
Undefined 0 (0) 1 1
IOS Press

Order Matters! Harnessing a World of
Orderings for Reasoning over Massive Data
Emanuele Della Valle a, Stefan Schlobach b, Markus Krötzsch c, Alessandro Bozzon a, Stefano Ceri a,
Ian Horrocks c

a DEI, Politecnico di Milano
b Vrije Universiteit Amsterdam
c Univerity of Oxford

Abstract. More and more applications require real-time processing of massive, dynamically generated, ordered data; order is an
essential factor as it reflects recency or relevance. Semantic technologies risk being unable to meet the needs of such applications,
as they are not equipped with the appropriate instruments for answering queries over massive, highly dynamic, ordered data sets.
In this vision paper, we argue that some data management techniques should be exported to the context of semantic technologies,
by integrating ordering with reasoning, and by using methods which are inspired by stream and rank-aware data management. We
systematically explore the problem space, and point both to problems which have been successfully approached and to problems
which still need fundamental research, in an attempt to stimulate and guide a paradigm shift in semantic technologies.

Keywords: Massive data, inference, ordering, streaming algorithms

1. Introduction

Data is massively produced and published at a speed
which exceeds by far our current methods and infras-
tructure for processing it. Science and Engineering
have become more and more data-driven: an environ-
mental study of the earth atmosphere using digital tele-
scopes requires collecting streams of measurements;
the smooth pathway of satellites through space criti-
cally depends on the availability and analysis of de-
tailed information about tiny objects in a flight path
through hundreds of kilometers of space; a single sim-
ulation of an airplane engine easily produces petabytes
of simulation results.

These examples have a common feature: their data
is ordered. In some cases, data is naturally ordered
by recency. Other data is intrinsically ordered, e.g.,
by precision, popularity, provenance, certainty, trust.
In any case, data is explicitly sortable through at-
tribute values such as latitude, longitude, object size,
user-provided ratings, or frequency. Multiple orderings
are simultaneously present for almost every available
piece of information. Most answers are also required

to come in an ordered fashion; for instance, engineers
surveying a satellite orbit need to know the largest
pieces of debris in closest proximity with maximal cer-
tainty, measured with highest precision; social scien-
tists studying the Web want to study the most influen-
tial blogs, or the most recent tweets closest to a partic-
ular point of interest.

Another common property of the described prob-
lems is their time-critical character, requiring imme-
diate answers at runtime: scientists and engineers want
to adapt their expensive and complex experiments and
simulations while running them based on analysis of
incoming results, e.g., flight paths have to be adapted
once an object in collision course is detected, and com-
panies need to know the effects of their commercial
campaigns immediately. There is an immense need for
reactive tools that critically depend on such runtime
solutions.

Finally, all these problems require inference. For in-
stance, engineers need to identify complex modelling
errors in simulations, and classify them by severity,
subjects in the flight path of a satellite need to be
sorted according to their type, material, size, etc. Se-

0000-0000/0-1900/$00.00 c© 0 – IOS Press and the authors. All rights reserved

2 Emanuele Della Valle et al. / Order Matters!

mantic applications must deal at the same time with
rich ontological models describing complex domain
knowledge, and highly dynamic data representing re-
cent or relevant information, as produced by streaming
or search-enabled data sources. State-of-the-art seman-
tic technologies do not consider ordering as an essen-
tial property. Ranking results is often seen as an “added
task,” performed after inference, without affecting the
inference process which is order-agnostic; as a result,
semantic technologies cannot provide reactive and re-
liable query answering over such massive datasets, in-
tegrating highly dynamic sources; they don’t scale in
front of massive ordered data, and fail to be used in
these problems and contexts.

However, the data management community has
shown that the intrinsic “sorted” nature of data sources
can be considered as an opportunity for building ef-
ficient data processing techniques, by harnessing or-
dering before processing, or by exploiting ordering
within processing. Harnessing and exploiting order-
ings in reasoning gives the opportunity for signifi-
cantly scaling up inferencing. We need a foundational
theory, new generic methods and concrete algorithms
for reasoning in the presence of orderings. This vision
paper offers a systematic study of the solution space
and of the challenges, both solved and unsolved, that
the semantic community should face, taking advantage
of methods which were defined in the data manage-
ment context. We will identify classes of problems, de-
scribe prototypical examples, and indicate applicable
approaches for each class. We will also identify the
open challenges for the most difficult problems.

In principle the methods we propose are complete,
i.e., return the correct answer. However, streaming al-
gorithms lend themselves very naturally to approaches
returning partial and approximate answers, with in-
creasing quality over time. Progress in the context of
reasoning over massive dynamic data can thus mean
two things: runtime performance and quality perfor-
mance. To make this more concrete, let real-time
indicate the minimal time required to meet opera-
tional deadlines from event occurrence to system re-
sponse [10].

Then, the behaviour of a system should be targeted
towards exploiting all the inferences that can be per-
formed in real-time, and the target is to reduce the run-
time to real-time while retaining an acceptable level of
answer quality. These concepts are visualized in Fig. 1.

In summary, the class of problems that can bene-
fit from a tight integration of orderings and reasoning
have the following properties:

Fig. 1. Runtime performance and answer quality

– Data is massive.
– Data is ordered.
– Data can be incomplete, heterogeneous and noisy.
– Applications are time sensitive.
– Applications require inference.
– The analytical tasks require ordered answers.

In the remainder of the paper, we describe four con-
crete examples of time-sensitive applications that need
to process massive sets of highly dynamic data (Sec-
tion 2). We identify the problem and solution space
that need to be investigated to implement our vision,
and we argue that several areas in the problem space
can only be addressed by making ordering a first class
citizen in reasoning (Section 3). The core of the pa-
per is (1) a systematic exploration of the solution space
that points both to problems that have been success-
fully approached and to problems that still need funda-
mental research (Section 4), and (2) a discussion about
the important role of approximation and parallelism in
such space (Section 5).

2. Examples of applications

Hereafter, we present four concrete application
problems for which order-aware reasoning can signifi-
cantly boost scalability: three of them have their origin
in specific projects with industrial partners, the fourth
is more general and will be used as a running example
throughout the paper to explain our vision and ideas.

2.1. Space Situational Awareness

Since the start of human excursions into space, the
amount of debris left in the atmosphere has expo-

Emanuele Della Valle et al. / Order Matters! 3

nentially increased. Typical examples of such debris
are decommissioned satellites, parts of transportation
rockets, but also include tools lost by astronauts, and
most often wreckage from explosions or collisions in
orbit. For satellites circling earth, collision with space
debris has turned into a serious risk.1 Space situational
awareness is the problem of detecting these objects by
monitoring the space using networks of radar and tele-
scopic installations, and combining those results with
existing debris databases. Those installations provide
massive streams of measurements that are time and
space bound, and can be ordered by reliability of the
tools and precision of the observations.

