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A STUDY OF IMPULSIVE FRACTIONAL DIFFERENTIAL
INCLUSIONS WITH ANTI-PERIODIC BOUNDARY CONDITIONS

BASHIR AHMAD AND JUAN J. NIETO

Abstract. In this paper, we prove the existence of solutions for impulsive fractional differential
inclusions with anti-periodic boundary conditions by applying Bohnenblust-Karlin’s fixed point
theorem.

1. Introduction

The subject of fractional differential equations has recently gained much impor-
tance and attention. Fractional derivatives provide an excellent tool for the description
of memory and hereditary properties of various materials and processes. The mathemat-
ical modelling of systems and processes in the fields of physics, chemistry, aerodynam-
ics, electro dynamics of complex medium, polymer rheology, etc. involves derivatives
of fractional order. For details and examples, see [2, 7, 16, 18, 24-26, 28, 30, 36, 37,
39] and the references therein.

The theory of impulsive differential equations of integer order has found its ex-
tensive applications in realistic mathematical modelling of a wide variety of practical
situations and has emerged as an important area of investigation in recent years. For
the general theory and applications of impulsive differential equations, we refer the
reader to the references [27, 38, 40, 42]. For some recent work on impulsive fractional
differential equations, see [3, 9].

Anti-periodic boundary value problems have recently received considerable atten-
tion as anti-periodic boundary conditions appear in numerous situations, for instance,
see [1, 6, 15, 18, 19, 32, 33].

Differential inclusions arise in the mathematical modelling of certain problems
in economics, optimal control, etc. and are widely studied by many authors, see [12,
20, 34, 41] and the references therein. For some recent development on differential
inclusions, we refer the reader to the references [5, 11, 13-14, 22, 31, 35].

Periodic solutions of fractional systems have been considered by some authors
[8, 21] and in a recent paper, Ahmad and Otero-Espinar [4] discussed the existence of
solutions for fractional differential inclusions with anti-periodic boundary conditions.
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In this paper, we study the following impulsive differential inclusions of fractional
order g € (1,2] with anti-periodic boundary conditions

‘Dix(t) € F(t,x(t)), teJi=[0,T|\{t1,12,....,1p}, T >0,
Ax(te) = Fi(x(t), A () = Filx(ty)), %€ (0,T), k=1.2,...p, (L1)
x(0) = —x(T), «'(0) =—x(T),

where °D? denotes the Caputo fractional derivative of order g, F : [0,T] xR — Z(R
where Z(R) is the family of all nonempty subsets of R, .7, 7 :R =R, Ax(t) =
x(t) —x(t;) with x(t;") = limy, o+ x(tx + 1), x(t; ) = limy,_o- x(tx +h), k=1,2,...,p
forO=1n<t<p<..<tp<tpy1=T.

We define PC(J,R) = {x:J — R; x € C((t,t+1],R),k =0,1,2,...,p+ 1 and
x(t;7) and x(z;) exist with x(t;) = x(t), k = 1,2,..., p}. Notice that PC(J,R) is a
Banach space with the norm ||x|| = sup,, |x(7)].

2. Preliminaries

Let C([0,T],R) denote a Banach space of continuous functions from [0,7] into R
with the norm |[x[| = sup,¢o 7 {[x(z)[}. Let L'([0,T],R) be the Banach space of func-

tions x : [0, 7] — R which are Lebesgue integrable and normed by ||x||z, = f [x(¢)|dz.

Now we recall some basic definitions on multi-valued maps [17, 23].

Let (X,]|.||) be a Banach space. Then a multi-valued map G : X — 2% is convex
(closed) valued if G(x) is convex (closed) for all x € X. The map G is bounded on
bounded sets if G(B) = U,epG(x) is bounded in X for any bounded set B of X (i.e.
sup,cp{sup{|y| : y € G(x)}} < o). G is called upper semi-continuous (u.s.c.) on X
if for each xp € X, the set G(xp) is a nonempty closed subset of X, and if for each
open set B of X containing G(xp), there exists an open neighborhood .4~ of xy such
that G(.4") CB. G is said to be completely continuous if G(B) is relatively compact
for every bounded subset B of X. If the multi-valued map G is completely continuous
with nonempty compact values, then G is u.s.c. if and only if G has a closed graph,
i.e., Xp — X4, Yo — Y+, Yn € G(x,) imply y, € G(x,).

