Its ligand CCL20 is expressed by inflamed skin,
mucosal epithelium, andmucosal-associated lymphoid tissue
epithelium, and it plays an important role in recruitment
of immature DCs to inflamed skin or mucosa [20]. Study
on the CCR6 deficient mice showed that myeloid CD11c+
CD11b+ dendritic cells were absent from the subepithelial
dome of Peyer’s patches, which indicated the role of CCR6 in
recruitment of myeloid DCs to the Peyer’s patches [30, 31].
Similarly, studies also demonstrated the role of CCR6 in
recruitment of myeloid DCs to the inflamed epithelial tissues
such as skin [32]. Study also indicated that in some situation
such as consecutive to an initial CCR7-mediated recruitment
fromblood into lymphoid tissues draining inflamed epithelia,
pDCs might be conditioned to acquire CCR6 and CCR10
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expression and migrate into inflamed epithelia of mucosae
or skin. This study suggests an unexpected pDCs migratory
model, after CCR7-mediated extravasation of blood pDCs
into lymphoid tissues draining inflamed epithelia, they may
be instructed to up-regulate CCR6 and/or CCR10 allowing
their homing into inflamed epithelia (in mucosae or skin)
[33].

3.1.5. CCR7. CCR7 has been identified as a key regulator
of lymphocytes trafficking to secondary lymphoid organs
[60]. It is expressed by mature DCs [61]. CCL19 and CCL21
(also known as secondary lymphoid-tissue chemokine) are
the two ligands of CCR7 which are found to express in
the afferent lymphatic vessel and LN paracortex and sub-
capsular sinus (SCS) in mice [62]. The role of CCR7 in
DCs migration has been well studied in mice DCs. Several
studies demonstrated the role of CCR7 in control of tissue-
resident myeloid dendritic cells from periphery tissues such
as skin andmucosamigration to draining LNs via the afferent
lymphatics under inflammatory and steady-state conditions
[34, 63]. The role of CCR7 in migration of pDCs remains
controversial. Some studies showed that murine pDCs were
CCR7 negative or low, and functionally were considered
unresponsive to CCR7 ligands [64, 65]. However, studies
using CCR7-deficient mice demonstrated the role of CCR7 in
regulation of pDCsmigration to secondary lymphoid organs.
Sebastian found that ex vivo derived nonstimulated and naive
pDC express CCR7, CCR7-deficient pDC showed impaired
homing to resting as well as inflamed LN, and identified
that CCR7 was an important LN homing receptor for pDC
under both steady-state and inflammatory conditions [35].
Umemoto showed that CCR7 as well as CXCR4 were both
critical chemokine receptors required for pDCs to migrate
into white pulp in the spleen under steady-state conditions
[36].

3.1.6. CCR9. CCR9 has first been identified on T cells as
a chemokine receptor that directs these cells to migrate to
the intestine. The CCR9 receptor is not unique to T cells
and has also been reported on both myeloid and pDCs, and
the expression level of CCR9 was inversely related to the
maturation state of DCs [66]. CCL25, also known as thymus-
expressed chemokine (TECK), is the ligand of CCR9, which is
found in the thymic cortex and in the small intestinal mucosa
[67, 68]. It was reported that CCR9 controlled the migration
of pDC to the small intestine under both steady-state and
inflammatory conditions [37]. The CCR9+ pDCs in tissue
was thought to be immunosuppressive population [69, 70].
However, the role of CCR9 in myeloid DCs migration still
needed to be investigated.

3.1.7. CXCR3. Study using the human CXCR3-specific mon-
oclonal antibodies showed that CXCR3 was expressed in
certain dendritic cells subsets, specifically myeloid-derived
CD11c+ cells both in normal lymphoid organs and inflam-
matory conditions [71]. Study also showed that CXCR3 was
functionally expressed in pDCs and induced migration of

pDCs. By using CXCR3 (−/−) mice, Yoneyama et al. demon-
strated that CXCR3 played an important role in recruit-
ment of pDC precursors to inflamed lymph nodes through
high endothelial venules (HEV) in propionibacterium acnes-
primed or HSV-infected mice [38]. And similarly, Asselin-
Paturel showed that murine CMV infection and systemic
injection of TLR7 and TLR9 ligands can induce migration
and clustering of splenic pDCs in the spleen marginal zone,
which was dependent on CXCR3 [39]. However, in the study
of Diacovo, it was showed that CCR5 instead of CXCR3
was required for pDC migration in response to heat-killed
mycobacterium tuberculosis. This difference might be due to
the different inflammatory conditions [29].