Given that the task consists in finding debris in a re-
stricted space and time window, and that human deci-
sions strongly depend on a system’s confidence, this
is a typical target problem where order-aware reason-
ing makes a difference. For example, those streams can
provide information whose real-time analysis could al-
low to adapt the flight path of a satellite to avoid colli-
sion, or even to shoot down debris.

2.2. Jet Engine Design

The construction of jet engines heavily depends
on simulation. During those simulations, terabytes of
data about flow fields, pressure, etc. are produced. In
the current routine, such a simulation is performed in
high performance computer centres and can last up to
months. In a separate step, the data is analysed for
design-errors, e.g., regarding the distance between ro-
tor and engine boundary. Visualisation is used to detect
deformations to rotor or stator, and to derive novel and
more favourable design parameters.

Both analysis and visualisation are done offline
and decoupled from the simulation, as analytic infer-
ence and data selection cannot yet be done efficiently
enough for real-time processing. However, engineers
perceive the need for effective analysis and visualisa-
tion of intermediate simulation results as soon as they
are produced, and inference becomes a critical compu-
tational bottleneck. More concretely, tools are required
that order intermediate results according to their im-
portance for the visualisation process and their analytic
importance (e.g., mesh quality problems). By dealing
with simulation results at the time they are produced,
jet engine design will be turned into a reactive process,
which will save critical experimental time and efforts.

1http://www.space.com/11314-space-junk-satellite-collision-air-
force.html

2.3. Intelligent Surveillance

Surveillance is the monitoring of behaviour, activ-
ities, or other information about groups of people. It
is, e.g., employed to ensure the safety of workers on
the factory floor, to detect crimes occurring in indoor
or outdoor settings, or to monitor the flow of large
crowds through public spaces. Current systems still re-
quire full involvement of human operators, which im-
plies as high labour costs, limited capability for multi-
ple screens, inconsistency in long-duration, etc. Most
surveillance products on the market are based on vi-
sion and pattern recognition techniques, but industry
and governments call for next generation intelligent
surveillance systems that integrate such sensor data
with social data streams. For larger cities, such as
Seoul, the size of data generated each day from sen-
sor networks exceed 500GB and 3 million tweets are
posted each day. To make sense of all this information,
extremely large amounts of geo-spatial data are also
considered. In the workflow of real-time city surveil-
lance scalable inferencing has been identified as an in-
surmountable obstacle.

Again, data naturally contains orderings. For in-
stance, tweets can be ordered by popularity that can be
estimated by the ratio of tweets and re-tweets, trust-
worthiness of information gathered from sensor net-
works can be ordered by precision of the sensor. More-
over, the final analytics returned to the interested party
is necessarily based on choices that are related to those
orderings; for instance, aggregating social sensing over
a recent time window, a district of the city, age groups,
or based on the most reliable information. Making use
of the orderings in both data and information need typ-
ically calls for order-aware reasoning.

2.4. Social Media Analysis

The final example is about social media analysis,
and will be used throughout the paper as running ex-
ample to motivate and explain our vision and ideas.
Each second, thousands tweets are produced world-
wide, forming a rich body of information for compa-
nies and governments alike. Imagine a system which
listens to all micro-posts that are published (on Twitter,
Facebook, Google+, etc.), knows the geographic loca-
tion of social media users, has the ability of detecting
the topic of each micro-post, and has modelled rela-
tionships between topics in an expressive ontological
language. Such system would be capable of serving a
variety of information needs, e.g.:

4 Emanuele Della Valle et al. / Order Matters!

Which users of social media, currently leading
popular discussions on fashion-related topics, are
closest to my current location? What are they say-
ing about the shopping district nearby?

Such a query describes a complex information need
heavily depending on orderings in the data, and is thus
a prototypical example for a problem requiring order-
aware reasoning.

3. Inferencing with streaming algorithms

As mentioned in the introduction, research in ef-
ficient database querying indicates that many actual
applications require order-aware queries, and that an-
swering those queries can be highly efficient. Trans-
lated to the problem of inference over large-scale data,
this means the following: whenever our applications
require only those parts of the solution space that are
optimal according to one or more ordering criteria,
there is the opportunity to speed-up traditional infer-
ence methods by focusing on that part of the data that
contributes to this significantly smaller solution space.
For instance, when dealing with fast-changing data,
efficiency can be gained through window-aware main
memory processing of streaming data and indexing of
static data, which allow efficient random access. Alter-
natively, when the information need relates to an order-
ing criterion, there is the opportunity to speed-up tra-
ditional inference methods by focusing on the ordered
data and using order-aware operators.

Figure 2 shows a bird’s-eye view of the order-aware
reasoning vision. Data on the left is considered to be
sorted – or sortable – according to some ordering. Such
orderings can be natural, i.e., already present in the
data (e.g., the recency in the micro-post stream), or
they can be enforcedfor the purpose of a given appli-
cation. Among the enforced orders, we further distin-
guish cheap from expensive ones. For cheap orders,
some index for sorted access can easily be created,
as it is the case, e.g., for database columns of an or-
dinal type or for geo-spatial information in a spatial
database. Expensive orderings, in contrast, can only
be produced as result of complicated operations, such
as joining intermediate results (e.g., the reciprocal dis-
tance of two flying objects in a given moment in time)
or invoking complex custom functions (e.g., the im-
pact of an opinion maker in the last hour as a function
of the number of replies and re-tweets). Many forms
of cheap or natural sorted data access can be leveraged

Fig. 2. A bird’s-eye view on order-aware reasoning

by algorithms to obtain a core selection criterion, thus
reducing the impact of evaluating expensive orders.

Data of the given size, frequently changing and
intrinsically ordered, calls for streaming algorithms.
These algorithms completely avoid random access to
data, i.e., require only one pass or a small number of
passes over the data, while using a workspace that is
much smaller than the size of the data. Examples in-
clude many algorithms that perform computations by
splitting a problem into the two problems of sorting
and solving. Typical streaming algorithms feature low
space complexity upper bounds that are polylog in the
size of the input (i.e., their memory use is estimated by
O(logk(n)), where n is the size of the input and k is
a constant). Moreover, although exact time bounds are
often not known for streaming algorithms, the majority
of these algorithms are also very fast in practice.