In the following study, let Poc(X) denotes the set of all compact and convex sub-
sets of X. G has a fixed point if there is x € X such that x € G(x).

The following lemma is necessary to define a solution of (1.1).

LEMMA 2.1. Foragiven o € PC[0,T], afunction x is a solution of the following
linear impulsive boundary value problem

eJi =1[0,T|\{t1,12,....1p},

D) = o), 1<4<2,
Ax(t, / x(t, ), u%e€(0,T), k=12,.,p,

t
k)= Jx(), A (1)
x(0)=—x(T), ¥(0)=—x(T),



A STUDY OF IMPULSIVE FRACTIONAL DIFFERENTIAL INCLUSIONS 3

if and only if x is a solution of the impulsive fractional integral equation

_g)a-1 a1 _
o (s)ds - § T Lel—o(s)ds + L2

T (71:(—5)’;;2 o(s)ds

-3, 2, (L, o fku(t,;)))
_%0<%<T (T+2(t_t’<))<ftk . tii V6 (s)ds + /k(x(t;;)))
€ [0,1],
)= F o0 i T o(s)as + (5 (s)ds (2.2)
-+, 2, (I %G@dswk(x(z-)))
4, 2, (T 20-0) (I, 455 ods+ Aida(r)

v (tfji 1 (rk;(s;j*'a(s)ds+fk(x(f)))

0<t<t
+0<tzk<t(t_tk)<ftk 1 tlli = ()ds+/k( ( )))»
re (tkvtk+1]'

Proof. Suppose that x is a solution of (2.1). Then, for some constants by,b; € R,
we have

t(r— s)q_1
I'(q)

For some constants cg,c; € R, we can write

x(f)Zqu(l)—bo—bNZ/O o(s)ds —by—bit, 1 €[0,1]. (2.3)

t(t—s)a!
x(t):ch(t)—co—cl(t—tl):/ U= G(s)ds—co—ci(t—11), 1€ (11,1a].
n o T(q)
Using the impulse conditions Ax(n) =x(t;) —x(t;) = A1 (x(1; ) and AY (1) =/ (1)
= Zilx , we find that
tl l_s
—¢o _/ o(s)ds — bo— bty + .91 (x(1;)),

ll—Sq 2
— —/ o(s)ds—bi+ Z1(x(t]))

s)a-1 ot —s)?
)c(t):/tl (t F(;; s)ds +/ tl o(s)ds—bo—bit+ I (x(t]))

1 _ )2
+(t—t1)[/0 %G(s)ds-i—/l(x(tl_)) , 1€ (1,0).
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Repeating the process in this way, the solution x(¢) for ¢ € (#x,#1] cane be written as

x(t) = /tA ’ %G(s)ds — bo— byt

. /’k (=s)"" o(s)ds+ I (x(t; ))>

0<t <t tr—1 r(q)

+ {(t_tk)</tk’: %a(s)dﬁ- jk(x(t,;))ﬂ, 1€ (te,tir1)-

0<n<t

(2.4)

Applying the anti-periodic boundary conditions x(0) = —x(T), x'(0) = —x/(T), the
values of bg,b; are given by

0<tk<T lk—1
r_, " (1 —s)772 :
0<,k<T<2 ) W Tq-1 (8)ds + Zi(x( )))
2
by :% 5 r(i_)l)c(s)ds
f _ )2
+%0<§<T (/’k—l (tkl"(q))q ols)ds+ /k(x(t’;)))

Substituting the values of bg,b; in (2.3) and (2.4), we obtain (2.2). Conversely, we
assume that x is a solution of the impulsive fractional integral equation (2.2). It follows
by a direct computation that x given by (2.2) satisfies the fractional linear anti-periodic
boundary value problem (2.1). This completes the proof. [

REMARK 2.1. The first three terms of the solution (2.2) correspond to the solution
for the problem without impulses [4, 6]. The solution for the associated homogeneous
problem with impulses and anti-periodic boundary conditions can be obtained by taking

=01in (2.2).