3.1.8. CXCR4. CXCR4 is the major HIV-1 coreceptors for
X4 HIV-1 strains. The expression of CXCR4 on immature
DCs is low and is up-regulated during maturation [56].
Its ligand CXCL12 is one of the three most important
chemokines (CCL19, CCL21, and CXCL12) which directs
DCs migrate from sites of infection to secondary lymphoid
organs. Kabashima found that CXCR4 was highly expressed
on migrated cutaneous DCs and its ligand, CXCL12, was
detected in the LYVE-1(+) lymphatic vessels in the skin.
By using CXCR4 antagonist 4-F-Benzoyl-TN14003, they
demonstrated that CXCR4 was required for migration of
cutaneous dendritic cells to LNs [40]. Umemoto showed
that CXCR4 as well as CCR7, cooperatively regulated pDCs
migration to the splenic white pulp under steady-state condi-
tions [36].

3.1.9. CXCR5. It was thought that expression of CXCR5
was restricted to mature, recirculating B cells as well as
small subpopulations of CD4+ and CD8+ T lymphocytes
[72]. Study also indicated that CXCR5 can be expressed by
activated DCs and may be involved in their migration to
draining LNs. The CXCR5 ligand CXCL13, also known as B
lymphocyte chemoattractant or (BLC), is highly expressed in
B cell zones of secondary lymphoid organs. Saeki showed that
activated dermal type DCs expressed CXCR5 and these DCs
utilize CXCR5 and BLC as a possible mechanism to migrate
to B cell zones as well as T cell zones (TCZ) in draining LN
in vivo. However, in vitro murine bone marrow derived DCs
displayed less CXCR5 expression than the activated skinDCs,
and they do not migrate to BLC [41, 73].

3.1.10. ChemR23. ChemR23 is a previously orphan protein G
coupled receptor highly expressed in immature pDCs and at
lower levels in myeloid DCs. Chemerin is the natural ligand
of the ChemR23 and a chemoattractant factor for human
immature dendritic cells (DCs), macrophages, and NK cells
[74]. It played a central role in human pDCs migration. It
was reported that ChemR23 was not present on mouse DCs
[75]. However, Souphalone demonstrated that ChemR23 was
functionally expressed by mouse DCs and mediated an anti-
inflammatory activity in a lung disease model [74]. These
controversies on the expression of ChemR23 on mouse DCs
are presumably the result of the different sensitivity of theAbs
used in these studies.
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Table 1: Chemokine receptors and chemokines involved in migration of mouse DCs subsets.

Receptor Ligands Cellular distribution Role in migration Reference

CCR1 MIP-1𝛾/CCL9 Immature DCs
Recruitment of CD11b+ DCs to the dome regions
of Peyer’s patch [22]

Recruitment of DC precursors into airway
epithelium during bacterial inflammation and
steady-state

[23]

CCR2 CCL2/MCP-1

Immature DCs

Recruitment of DCs in the lung during allergic
inflammation, and supposed to be critical in
inducing T(H)2 responses

[24, 25]

Recruitment of CD11cdim/intermediate DCs in the lung
during mycobacterium tuberculosis infection and
cDCs during Cryptococcus neoformans infection,
may be important in inducing T(H)1 responses

[26, 27]

Mature DCs
Activated LC migrate from skin to draining LNs
and regulate infection-induced relocalization of
CD11c+ DC in spleen

[28]

CCR5
MIP-1𝛼/CCL3
MIP-1𝛽/CCL4
Rantes/CCL5

Immature DCs
mature DCs

Recruitment of pDC to inflamed peripheral
lymph nodes [29]

CCR6 CCL20/MIP-3𝛼 Immature myeloid DC,
subsets of pDCs

Recruitment of myeloid CD11c+ CD11b+ dendritic
cells to the dome regions of Peyer’s patches [30, 31]

Recruitment of myeloid DCs to the inflamed
epithelial tissues such as skin [32]

mediate pDC recruitment to inflamed epithelia [33]

CCR7 CCL19/MIP-3𝛽
CCL21/SLC Mature DCs

essential for directing the antigen-loaded mature
cDCs to the T cell-rich areas of the draining
lymph node during inflammatory and
steady-state conditions