Let us consider the running example of Section 2.4
to show how streaming algorithms can make use of the
additional complexity of the orderings in the data to ef-
fectively speed up inferencing and overcome the scal-
ability bottleneck. As topic detection can be computa-
tionally difficult, this becomes expensive for datasets
of the size considered in intelligent surveillance. How-
ever, we are looking for the most recent contributions
at physical proximity which are expressed by trusted
users; thus inference becomes easier, as we can now
filter out tweets from distant or untrusted contributors,
and those that have been published longer time ago.
Assuming that such ordering can be effectively har-
nessed, the inference space gets smaller, as we can it-
eratively evaluate all users by distance and popularity
for the topic they posted on, and stop once we have
enough good answers. We can stream answers by com-
puting the top-k answers according to some metrics,
or else we can stream answers as they are discovered,
without ordering them, in an any-k approach.

The basic approach used in this paper is to consider
how streaming algorithms apply to different types of

Emanuele Della Valle et al. / Order Matters! 5

Fig. 3. Investigation space for order-aware reasoning

orderings – natural or enforced – and to different types
of reasonings, such as data- or query-driven inferenc-
ing. The investigation space covers two dimensions, as
illustrated in Fig. 3.

The vertical dimension is structured by types of or-
ders of increasing complexity. The baseline is a set of
scalable data management solutions that do not con-
sider order as first class citizen (i.e., the large majority
of those available on the market). On top of that, three
different types of orderings can be considered:

– Natural orders
– Cheap orders
– Expensive orders
– Combinations of the three

The horizontal dimension is defined by type of rea-
soning. Once again, the baseline is a set of scalable
data management solutions that do not offer reasoning
(i.e., the large majority of those available on the mar-
ket). On top of that, three different types of reasoning
methods can be considered:

– Data-driven: those that reduce query latency by
materializing inferences at loading time

– Query-driven: those that rewrite the ontological
query into one or several simpler queries

– Combined: those that explore mixed approaches

Green squares indicate problems for which well-
established methods exist; yellow squares indicate
problems that are currently hot topics in research; red
squares denote progress areas in which most innova-
tive techniques can lead to major advances, well be-
yond the state of the art.

A third dimension, which is not shown in Fig. 3,
concerns additional features such as parallelisation and

approximation. The former is fundamental for scal-
ability. The latter trades completeness or correctness
(or both) for improving performance, and as such is
closely related to any-time reasoning, where imperfect
results are returned as early as possible and continu-
ously improved if more time is available.

4. Investigation space

In the previous section, we introduced the investi-
gation space of order-aware reasoning with respect to
the two dimensions of types of orders and of reason-
ing. Next, we use this classification to group the ar-
eas of investigation into six categories: data manage-
ment solutions available on the market (Area 1), order-
aware data management (Areas 2 to 5), scalable rea-
soning for ontology-based information integration (Ar-
eas 6, 11 and 16), stream reasoning as defined in [20]
(Areas 7, 12 and 17), top-k reasoning (Areas 8, 9, 14,
13, 18 and 19), and full-fledged order-aware reasoning
(Areas 10, 15 and 20). In each category, we draw the
line between the established state of the art, current re-
search trends, and open challenges for future investi-
gations. We leave the discussion of approximation and
parallelisation for Section 5.

4.1. Solutions currently on the market

The large majority of scalable data management so-
lutions available on the market fall into the area of
methods and tools that are (almost) completely ig-
noring orderings in the data, and that do not per-
form any inference. Existing approaches are based
on parallel programming models such as BSP (Bulk
Synchronous Parallel), PRAM (Parallel Random Ac-
cess Machine), PGAS (Partitioned Global Access
Space), or Map-Reduce. The latter has been im-
plemented in several frameworks: MapReduce [19],
Hadoop [28], SkyNet [53], Disco [21] are examples
of data-centric workflow systems (based on the Map-
Reduce paradigm) that ease the parallel execution of
data-intensive processes on a large cluster of commod-
ity machines. Other frameworks based on the MapRe-
duce paradigm such as Hive [56] or Pig [44] allow the
specification of ordering constraints for user queries
over massive data collections, but no specific optimi-
sation is provided for top-k or any-k queries.

6 Emanuele Della Valle et al. / Order Matters!

4.2. Order-aware data management

Area 2 is the area of Stream Data Management
Systems (DSMS) [24] and Complex Event Processors
(CEP) [41], which is about naturally ordered data with-
out reasoning. This type of system has been largely in-
vestigated in the end of the 1990s and in the begin-
ning of the 2000s. A number of start-ups (e.g., Mike
Stonebraker’s StreamBase) were founded and major
data management solution vendors have extended their
offer in this direction (e.g., Microsoft’s StreamInsight,
IBM’s InfoSphere Streams).

The simplest portion of the query in our running
example, i.e., the request to retrieve the micro-
posts that have been posted recently, is the typical
query a DSMS is optimised for.

DSMS and CEP share two ideas: a) processing “on
the fly” on data streams while they pass by, and b) ex-
ploiting the temporal order of the data stream to op-
timise the computation. These two ideas are the ba-
sis for a well-known class of algorithms: the stream-
ing algorithms, that we already discussed in Section 3.
In 1998, “Computing on Data Streams” [30] was the
first publication formalising streaming algorithms, but
early works on this class of algorithms have their roots
in the late 1970s, when, for instance, the first query
optimisation technique based on estimation of order
statistics in the data was presented [50].

For instance, streaming algorithms that compute
graph statistics, matchings in a graph, and random
walks [60] can cope with massive graphs that can only
be stored in high capacity storage devices where ran-
dom access is extremely slow (as compared to primary
memory devices). Notably, to use streaming algo-
rithms, data does not need to be naturally ordered (e.g.,
by recency as in DSMS/CEP); it has to be sortable by
some criteria, e.g., popularity or physical distance, re-
quired by the streaming algorithm that will read it.

Area 3 is about data on which orderings are cheap
to enforce, again without reasoning. It is the area of
top-k query answering, which has been the subject of
research since the 1990s. One of the earliest works in
the area is the famous rank aggregation algorithm by
Fagin [23], which allows merging multiple lists of re-
sults returned from different databases with one pass
on both lists. More recent works (e.g., [33]) focused on
rank-aware join algorithms (see [34] for a survey), i.e.,
return the top-k results of a join of a set of ordered re-
lationships scanning only a minimal part of each rela-

tion and avoiding random access.2 Area 4 is about ef-
ficient evaluation of top-k queries that include expen-
sive to enforce orderings. Some important theoretical
results and efficient algorithms (e.g., on the minimal
number of probes absolutely required to return correct
results [17]) are available in this area, but no existing
work tackles the problem of optimal planning of top-k
queries considering both predicate correlation and se-
lectivity estimation.