In view of Lemma 2.1, we define the solutions of (1.1) as follows.

DEFINITION 2.4. A function x is a solution of the problem (1.1) if there exists a
function f € L'([0,T],R) such that f(¢) € F(t,x(¢)) a.e. on [0,T] and
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—s -1 —s ~1 2
Ja OB pls)ds — T TR p(s)ds + T2 F(s)ds
1 e (—s)17! _
§0<tk<T< et T f(s)dSJka(x(tk )))

h)
2 T2 w) (J 5T S0+ A G).
G[O,ll},

—g5)a-1 —s)4
S f(s)as— L L

ESI

f(s)ds+ (-2

T f(s)ds

X(t): q—1
-3, 2 (0 e f(s)dsmk(x(z,:)))
s (i) (i, S s + Al )
0<y<T
+0<tzk<t( e (s)ds+ mx(t,:)))
+ X (t—tk)<f tk 5)4 s+ Al )
0<n <t
re (tkvtk+1].

For the forthcoming analysis, we need the following assumptions:

(A1)

Let F:[0,T] x R — Z(R) be such that F(.,.) is convex valued, r — F(t,x)
is measurable for each x € R, x — F(r,x) is upper semicontinuous for a.e. ¢ €
[0,T], and for each x € C([0,T],R), the set Sr, := {f € L'([0,T],R) : f(¢) €
F(t,x) fora.e.t € [0,T]} is nonempty set;

For each r > 0, there exists a function m, € L'([0,T],R..) such that ||F(t,x)| =
sup{|v| : v(¢) € F(t,x)} < m,(¢) forall |x| < r,and forae. t €[0,T], and

o m()de

1 f(=————) = )

iminf (S—) =y <o,

where m, depends on r;

jk € C(R,R) and there exist continuous nondecreasing functions
MkaNk R+_>R+ak_la2a"'7p SuChthat‘jk( )|<Mk Iyl |/k |<Nk |y|>
for each y € R with

liminf My (r) /1 = o < +0, limJirank(r)/r = P < +oo,

r——+oo

Now we state the following lemmas which provide a platform to establish the main

result of the paper.

LEMMA 2.2. (Bohnenblust-Karlin [10]) Let D be a nonempty subset of a Banach

space X, which is bounded, closed, and convex. Suppose that G : D — 2X \ {0} is u.s.c.

with

closed, convex values such that G(D) C D and G(D) is compact. Then G has a

fixed point.
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LEMMA 2.3. [29] Let I be a compact real interval. Let F be a multi-valued
map satisfying (A1) and let © be linear continuous from L' (I,R) — C(I,R), then the
operator ©o S : C(I,R) — Pcc(C(I,R)),x — (OoSF)(x) = O(Sky) is a closed graph
operatorin C(I,R) x C(I,R).

3. Main result
THEOREM 3.1. Assume that the assumptions (A1) — (Az) hold and

T+6|T—t
%B& <1. (3.1)

4l (q)y o (3
(5+q+p(7g—1))T97! +k§1 (2a"+

Then the impulsive anti-periodic problem (1.1) has at least one solution on [0,T].
Proof. To transform the problem (1.1) into a fixed point problem, we define a

multi-valued map Q : PC(J,R) — Z(PC(J,R)) as

t —s -1 —s -1
Qx) = {heC([O,T]):h(t):/[ %f@)ﬁ-%/j %f(s)ds

H2 /T T i)i)zf(sms

_%o%d (T +2(r 1)) (/:1 %f(s)dﬁ /k(x(t,;)))
+0<,2k<, /tk t: % Fs)ds + Alx(i; ) )

o 3 ([ S Ave). sese)