[34]

Migration of pDCs to LNs via HEV under both
steady-state and inflammatory conditions [35]

Migration of pDC to the splenic white pulp under
steady-state conditions [36]

CCR9 CCL25 Myeloid and pDC
Controls the migration of pDC to the small
intestine under both steady-state and
inflammatory conditions

[37]

CCR10 CCL27
CCL28

Subset of tonsil pDCs,
IL-3-cultured blood pDCs Mediate pDC homing into inflamed epithelia [33]

CXCR3
CXCL9
CXCL10/IP-10
CXCL11

pDC precursors
pDC
CD11c+ myeloid DCs
monocyte-derived iDC

Migration of pDC to inflamed LNs via HEV [38]
migration and clustering of splenic plasmacytoid
DCs in the spleen marginal zone [39]

CXCR4 CXCL12/SDF-1𝛼
Immature DCs
mature DCs
pDC

Migration of skin dendritic cells to LNs [40]
Migration of pDC to the splenic white pulp under
steady-state conditions [36]

CXCR5 CXCL13/BLC/BCA-1 Activated skin DC Activated dermal DC migrate to draining LNs [41]

3.2. Chemokine Receptors in Human DCsMigration andTheir
Role in Diseases. Studies on the role of CCRs in human
DCs migration are relatively few compared to studies in
mouse. Most conclusions came from indirect evidence by
using specific antibody or by analyzing their expression to
speculate their role in human DCs migration.

Sato et al. indicated the role of CCR1 and CCR3 in human
peripheral bloodmonocyte-derived dendritic cells migration
by using monoclonal antibody (MoAb) to CCR1 and CCR3

[42]. Human cytomegalovirus may use a mechanism by
down-regulating CCR1 and CCR5 expression on humanDCs
to paralyze the early immune response of the host [76], and
filarial infection can also down-regulate the CCR1 expression
on monocyte-derived DCs which may alter DCs migration
[77].

By analyzing the expression of CCR2 and CCR6 on
subsets of DCs as well as the ligands of CCR2 and
CCR6 expression in different sites in the body, Vanbervliet
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Table 2: Chemokine receptors and chemokines involved in migration of human DCs subsets.

Receptor Ligands Cellular distribution Role in migration Reference

CCR1 MIP-1𝛾/CCL9 Immature DCs May be involved in human peripheral blood
monocyte-derived dendritic cells migration [42]

CCR2 CCL2/MCP-1 Immature
mature DCs

Recruitment of circulating blood DCs and
monocytes to inflamed tissue [43]

CCR3 Eotaxin
eotaxin-2

Immature DCs
mature DCs May be involved in dendritic cells migration [42, 44]

CCR5
MIP-1𝛼/CCL3
MIP-1𝛽/CCL4
Rantes/CCL5

Immature DCs
mature DCs

Attract DCs to migrate cross the human intestinal
epithelium and sample luminal virions [45]

May contribute to the recruitment of blood
myeloid DC to cerebrospinal fluid in multiple
sclerosis patients and acute optic neuritis.

[46]

May be involved in the altered homing of blood
DCs during the alloimmune response [47]

CCR6 CCL20/MIP-3𝛼 pDCs

May be involved in leukemic pDCs and blood
pDCs from melanoma patients recruitment to
lesions of skin

[48, 49]

Recruitment of circulating blood DCs and
monocytes to inflamed tissue [43]

CXCR3
CXCL9
CXCL10/IP-10
CXCL11

pDCs
immature CD1a+ DC

Might be involved in the recruitment of pDC and
immature CD1a+ DCs to tissue lesions [50, 51]

ChemR23 Chemerin Immature pDCs Migration plasmacytoid dendritic cells to
lymphoid organs and inflamed skin [52, 53]

indicated the possible role of CCR2 andCCR6 in control DCs
migration by raising a novel model of how DCs in the blood
migrate to inflamed epithelial surfaces: CCR2(+) circulating
DC or DC precursors are mobilized into the tissue via the
expression of MCP by cells lining blood vessels, and these
cells traffic from the tissue to the site of pathogen invasion via
the production ofMIP-3alpha/CL20 by epithelial cells and the
up-regulation of CCR6 in response to the tissue environment
[43].