Regarding the running example, solutions studied
in Areas 3 and 4 allow to retrieve nearby shops that
are discussed by popular social media users.

Area 5 is about combining data stream process-
ing with top-k query answering. This is where most
of the current research efforts concentrate. “Contin-
uous monitoring of top-k queries over sliding win-
dows” [43] is the leading work in this area. It shows
how to efficiently combine sliding windows, which
harvest the natural orders of a data streams, with top-k
query answering.

Using the methods of Area 5, it is possible to re-
trieve the shops nearby that popular social media
users are currently positively posting about.

However, two parts of the query in the running ex-
ample remain difficult to express: knowing which top-
ics are related to fashion and computing which recent
discussions on social media are popular. Both are dif-
ficult to model without an expressive ontological lan-
guage (such as OWL 2) and both require complex al-
gorithms that an ontology reasoner can handle natively.
Moreover, these techniques do not cope with hetero-
geneity, i.e., data should be translated in one com-
mon representation before order-aware data manage-
ment techniques can be applied.

4.3. Scalable reasoning for ontology-based
information integration

Areas 6, 11, and 16 consider ontological back-
ground information as a basis for inferring implicit in-
formation from the given data. In our target applica-
tions, this is particularly useful for ontology-based in-
formation integration, i.e., for handling heterogeneity
in the input data [38].

2If random access is possible, some rank-join algorithms perform
a minimum amount of random accesses after the sequential scans.

Emanuele Della Valle et al. / Order Matters! 7

In the running example, ontological background
knowledge can be used to model relationships be-
tween more specific and more general topics of in-
terest, which can be used to infer which concrete
topics are related to fashion.

Area 6 covers reasoning methods that draw onto-
logical inferences based on the available data (possi-
bly including ontological information). A prime ex-
ample of this “bottom-up” approach is materialisation
in relational databases [1,27], which is closely related
to forward chaining in logic programming. This ap-
proach has successfully been applied to ontologies, in
particular in the lightweight ontology language OWL
RL and fragments thereof. Commercial implementa-
tions of this idea include OWLIM, Virtuoso, Allegro-
Graph, and OntoBroker. Similar methods have been
applied with great success to more expressive frag-
ments of OWL under the label consequence-based rea-
soning [35,52] as implemented in the ELK reasoner
for OWL EL [36]. The common advantage of bottom-
up techniques is that the computation is driven by the
inferences that are possible based on the data. This
guides the search for logical consequences and reduces
overall computational effort. The major disadvantage
of data-driven approaches, however, is that they do not
take our actual information-need (query) into account,
i.e., they are usually not goal-directed.

Area 11 includes approaches that search for logi-
cal consequences that lead to the answer of a particu-
lar query. Typical examples from relational databases
are the numerous techniques for query rewriting [1],
which closely relate to backward chaining in logic
programming. In the context of ontologies, this ap-
proach was mainly applied to OWL QL and related
logics [16,46,25]. Implementations include QuOnto,
Owlgres, and Requiem. Query rewriting has also been
used to implement reasoning capabilities in commer-
cial RDF databases, e.g., in Virtuoso (configurable
alternative to materialisation) and 4Store (4sr plu-
gin). The theoretical foundations of query rewriting
have also been studied for more expressive ontology
languages that are based on existential rules (a.k.a.
Datalog±) [25,4]. The advantage of these methods is
that they limit the search space by considering the
actual information-need (query) instead of computing
all possible inferences. On the other hand, rewriting a
query in a way that is not depending on the given data
may require a very high number of rewritings (expo-
nentially many for OWL QL, possibly infinitely many
for existential rules).

Area 16 therefore aims to combine the advantages of
bottom-up and top-down approaches. A classical ex-
ample is the Magic Sets technique known in deductive
databases, which achieves a goal-directed behaviour
in bottom-up computations [1]. For more expressive
ontology languages, however, this combination is not
clear and subject to on-going research. Initial propos-
als for combined approaches have been made for a lim-
ited fragment of OWL EL [42] and, on a purely theo-
retical level, for existential rules [4]. We note that there
are a number of reasoning methods that do not specif-
ically relate to query answering, e.g., tableau meth-
ods, that check satisfiability of a logical theory by con-
structing models. Such general approaches can be a ba-
sis for data- or query-driven approaches, but are not
combined approaches in our sense since they do not
usually combine the advantages of data- and query-
driven procedures.

4.4. Stream reasoning

Investigations in Areas 7, 12 and 17 deal with
reasoning on rapidly changing information, namely
stream reasoning [20]. This new reasoning method re-
moves the common assumption in scalable reasoning
that knowledge bases are static or evolving slowly. By
harvesting the natural temporal order in data stream,
stream reasoning addresses the requirements of a num-
ber of modern applications, ranging from sensor net-
works to social media analysis.

In terms of our example, stream reasoning methods
are the most appropriate to compute which recent
discussions on social media are popular.

In the last three years, several independent groups
elaborated stream reasoning techniques [9,8,22,2] ap-
plied to sensor networks, healthcare, financial fraud
detection and social media analysis. These approaches
exploit different stream processing and reasoning tech-
niques, but they share an homogeneous theoretical
framework.

They share the notion of RDF stream [9], which
logically models a stream of triples annotated with
a non-decreasing timestamp. However, alternative no-
tions of RDF stream can be explored. For instance,
each triple could be annotated with two time stamps
that describe the time interval in which the triple is
valid (this is commonly done in CEP). The granular-
ity of the streamed data element can also be rethought.
Choosing to a triple as streamed data element is ap-
propriate when a single triple carries enough informa-

8 Emanuele Della Valle et al. / Order Matters!

tion. For instance, [7] experimentally proved that ef-
fective social media analysis can be based on a stream
of triples such as Alice likes Wonderland. In se-
mantic sensor networks [29], one observation requires
a minimum of ten triples, thus choosing named graph
containing a set of triples as streamed data element
can be more appropriate. Punctuation [58] – a mark
that identifies substreams allowing to view an infinite
stream as a mixture of finite streams – is a flexible al-
ternative approach still unexplored in stream reason-
ing.