Now we prove that the map Q satisfies all the assumptions of Lemma 2.2, and thus
Q has a fixed point which is a solution of the problem (1.1). As a first step, we show
that Q(x) is convex for each x € PC(J,R). For that, let /;,h, € Q(x). Then there exist
f1, /2 € Sk such that for each ¢ € [0, 7], we have

t(t—s —1 —5 —1
hi(r) = / %ﬁ(s)ds—% tkT %ﬁ(s)ds

(T —2t) (T (T —s)972
3 /tkr(q—l)

1 Tk (lk—S)q_l _
—§0<§,<T </tk—l Wﬁ(s)ds+jk(x(tk )))

fi(s)ds
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! « ()i ]
—ZO%T(TH@—@))(/M Ty s+ Al )
« (! ]
o (), S+ Atse)
+0<,2k‘<,(t_tk)</zk 1 (15( il 0 ﬁ-(s)ds+ /k(x(t,;))), i=1,2.

For 0 < A <1 and for each 7 € J, we have

(A + (1= A)ho) 1)
t(t— )91
- [ pae +a-npes- 3 [T

(T —2t) (T (T —5)972
3 /tkr(q—l)

tx —5 —1
—% > (/tkl (tkr(q))q [lfl(s)+(1—A)fz(s)}ds+fk(x(z,;)))

0<y<T

lfl +(1=2)fa(s)lds

Afi(s)+ (1 =24)fas)]ds

tx —5 -2
_411 > (T—|—2(l‘—tk))</ (tp —s)4 Afi(s)+(1—=2)fo(s)lds + _Fi(x( )

0<n<T na T(g—1)

174 _ 1
+ 2 </tk,1 (tkr(q))‘f [Afi(s) +(1=2)fa(s)]ds + jk(x(;]:))>
(

0<t <t
K —s8)1”

= 3 - [ )[m) (1=l + Flx(t))).

0<n.<t k=1

As Sk, is convex (F has convex values), therefore it follows that Ay + (1 —A)hy €
Q(x).
To show that Q(x) is closed for each x € PC(J,R), let {u,},>0 € Q(x) be such

that u, — u as n — e in PC(J,R). Then u € PC(J,R) and there exists a v, € Sr,
such that

f(1—g)d-] T (T—_g)a-] _ T (T—g)d—2
un(t):/tk(t i vn(s)ds—l (T=s)" v,,(s)ds—f—(T 2t)/tk (T—s)” vp(s)ds

I'(q) 2J)y,  Tq) 4 . T(g—1)
1i —g)a-1
_%02 </ - (tkr<q)>q w(s)ds + Ji(x(1;)))
o (ty —s)472 _
——0<§<T (r+20-w) ([ T+ A7)
o (tg —s)47!
+Oz(/ SR+ Al0)

)
+ ) (t—tk)(/t:kl (15( )1) s)ds+fk(x(tk_))).

O<n <t
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As F has compact values, we pass onto a subsequence to obtain that v, convergesto v
in L'([0,T],R). Thus, v € Sg and

() =) = [ a3 [T
nu 7 2) /tAT (1{(; S_)ql_)z v(s)ds
—i%g([f%%?$wm+ﬁmgm
—i££AT+%FﬂN<Ai%%E%;W®%+}ﬂﬂiﬁ>

gy
T S = SRR VAR

O<t<t /-1 r(q

)
+ 3 (t—n (Lkl% s>ds+/k(x(t,;>>).

0<t <t

Hence u € Q(x).

Next we show that there exists a positive number r such that Q(B,) C B,, where
B, ={x € PC(J,R) : ||x|| < r}. Clearly B, is a bounded closed convex set in PC(J,R)
for each positive constant r. If it is not true, then for each positive number r, there
exists a function x, € By, h, € Q(x,) with [|Q(x,)|| > r, and

- —s)a!
o) = [ pas— 3 [T as

I'(q) 2 I'(q)
(T —2t) [T (T —s)472
- A APRNAOL
k — 5 1
3,2, ([ g aw)
1 o (fp —s)972
-2 z< (T+2t_tk)</rk,l lf(q—l) fr(s)ds+ Zx )
k tk—S -1 _
> ([ e+ a)
0<tk<t Tk—1
1 — )42
+0<%<t(t—tk)</[kl %f,(s)ds—k /k(x(t,;))>, for some f, € Spy,.