CCR3 is the chemokine receptor initially discovered on
eosinophils. Study showed that it was also expressed by
human DCs that differentiated from blood monocytes, DCs
that emigrated from skin (epidermal and dermal DCs), and
DCs derived from CD34+ hemopoietic precursors in bone
marrow and umbilical cord blood. Unlike other chemokine
receptors, such as CCR5 and CCR7, the expression of CCR3
is not dependent on the state of maturation. Indirect study by
using CCR3 antibodies indicated the possible role of CCR3 in
the DCsmigration induced by its ligand eotaxin and eotaxin-
2 [42, 44]. Studies on the role of CCR3 in the DCs migration
are few, and the specific role of CCR3 in control of subsets of
DCs migration is still not clear.

In human, the role of CCR5 has also been indicated in
DCs migration in some situations such as in HIV-1 infection
and Acute Graft-Versus-Host Disease [45–47]. However,
unlike mice pDCs, the recruitment of pDCs appeared to
be CCR5 independent. Pashenkov showed that expression
of CCR5 was elevated on blood myeloid (CD11c+) DC in
multiple sclerosis (MS) and optic neuritis patients compared

to noninflammatory controls, its ligands RANTES and MIP-
1beta were expressed in MS lesions, and the expression of
CCR5 by myeloid DC in blood correlated with numbers
of these cells in cerebrospinal fluid (CSF), which suggest
that CCR5 may contribute to recruitment of myeloid DC
(CD11c+) to the CSF in these patients, but recruitment of
plasmacytoid DC to CSF appeared to be CCR5-independent
[46].

Studies also showed that CCR6 was expressed on
leukemic pDCs and blood pDCs from melanoma patients
and involved in the recruitment of pDC to lesions of skin
[48, 49].

Most of the conclusions about the role of CCR7 on the
human DCs migration came from the research on mouse
DCs. The specific role of CCR7 in subsets of human DCs
migration still needed to be confirmed as in mouse DCs.

It was found that in some inflamed situations such as in
psoriatic lesions, pDCs found in the lesions were nearly all
CXCR3(+), indirectly implicated the possible role for CXCR3
in mediating the recruitment of pDCs into the periphery
tissue and developing lesions in human [50]. Besides its
ligand CCL9–11, research about uveitis indicated that CXCR3
was involved in the immature DCs migration induced by
retinal autoantigens S-antigen (S-Ag) and interphotoreceptor
retinoid binding protein (IRBP), suggesting its role in the
autoimmune disease [51].

In human DCs, it was found that ChemR23 was
expressed both on pDCs and myeloid DCs. Its ligand can
induce the transmigration of plasmacytoid and myeloid
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Figure 2: Chemokine receptors involved in migration of mouse and human DCs subsets. CCR7, CXCR4, CCR2, and CXCR5 are involved
in subsets of cDCs migration from periphery tissues to draining LNs in both inflammation and steady-state. CCR5, ChemR23, CXCR3, and
CCR7 are involved in migration of pDCs to LNs via hematogenous route. CCR2 is implicated in control of CD8𝛼+ DC to the spleen and
relocalization of CD11c+ DC from the marginal zone to the T cell areas in spleen. CCR7, CXCR3, and CXCR4 are shown to be involved in
pDCs migration from blood to spleen. CCR1, CCR2, CCR5, and CCR6 are involved in the recruitment of cDCs to different tissues in specific
situations. CCR9 is shown to have a role in controlling the migration of pDC to the small intestine under both steady-state and inflammatory
conditions. In other situations of inflammation or tumor, CXCR3, ChemR23, and CCR6 are implicated to be involved in pDCs migration to
periphery tissues.

DCs across an endothelial cell monolayer in vitro. The
Chemerin (+) endothelial cells were found to be surrounded
by ChemR23(+) pDCs, which suggest a key role of the
ChemR23/Chemerin axis in directing plasmacytoid DC
trafficking [52]. Similarly, De Palma found that Chemerinwas
associated with tubular epithelial cells and renal lymphatic
endothelial cells in patients with lupus nephritis but not in
normal kidneys, and ChemR23-positive DCs had infiltrated
the kidney tubulointerstitium in patients with severe lupus
nephritis. The induced Chemerin can result in an efficient
transendothelial migration of pDCs measured in transwell
systems. These data suggest the role of ChemR23 in the
recruitment of pDCs within the kidney in lupus nephritis
patients [53].

The role of chemokines receptor in control of subsets of
mouse and human DCsmigration was summarized in Tables
1 and 2 and Figure 2.