Moreover, little effort has been dedicated so far to
the formal definition of stream reasoning inference
problems. Some preliminary work has been done in [8]
– that formally define continuous query answering un-
der RDFS++ entailment regime. However, a formal
definition of soundness and completeness for stream
reasoning remains an open problem. Also the notion of
inconsistency in stream reasoning deserves further in-
vestigation; while in a static domain an individual can-
not belong to two disjoint classes (i.e., Alice can ei-
ther belong Tall or to Short), when we consider a
time frame (i.e., a window in DSMS terms) two incon-
sistent facts can be present, but the content of the win-
dow should not be considered inconsistent, only the
most recent statement should be considered. However,
this is not as simple as it may appear at a first look and
theoretically framing this problem, so that it can be ef-
ficiently treated in practice, is an open issue (i.e., well-
known AI techniques, such as belief revision [18], pro-
vide a sound theoretical framework, but, in practice,
naive implementations do not scale).

Algorithmically, [8,22,2] are all data-driven ap-
proaches (Area 7). Area 12, which is about integrat-
ing natural orders into query-driven reasoning, has not
been explored, yet. It may deserve exploration given
that in stream reasoning queries are registered, thus the
cost of rewriting can be paid only once (at query reg-
istration time) and inter-query optimization (e.g., shar-
ing of sub-plans) may show to be able to handle rewrit-
ten queries that would be practically too complex for
a DBMS. The biggest challenge for stream reasoning
is in applying combined data- and query-driven infer-
encing techniques to data naturally ordered (Area 17).

4.5. Top-k reasoning

Investigations in Areas 3 and 4 are typically referred
to as top-k data processing. Likewise, we refer to the
research space that deals with reasoning in presence of
both cheap to enforce (Areas 8, 13, and 18) and expen-

sive to enforce (Areas 9, 14, and 19) orders as top-k
reasoning. In traditional reasoning, ranking of results
is normally considered a task that increase the hope-
lessness of scaling inference to massive data set; our
proposal, instead, is to overcome such a common prac-
tice and interleave order and reasoning.

In terms of the running example, top-k reason-
ing methods are the most appropriate to compute
which are the top-k social media users, who are
well-known to lead discussions on fashion-related
topics and are closest to the requester current lo-
cation.

Some investigations have been conducted in Areas
13 and 14, where several works addressed the problem
of top-k query answering in presence of orders using
query rewriting: [55] studies SoftFacts – an ontology-
mediated top-k information retrieval system over rela-
tional databases; [14] adds order to SPARQL as a first
class citizen; the authors of [40] take a different angle
by extending SPARQL to querying RDFS annotated
by bounded lattice (and thus comes with a partial or-
dering).

The theoretical framework for top-k reasoning is un-
explored. Progressing in this direction calls for a sound
identification of the type of data to be managed, and
the classes of queries that can be answered with the
given data. [14] made a first step in this direction by
defining the notion of ranked sets of mappings, and an
order-aware SPARQL algebra that embodies a rank-
aware algebraic operators. Once these basic building
blocks of query answering under simple RDF entail-
ment regime is in place, appropriate inference prob-
lems can be defined: e.g., notions of exact top-k clo-
sure of an ontology w.r.t. a query and a scoring func-
tion (for an attempt see [49]]).

As this theoretical framework adds orderings as an
extra dimension of inference, new appropriate quality
metrics are required. Classical metrics such as sound-
ness, completeness or computational complexity do
not take the special requirements of order-based pro-
cessing into account. For example, with regards to a
query answering task, answers could be sound and
complete as usual, but now correctness of ordering
has to be established. New qualitative and quantita-
tive measures of appropriateness are needed to char-
acterise the quality of order-based methods. Here, the
large body of work in Information Retrieval on mea-
suring rankings can be used as a starting point.

From an algorithmic point of view, the only ex-
plored areas in top-k reasoning are Area 13 and 14.

Emanuele Della Valle et al. / Order Matters! 9

Area 8 – methods for top-k materialisation on easy
to enforce orders – seems the easiest to explore since
order-aware joining algorithms [34] could be applied
to rule-base reasoning; Area 9 could benefit from exist-
ing works in databases [46]. Perhaps, the biggest chal-
lenge in top-k reasoning is in interleaving combined
data- and query-driven techniques with techniques that
harvest easy (Area 18) and expensive to enforce orders
(Area 19).

4.6. Order-aware reasoning

With full-fledged order-aware reasoning, we refer
to Areas 10, 15, and 20, where data- and query-driven
inference methods have to deal with combinations of
natural, cheap to enforce and expensive to enforce type
of orders. In such a context, the naive assumption of
independence of orderings would have to be relaxed,
thus theories and methods, which exploits mutual rela-
tionships between the three type of orders, have to be
rethought.

Considering our running example, methods im-
plementing order-aware reasoning are the only
ones able to answer to the query we posed in
Section 2.4, i.e., Which users of social media,
currently leading popular discussions on fashion-
related topics, are closest to my current location?
What are they saying about the shopping district
nearby?

The challenge is to define a theoretical framework
that unifies and generalises those defined for stream
reasoning and top-k reasoning. Such a framework
should pave the way for designing scalable data- and
query-driven methods that allows for efficient answer-
ing queries that involve all types of ordering (Areas 10
and 15). As for stream and top-k reasoning, perhaps,
the biggest challenge is in interleaving combined data-
and query-driven techniques with techniques that har-
vest all types of orders (Area 20).

5. Approximation and parallelisation

While the solution space in Fig. 3 is based on the in-
put and output behaviour of order-aware systems, there
are various additional areas of investigation that are
relevant in almost every scenario. In this section, we
focus on two such orthogonal research dimensions that
are of particular importance to order-aware reasoning:
approximation and parallelisation.

5.1. Approximate reasoning

By approximate reasoning we mean any approach
to reasoning that can produce results that are incom-
plete (missing answers) or unsound (giving wrong an-
swers), but in a deliberate and controlled way that is
accepted as a means of improving performance.3 Such
algorithms might be used to produce quick preliminary
results, to give answers when no other method is fea-
sible, or to estimate outputs in situations where only
limited accuracy is needed.

Approximation plays a key role in order-aware rea-
soning, due to the following independent reasons:

1. Restricted access to input data: order-aware rea-
soning often deals with data that is only partially
accessible (in an ordered fashion), making it im-
possible to guarantee full accuracy in all cases.

2. Soft constraints on output data: order-aware rea-
soning introduces the order of results as a new
output dimension, for which controlled inaccu-
racy is often more acceptable.

3. Order-aware approximation: reasoning involves
computational tasks that are inherently hard to
solve, motivating the use of approximation in
classical cases; but order provides a new guide-
line and quality measure for approximation.

Classical approximation tries to reduce the use of com-
putation time and working memory. Item 1 above con-
siders another critical resource, namely the amount of
input data that is required for giving useful answers.