On the other hand, in view of (A;) — (A3), we have
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1| — gla—1 1 /T I|T —gla-1
<o)l < [ lnes g [ IR n s

\T 2t| T|T—s|’12

-1 |f(s)|ds
%Ogd(/,kkl tk;(s|) £ )lds+ Tl ()]
+‘1‘0<§<T(T+2|t_tk|) (/:l %V‘V(SHQIS—F |/k(xr(z,;))\>
+ 2 N i i '> [r(5) ds +| e (1))

1x _gla—2
£ 3 ([ S RO+ A )

0<t <t

T (54+q+p(7g—1)) (T Po3 T +6|T — 1]
< ar(g) Jy s+ 3 (GHite) + ===l

(32)

Dividing both sides of (3.2) by r and taking the lower limit as r — oo, we find that

4T(q)y 4 T+6|T tl
(5+q+p(7g—1))Ta1 2(‘ et ﬁk)

which contradicts (3.1). Hence there exists a positive number # such that Q(Br') C
Br.
In order to show that Q(B,+) is equi-continuous, we take ¢/,#” € [0,T] with 7| <

7. For x € By and h € Q(x), there exists f € Sg, such that for each r € [0,T], we
have

t(t—s -1 —s -1
o= | %f@ds—% %f@)ds

(T —21) [T (T )2
Tt /u T(g—1)

1 —5 -1
S ([ SR s+ )

0<te<T I(q)

f(s)ds

tx s -2
1.3 2w ([ S st A)

0<n.<T T—1
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1 —s -1
+ 3 ([ fas A ))

<<t V-1 I'(q)
+O<IZN(:_ </:: %f $)ds+ Filx(r) ) (3.3)

Using (3.3), we obtain

[h(12) — h(T1)]|

= /: %f(s)dsﬁ- t:l (2 —8)* (—grl—s)q lf(s)ds
‘jh}ﬁ)éTgé?;ﬂmms
‘k%ijﬁKAﬁ?@?Zﬁwm+;mmn»
+0<tk§2_ﬁ ( /tk tkl %f ()ds+ Fi(x(t;))
4}%§r5h‘%xﬁi%%f%;ﬂ®w+fwﬂa»)
e 2_71<[?l%%§¥§;fﬁﬂy+/%@okwﬂ

gyl U (r—5)0 = (5 —9)7" |
<[, Prg e | ) e ($)ds

|172—171\ /T \T—s\q 2

m,/( )ds

B

0<t;,<T

+ </ttk tk;(ij;lmr’ (s)ds—i—Mk(”))

0<t;<m—T1) k—1

g — s|42
+ Z \Tz—tk|</ %m,’(s)ds—f—Nk(r))

0<ty <1 —Ty Tk—1

i _gla—2
+ Y \rz—m(/ l%mﬂ(s)ds—I—Nk(r)).

0<f <1y lk—

Obviously the right hand side of the above inequality tends to zero independently of
x € B as 7, — 11. Thus, Q is equi-continuous.

As Q satisfies the above assumptions, therefore it follows by the Ascoli-Arzela
theorem that € is a compact multi-valued map.
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As a last step, we show that Q has a closed graph. Let x, — x.,h, € Q(x,) and
hy — h.. We will show that h, € Q(x,). By the relation &, € Q(x,), we mean that
there exists f, € S, such that for each 7 € [0,T],

=)t 1 T(T—s)’i’1
mio) = [ s —3 [ g fu(sas

(T-2) [T (s
3 /zkr<q—1>

_% s <~/t:: (tk—s)qflfn(s)dﬁjk(xn(tk’))>

0<t;,<T F(CI)