4. Signaling Pathways Involved in
Chemokine Receptor Signaling

All chemokine receptors are thought to couple to G proteins.
The heterotrimeric G-proteins consist of a 𝛼-subunit that

binds and hydrolyses GTP as well as a 𝛽- and a 𝛾-subunit
that form an undissociable complex. Based on the types
of their 𝛼 subunits, G proteins can be grouped into four
subfamilies, they are G𝛼i, G𝛼s, G𝛼q/11, and G12/13, each
subfamily contains several members of G proteins [78].

The mechanism involved in the CCR7 signaling has been
well studied; it is a multimodule model with the involvement
of G𝛼i, G𝛼q, and G𝛼12 [79]. It was thought that chemotaxis
induced by chemokine receptors wasmainly through the G𝛼i
subfamily. The ligation of CCR7 and its ligands mediated
the activation of G proteins induced by the binding of
GTP to G𝛼i and the release of free 𝛽𝛾 subunits. The 𝛽𝛾
subunits subsequently activated downstream effectors such
as PI3K which regulate the Akt pathway [80]. However, it
seemed that these enzymes did not regulate either chemotaxis
or the speed of DCs but regulated CCR7-dependent DC
survival [81, 82]. MAPK members ERK1/2, JNK, and p38
were also found to be activated and depended on G𝛼i in
the CCR7 signaling cascades and played an important role
in regulating DCs chemotaxis. Besides the role of G𝛼i in
the chemokine receptors signaling pathway, in recent years,
chemokine receptors coupled to other G protein subfamilies
has also been demonstrated. Study found that Gnaq −/−DCs
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were unable tomigrate to inflammatory sites and LNs in vivo,
which indicated the role of G𝛼q in the chemokine receptor
signaling. G𝛼q, like CD38, regulated the extracellular calcium
entry in chemokine-stimulated cells [83]. In addition to G𝛼q,
CCR7 also used another pathway involving Rho/Pyk2/cofilin
and presumably depended on G12/G13 to control the migra-
tory speed of DCs [81].

5. Perspectives

Several families of chemokines receptors and their
chemokine ligands orchestrate subsets of DCs trafficking.
For cDCs, CCR7 plays a central role in the migration of
mature DCs to the draining LNs via lymphatic vessels during
both inflammation and steady-state conditions, with a
multimodule signaling model that involved G𝛼i, G𝛼q, and
G𝛼12. CXCR4, CCR2, and CXCR5 have also been implicated
to be involved in some subsets of cDCs migration from
periphery tissues to draining LNs. CCR2 is also implicated
in control of CD8𝛼+ DC to the spleen and relocalization
of CD11c+ DC from the marginal zone to the T cell areas
in spleen. CCR1, CCR2, CCR5, and CCR6 are involved
in the recruitment of cDCs to different tissues in specific
situations. pDCs use a very different migratory patterns
compared with cDCs. For pDCs, CCR5, ChemR23, CXCR3,
and CCR7 are involved in migration of pDCs to LNs via
hematogenous route, though the role of CCR5 versus CXCR3
and role of CCR7 in pDCs migration remains controversial.
CCR7, CXCR3, and CXCR4 are shown to be involved in
pDCs migration from blood to spleen. CCR9 is shown
to have a role in controlling the migration of pDC to the
small intestine under both steady-state and inflammatory
conditions. In other situations of inflammation or tumor,
CXCR3, ChemR23, and CCR6 are implicated to be involved
in pDCs migration to periphery tissues.

However, there are still some limitations in the present
studies on the role of chemokines receptors in the control of
DCs migration. Some conclusions on the role of chemokines
receptors in subsets of DCs migration came from indirect
evidence by studying the expression change of chemokine
receptors on DCs or by using an antagonist of a chemokine
receptor to draw a possible conclusion. Experiments using
chemokines receptors knockout mice also have their limita-
tions, because it can affects a wide variety of cells potentially
implicated in the inflammation. Studies using in vitro derived
DCs may not accurately mirror the situations occurring in
vivo. The role of chemokines receptors in the control of
migration of a specific subset of DCs remains to be defined
which causes the different roles of subsets of DCs in immune
regulation. Understanding this complex orchestration of
chemokines receptors in the subsets of DCsmigration will be
essential to manipulate efficiently the function of a specific
subset of DCs and facilitate our clinical treatment in multiple
diseases in which DCs are involved.
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