In every case, it is desirable that algorithms com-
pute increasingly accurate results when given more re-
sources (time, memory, data). Any-time algorithms are
approximation procedures that provide preliminary re-
sults of increasing quality at (almost) any stage of the
computation. Ideally, the correct result should be ap-
proximated arbitrarily closely in this process, but such
asymptotic behaviour might not always be possible.

Approximation has been considered in some of the
investigation areas in Fig. 3. For a classical exam-
ple that belongs to Area 1, consider the problem of
counting the number of triangles in a graph. This is
a well-known problem in graph analysis, which is a
basic building block for evaluating many practically
important graphs, e.g., in social networks, chemical
compounds, or networks of Web links. It has been
shown that approximate, streaming algorithms can out-

3Note that this is different from (accurate) reasoning with approx-
imate (imprecise) information, as done, e.g., in fuzzy logic.

10 Emanuele Della Valle et al. / Order Matters!

perform classical, data-bound approaches to this prob-
lem by several orders of magnitude [6,15]. Moreover,
such approximations can be asymptotic, so that arbi-
trary accuracy can be achieved [6].

Various forms of approximation have been proposed
in areas related to ontology-based data access. Many
rule-based systems compute only part of the entailed
consequences by employing a set of rules that can-
not derive all results. This is the case, e.g., for Jena,
Sesame, OWLIM, and Virtuoso, all of which support
specific fragments of OWL RL but not the whole lan-
guage. Incompleteness is mostly well-understood in
such cases.

A variety of other approximation methods have been
considered in reasoning [47,26]. A typical approach
is to approximate the input information by restricting
to a simpler ontology language that is then processed
with a more efficient, sound and complete algorithm,
see, e.g., [45,57]. This is related to the idea of knowl-
edge compilation [51]. Approximate reasoning is also
used as a sub-method in many sound and complete
reasoners, e.g., the OWL reasoner HermiT first com-
putes the syntactically told class hierarchy before us-
ing more complex algorithms for a complete subsump-
tion check. Reasoning approaches that are based on
backward-chaining and query rewriting typically sug-
gest any-time approximation, as more and more an-
swers can be found by continuing the (possibly infi-
nite) generation of queries. This is typical for many
Prolog implementations and can also be combined
with rewriting-based approaches for DL-Lite [16] or
existential rules [5].

None of the above systems, however, deal with or
take advantage of orderings of any kind. A number of
interesting research challenges thus remain open.

5.2. Parallelisation approaches

Parallelisation of reasoning means that the task is
split into subproblems that can be solved indepen-
dently with limited exchange of information. This en-
ables concurrent computation (e.g., by sharing com-
putation among several CPUs of one machine) and
distribution (sharing computation among multiple net-
worked machines with independent memory). Both as-
pects are essential for exploiting state-of-the-art com-
puting systems to go beyond the limits of traditional
reasoning.

However, order-based reasoning introduces new
challenges to parallelisation, e.g., the following:

1. Ordered data access might be inherently sequen-
tial, and thus is harder to distribute.

2. Outputs must be integrated into an overall order,
and thus cannot be generated in a fully decentral-
ized fashion.

To bring order-aware reasoning to its full potential,
these challenges must be addressed.

In recent years, parallelisation has been success-
fully employed in various reasoning tasks, especially
in rule-based (bottom-up) materialisation approaches.
The two main strands of work are multi-machine dis-
tribution and multi-processor concurrency. Distribu-
tion is motivated by processing data volumes that are
too large for a single machine’s working memory. Ap-
proaches in that field often target OWL RL [32,60]
or a fragment thereof [31,59,61,37], using MapReduce
as the main computation paradigm [19]. Another dis-
tribution paradigm suggested for this case is the pre-
partitioning of inputs [54]. In contrast to these ap-
proaches, concurrent processing on a single machine
aims at speeding up reasoning for improving reactiv-
ity of user-driven applications. The main example of
this approach is the ELK reasoner for OWL EL [36]
and various preliminary works on parallel reasoning in
more expressive ontology languages [39,48,3]. Over-
all, many of the implemented systems demonstrated
performance gains of one or several orders of mag-
nitude, yet none of these systems is applicable to a
streaming scenario.

6. Conclusions

Our systematic exploration of the investigation
space has shown that a huge amount of founda-
tional and applied research is necessary. Starting from
lessons learned from data management, we need:

– A theory of semantic processing of massive sets
of complex and highly dynamic data. This will
include the development of knowledge repre-
sentation languages, performance metrics and a
systematic roadmap for processing massive, dy-
namic, ordered data.

– Methods and techniques related to such a theoret-
ical framework. This means at least one method
for each area of investigation identified in Fig. 3.

– Implementations of the above methods according
to current software development standards.

Emanuele Della Valle et al. / Order Matters! 11

– Rigorous evaluations of the proposed methods
and technology in a comparative way using a
purpose-built testing infrastructure.

Putting order as first class citizen in reasoning may
start with incremental steps, but a tight integration of
ordering and reasoning will require substantial rethink-
ing to the cornerstones on which current semantic tech-
nologies are built.

Acknowledgements This research has been sup-
ported by the ERC Search Computing (SeCo) project,
the Dutch national program COMMIT, the EU FP7
project SEALS, and by the EPSRC projects ConDOR,
ExODA and LogMap. Many ideas of this paper stem
from results of the LarKC project. We also want to
thank Frank van Harmelen for his important contribu-
tion, and Tony Lee (Saltlux), Andreas Schreiber (DLR)
and Achim Basermann (DLR) for the valuable discus-
sion on concrete examples of problems that require
order-aware reasoning.

References

[1] Abiteboul, S., Hull, R., & Vianu, V. (1995). Foundations of
Databases. Addison-Wesley.

[2] Anicic, D., Fodor, P., Rudolph, S., & Stojanovic, N. (2011). EP-
SPARQL: a unified language for event processing and stream rea-
soning. In S. Srinivasan, K. Ramamritham, A. Kumar, M. P.
Ravindra, E. Bertino, and R. Kumar, editors, WWW, pages 635–
644. ACM.

[3] Aslani, M. & Haarslev, V. (2010). Parallel TBox classification
in description logics – first experimental results. In H. Coelho,
R. Studer, and M. Wooldridge, editors, Proc. 19th European Conf.
on Artificial Intelligence (ECAI’10), volume 215 of Frontiers
in Artificial Intelligence and Applications, pages 485–490. IOS
Press.

[4] Baget, J.-F., Leclère, M., Mugnier, M.-L., & Salvat, E. (2009).
Extending decidable cases for rules with existential variables. In
[13], pages 677–682.