‘}1 ¥ (T+2(t—tk))</fk (;f(—s) s ds+jk(x,,(t,;))>

o<t <T Tk—1

Su(s)ds

+02(/ T s )
=

b 3 ([ ST st Aln)

0<t <t

Thus we need to show that there exists f € Sk, such that for each ¢ € [0,7],

h*(t):/tk(t—sql d——/tk _sql i
(T —2t) (T (T —5)972
S PRy

_% 2 (/:1 (tk_s)qilf*(s)ds—k fk(x*(t;;))>

O<tk<T F(CI)

—= 2 (T+2t—tk)</ttf (;f(;s) )f* ds+jk(x*(t,;))>

O<%<T

fx(s)ds

i —g)a!
+ qu (/k 1 < r(q))q fo(s)ds + Fi(x. (h;)))
(

+ 3 - tﬁ(;s) P15+ Sl 67):

0<t <t

Let us consider the continuous linear operator © : L' ([0, T],R) — PC([0,T]) so that

t(t—s -1 —s —1
ree® = [ ras— 5 [FTE I s
(T—2t) [T(T—s)72
+ ) /tk =1 f(s)ds

_% v T </:1 Mf(@dyk fk(x(tk_)))

0< < - I'(q)



12 B. AHMAD AND J. J. NIETO

tx —5 -2
1 2 ) ([ S s AGi)

0<y<T

+ 2 </tk[: (tk;(il)qlf(S)ds_ij(x(tk)))

0<t <t )
o (fp —s)972 _
+0<[2k<[(t—zk)( /[k gy s AG).
Observe that
1o (6) = B 1)
(r— sq1
— [ ()~ £o)ds 5 ~ £9)ds
— s 2
+ 42” [ (i(q _>ql> (fn(S)—f*(S))ds
| o (f—s)17! _ _
=3, 2, (L P ) = s+ (Sl )) = Sl )
! ()2 ) )
—Zo<§<T<T+z<z—tk>>( L oy U s (Al )= A1)
i _ 1
£ 3 ([ R )~ 0 it ) = A )
(1 =5)"" ) )
£ 2 [ 55 " () Fds+ (Al ~ Al i)

— 0 as n— oo,

Thus, it follows by Lemma 2.3 that ® o SF is a closed graph operator. Further, we have
hu(t) € O(SE.y, ). Since x, — x., therefore, Lemma 2.3 yields

r— ql (T — ql
h*(t):—/( ) d——/ )
1 Tk
T 2:/ (T — sq2
173

)
</tk (0 — S)ql (s)ds + I (x. (1 ))>

O<tk<T n T(g)

I —5)92
_Z Z (T—|—2t tk))</tkl(tk _)ql) f*(S)dS‘F/k(X*(lk_)))

0<tk<T I'(q

23 ([ B s )

0<t<t I(q

)
+ Z (t—tk)(/tktk1 (lf( ) 0 f* ds+jk(x*(tk_))>, for some fi € Spy,.

O<n <t
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Hence, we conclude that Q is a compact multi-valued map, u.s.c. with convex closed
values. Thus, all the assumptions of Lemma 2.2 are satisfied. Consequently, by the
conclusion of Lemma 2.2, it follows that Q has a fixed point x which is a solution of
the problem (1.1). U

EXAMPLE. Consider the following impulsive differential inclusions with anti-
periodic boundary conditions.

‘Dix(t) € F(t,x(t)), 0,1], 1#1,
1— 1-
Ax 1y lx(3 )J , Ax 1y [x(3 )l , 3.4
(5) (T+x(3 7)) (5) (1+x(3 7)) (3.4)

Clearly g = ;7 T =1 and p=1. Letus Choose F(z,x) satisfying the conditions
I|IF(z,x)] < I + PIgEmyE |x| +e~". Clearly the condition (3.1) is satisfied:

4Ta)y TRy VR
(5+q+p(7g—1))T0 1+2( h)=5 <t

As all the assumptions of Theorem 3.1 are satisfied, the anti-periodic impulsive problem
(3.4) has at least one solution on [0, 1].
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