[5] Baget, J.-F., Leclère, M., Mugnier, M.-L., & Salvat, E. (2011).
On rules with existential variables: Walking the decidability line.
Artif. Intell., 175(9-10), 1620–1654.

[6] Bar-Yossef, Z., Kumar, R., & Sivakumar, D. (2002). Reduc-
tions in streaming algorithms, with an application to counting tri-
angles in graphs. In D. Eppstein, editor, SODA, pages 623–632.
ACM/SIAM.

[7] Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E., Huang, Y.,
Tresp, V., Rettinger, A., & Wermser, H. (2010a). Deductive and
inductive stream reasoning for semantic social media analytics.
IEEE Intelligent Systems, 25(6), 32–41.

[8] Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E., & Gross-
niklaus, M. (2010b). Incremental reasoning on streams and rich
background knowledge. In Proc. of ESWC2010.

[9] Barbieri, D. F., Braga, D., Ceri, S., Della Valle, E., & Gross-
niklaus, M. (2010c). Querying RDF streams with C-SPARQL.
SIGMOD Record, 39(1), 20–26.

[10] Ben-Ari, M. (1990). Principles of concurrent and distributed
programming. PHI Series in computer science. Prentice Hall.

[11] Bernstein, A., Karger, D. R., Heath, T., Feigenbaum, L., May-
nard, D., Motta, E., & Thirunarayan, K., editors (2009). Proc.
8th Int. Semantic Web Conf. (ISWC’09), volume 5823 of LNCS.
Springer.

[12] Boutilier, C., editor (2009a). IJCAI 2009, Proceedings of
the 21st International Joint Conference on Artificial Intelligence,
Pasadena, California, USA, July 11-17, 2009.

[13] Boutilier, C., editor (2009b). Proc. 21st Int. Conf. on Artificial
Intelligence (IJCAI’09). IJCAI.

[14] Bozzon, A., Della Valle, E., & Magliacane, S. (2011). Towards
and efficient SPARQL top-k query execution in virtual RDF
stores. In 5th International Workshop on Ranking in Databases
(DBRANK 2011).

[15] Buriol, L. S., Frahling, G., Leonardi, S., Marchetti-
Spaccamela, A., & Sohler, C. (2006). Counting triangles in data
streams. In S. Vansummeren, editor, PODS, pages 253–262.
ACM.

[16] Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M., &
Rosati, R. (2007). Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. J. Autom. Rea-
soning, 39(3), 385–429.

[17] Chang, K. C.-C. & won Hwang, S. (2002). Minimal prob-
ing: supporting expensive predicates for top-k queries. In M. J.
Franklin, B. Moon, and A. Ailamaki, editors, SIGMOD Confer-
ence, pages 346–357. ACM.

[18] Darwiche, A. & Pearl, J. (1996). On the logic of iterated belief
revision. Artificial intelligence, 89, 1–29.

[19] Dean, J. & Ghemawat, S. (2008). Mapreduce: simplified data
processing on large clusters. Commun. ACM, 51, 107–113.

[20] Della Valle, E., Ceri, S., van Harmelen, F., & Fensel, D. (2009).
It’s a streaming world! Reasoning upon rapidly changing infor-
mation. IEEE Intelligent Systems, 24(6), 83–89.

[21] Disco (2012). Disco project - http://discoproject.org.
[22] Do, T., Loke, S., & Liu, F. (2011). Answer set programming for

stream reasoning. In C. Butz and P. Lingras, editors, Advances in
Artificial Intelligence, volume 6657 of Lecture Notes in Computer
Science, pages 104–109. Springer Berlin / Heidelberg.

[23] Fagin, R. (1996). Combining fuzzy information from multi-
ple systems (extended abstract). In Proceedings of the fifteenth
ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, PODS ’96, pages 216–226, New York, NY,
USA. ACM.

[24] Garofalakis, M., Gehrke, J., & Rastogi, R. (2007). Data Stream
Management: Processing High-Speed Data Streams. Springer-
Verlag New York, Inc.

[25] Gottlob, G., Orsi, G., & Pieris, A. (2011). Ontological queries:
Rewriting and optimization. In S. Abiteboul, K. Böhm, C. Koch,
and K.-L. Tan, editors, ICDE, pages 2–13. IEEE Computer Soci-
ety.

[26] Groot, P., Stuckenschmidt, H., & Wache, H. (2005). Approx-
imating description logic classification for semantic web reason-
ing. In A. Gómez-Pérez and J. Euzenat, editors, Proc. 2nd Eu-
ropean Semantic WebConf. (ESWC’05), volume 3532 of LNCS,
pages 318–332. Springer.

[27] Gupta, A. & Mumick, I. S., editors (1999). Materialized views:
techniques, implementations, and applications. MIT Press, Cam-
bridge, MA, USA.

[28] Hadoop (2012). Apache hadoop framework -
http://hadoop.apache.org/.

12 Emanuele Della Valle et al. / Order Matters!

[29] Henson, C. A., Pschorr, J. K., Sheth, A. P., & Thirunarayan, K.
(2009). SemSOS: semantic sensor observation service. In Pro-
ceedings of the 2009 International Symposium on Collaborative
Technologies and Systems (CTS 2009), Baltimore, MD.

[30] Henzinger, M. R. & Raghavan, P. (1998). Computing on data
streams. Systems Research.

[31] Hogan, A., Harth, A., & Polleres, A. (2009). Scalable author-
itative OWL reasoning for the Web. Int. J. of Semantic Web Inf.
Syst., 5(2), 49–90.

[32] Hogan, A., Pan, J. Z., Polleres, A., & Decker, S. (2010). SAOR:
template rule optimisations for distributed reasoning over 1 bil-
lion linked data triples. In P. F. Patel-Schneider, Y. Pan, B. Glimm,
P. Hitzler, P. Mika, J. Pan, and I. Horrocks, editors, Proc. 9th Int.
Semantic Web Conf. (ISWC’10), volume 6496 of LNCS, pages
337–353. Springer.

[33] Ilyas, I. F., Aref, W. G., & Elmagarmid, A. K. (2003). Sup-
porting top-k join queries in relational databases. In VLDB, pages
754–765.

[34] Ilyas, I. F., Beskales, G., & Soliman, M. A. (2008). A survey of
top-k query processing techniques in relational database systems.
ACM Comput. Surv., 40(4).

[35] Kazakov, Y. (2009). Consequence-driven reasoning for Horn
SHIQ ontologies. In [13], pages 2040–2045.

[36] Kazakov, Y., Krötzsch, M., & Simancík, F. (2011). Concur-
rent classification of el ontologies. In Proceedings of the 10th
international conference on The semantic web - Volume Part I,
ISWC’11, pages 305–320, Berlin, Heidelberg. Springer-Verlag.

[37] Kotoulas, S., Oren, E., & van Harmelen, F. (2010). Mind the
data skew: distributed inferencing by speeddating in elastic re-
gions. In Proc. 19th Int. Conf. on World Wide Web (WWW’10),
WWW’10, pages 531–540. ACM.

[38] Lenzerini, M. (2002). Data integration: A theoretical perspec-
tive. In L. Popa, editor, PODS, pages 233–246. ACM.

[39] Liebig, T. & Müller, F. (2007). Parallelizing tableaux-based
description logic reasoning. In R. Meersman, Z. Tari, and P. Her-
rero, editors, Proceedings of OTM Workshops 2007, Part II, vol-
ume 4806 of LNCS, pages 1135–1144. Springer.

[40] Lopes, N., Polleres, A., Straccia, U., & Zimmermann, A.
(2010). AnQL: SPARQLing up annotated RDFS. In P. F. Patel-
Schneider, Y. Pan, P. Hitzler, P. Mika, L. Zhang, J. Z. Pan, I. Hor-
rocks, and B. Glimm, editors, International Semantic Web Con-
ference (1), volume 6496 of Lecture Notes in Computer Science,
pages 518–533. Springer.

[41] Luckham, D. (2008). The power of events: An introduction
to complex event processing in distributed enterprise systems.
In N. Bassiliades, G. Governatori, and A. Paschke, editors, Rule
Representation, Interchange and Reasoning on the Web, volume
5321 of Lecture Notes in Computer Science, pages 3–3. Springer
Berlin / Heidelberg.

[42] Lutz, C., Toman, D., & Wolter, F. (2009). Conjunctive query
answering in the description logic el using a relational database
system. In [12], pages 2070–2075.

[43] Mouratidis, K., Bakiras, S., & Papadias, D. (2006). Continuous
monitoring of top-k queries over sliding windows. In S. Chaud-
huri, V. Hristidis, and N. Polyzotis, editors, SIGMOD Conference,
pages 635–646. ACM.

[44] Olston, C., Reed, B., Srivastava, U., Kumar, R., & Tomkins, A.
(2008). Pig latin: a not-so-foreign language for data processing.
In Proceedings of the 2008 ACM SIGMOD international confer-
ence on Management of data, SIGMOD ’08, pages 1099–1110,
New York, NY, USA. ACM.

[45] Pan, J. Z. & Thomas, E. (2007). Approximating OWL-DL
ontologies. In Proc. 22nd AAAI Conf. on Artificial Intelligence
(AAAI’07), pages 1434–1439. AAAI Press.

[46] Pérez-Urbina, H., Horrocks, I., & Motik, B. (2009). Effi-
cient query answering for OWL 2. In A. Bernstein, D. R.
Karger, T. Heath, L. Feigenbaum, D. Maynard, E. Motta, and
K. Thirunarayan, editors, International Semantic Web Confer-
ence, volume 5823 of Lecture Notes in Computer Science, pages
489–504. Springer.

[47] Rudolph, S., Tserendorj, T., & Hitzler, P. (2008). What is
approximate reasoning? In D. Calvanese and G. Lausen, edi-
tors, Proc. 2nd Int. Conf. on Web Reasoning and Rule Systems
(RR’08), volume 5341 of LNCS, pages 150–164. Springer.

[48] Schlicht, A. & Stuckenschmidt, H. (2009). Distributed res-
olution for expressive ontology networks. In A. Polleres and
T. Swift, editors, Proc. 3rd Int. Conf. on Web Reasoning and
Rule Systems (RR 2009), volume 5837 of LNCS, pages 87–101.
Springer.

[49] Schlobach, S. (2011). Top-k reasoning for the semantic web.
Proceedings of the 11th Interational Semantic Web Conference
ISWC2011, page DBRank 2011.

[50] Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie,
R. A., & Price, T. G. (1979). Access path selection in a rela-
tional database management system. In P. A. Bernstein, editor,
SIGMOD Conference, pages 23–34. ACM.

[51] Selman, B. & Kautz, H. A. (1996). Knowledge compilation
and theory approximation. J. ACM, 43(2), 193–224.

[52] Simancik, F., Kazakov, Y., & Horrocks, I. (2011).
Consequence-based reasoning beyond horn ontologies. In
T. Walsh, editor, IJCAI, pages 1093–1098. IJCAI/AAAI.

[53] Skynet (2012). Skynet ruby project -
http://skynet.rubyforge.org/.

[54] Soma, R. & Prasanna, V. K. (2008). Parallel inferencing for
OWL knowledge bases. In Proc. Int. Conf. on Parallel Processing
(ICPP’08), pages 75–82. IEEE Computer Society.

[55] Straccia, U. (2010). Softfacts: A top-k retrieval engine for on-
tology mediated access to relational databases. In SMC, pages
4115–4122. IEEE.

[56] Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., An-
thony, S., Liu, H., Wyckoff, P., & Murthy, R. (2009). Hive: a
warehousing solution over a map-reduce framework. Proc. VLDB
Endow., 2, 1626–1629.

[57] Tserendorj, T., Rudolph, S., Krötzsch, M., & Hitzler, P. (2008).
Approximate OWL-reasoning with screech. In D. Calvanese and
G. Lausen, editors, Proc. 2nd Int. Conf. on Web Reasoning and
Rule Systems (RR’08), volume 5341 of LNCS, pages 165–180.
Springer.

[58] Tucker, P. A., Maier, D., Sheard, T., & Fegaras, L. (2003). Ex-
ploiting punctuation semantics in continuous data streams. IEEE
Trans. Knowl. Data Eng., 15(3), 555–568.

[59] Urbani, J., Kotoulas, S., Oren, E., & van Harmelen, F. (2009).
Scalable distributed reasoning using MapReduce. In [11], pages
634–649.

[60] Urbani, J., Kotoulas, S., Maassen, J., van Harmelen, F., & Bal,
H. E. (2010). OWL reasoning with WebPIE: calculating the clo-
sure of 100 billion triples. In L. A. et al., editor, ESWC (1), vol-
ume 6088 of Lecture Notes in Computer Science, pages 213–227.
Springer.

[61] Weaver, J. & Hendler, J. A. (2009). Parallel materialization of
the finite RDFS closure for hundreds of millions of triples. In
[11], pages 682–697.

