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Kinetic Energy in Gyrodynamics

The concepts of kinetic energy and complementary kinetic energy permit to distin-
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guish between two different formulations of what happens to be the same quantity
in Newtonian mechanics. These formulations turn out to play a significant role in
gyrodynamics in that they can be used very effectively to establish fundamental

equations. It is relatively straightforward to establish a complementary kinetic energy
expression. The establishment of the kinetic energy expression is, in spite of its
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unambiguous definition, more complicated, and a way is presented how to obtain
it without too much difficulty. Equations are presented for the more common angle
systems, i.e., for Euler angles of the first kind, Cardan angles of the first kind, both

because of their fundamental importance, and Cardan angles of the fifth kind because
of its prevalence in aeronautics.

Fundamental Concepts

Following Crandall (1957) and Tabarrok (1981), we adopt
the concepts of kinetic energy 7, and complementary kinetic
energy T”, as analogies to potential energy ¥ and comple-
mentary potential energy V. Using generalized coordinates
g; and generalized momenta p; of analytical mechanics, the
kinetic energy of a scleronomic (i.e., where the time ¢ does not
appear explicitly) system with n-degrees-of-freedom is defined
by

T= S q:(q,p)dp; (1)
while its complementary kinetic energy is
T*zgpi(q,q')dq.i 2
withi =1, 2, 3, ..., n.
For a point mass m on a straight path g, as an example,
|2 R
= T =—m
2 m 5 M (3a,b)

Generalized velocities and generalized momenta are obtained
by partial differentiation and defined by

. d
d . .
p,'=a—q;” T (q,9) &)
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For a point mass m on a straight path g, as an example,
a1\ p a1 ., )
=== )== p=—|= =mq. (6a,b
q 6p<2m> m PTag\z ™ q. (6a,b)

In Newtonian mechanics it so happens that kinetic energy
T and complementary kinetic energy 7" have the same mag-
nitude (Fig. 1). This circumstance can often be exploited to
great advantage. But in order to be able to apply formulas (4)
and (5), the kinetic energy T must be expressed in terms of g
and p, while the complementary kinetic energy T* must be
expressed in terms of g and ¢g. Thus it is possible to establish
T* = T™(q, ¢) which, in the case of gyrodynamics of rigid
bodies, is usually readily done. Partial differentiation with
respect to the generalized velocities g; then results in the gen-
eralized momenta p;. With the generalized momenta p; known,
it becomes then possible to form T = T(g, p), which can
subsequently be differentiated partially with respect to the

<,
~
q g

“o

T*
dq
Y T
L
p

o} ] }_gp

Fig. 1 Kinetic energy T and complementary kinetic energy T for a
single point mass in Newtonian mechanics
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Fig. 2 Euier angles of the first kind

generalized momenta p;, to obtain the generalized velocities
g:. This process is used in the present paper to establish the
fundamental relationships for a single rigid gyro, first with
Euler angles as generalized coordinates, and then with Cardan
angles as generalized coordinates.

Kinetic Energy of Rotation. A suitable ansatz for the com-
plementary kinetic energy of rotation of a single rigid gyro is

1
T*:E (Aw’+ Bwi+ Cw?) )
where the angular velocity is
Wy
w=[e, e, ellw (8)
Wz
and the inertia tensor is
A 0 0
N={0 B 0{. 9
0 0 C

The Cxyz coordinate system is body fixed, coincides with the
gyro’s principal axes, and originates at the gyro’s mass center
C.

Since angular momentum components and angular velocity
components are related by

H,=Aw,
H,=Buw,
H,=Cuwy,, (10)
Eq. (7) can then be rearranged to supply an ansatz for the
kinetic energy
7&§¢ﬁ+ﬁhfﬁ)

A B C (i

Expressions (7) and (11) are, however, neither specifically a
kinetic energy T, nor specifically a complementary kinetic en-
ergy T”, in the sense of Eas. (1) and (2). In order to express
them properly, we need generalized coordinates, for which
Euler angles are suitable, as well as Cardan angles.

It is well known (Magnus, 1971) that Cartesian coordinates
of the angular velocity are nonholonomic quantities (nonin-
tegrable with respect to time) and therefore cannot be used as
generalized velocities. However, as long as the kinetic.energies
as defined in Egs. (1) and (2) are not explicitly dependent on
generalized coordinates themselves, they can be adopted for
nonholomic velocities as well. This is specifically the case in
Eq. (7), and by analogy in Eq. (11). Distinguishing between
the terms complementary kinetic (7) and kinetic energy (11) is
justified here solely by the role the expression can play in
further application in the present paper.

Euler Angles of the First Kind

In order to establish the angular position, often called the
attitude of a gyro, three angular coordinates, the so-called
Euler angles may be used. In Fig. 2 a Cxyz coordinate system
is shown at angles ¥, », o with respect to a CXYZ coordinate
system. The CXYZ coordinate system is fixed in space, while
the Cxyz coordinate system is body fixed (i.e., fixed to the
gyro). The x;-line, representing the intersection of the xy-plane
with the X'Y-plane, is called the node line. The time derivatives
of the Euler angles are the Euler frequencies (or Euler rates),
viz. precession ¥, nutation », and spin &. The Euler frequencies
can readily be integrated to yield the Euler angles

v=vo+ | dar
=V()+S vdt
0=00+S odt (12)
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Fig. 3 Angular momentum components and generalized momenta for

aT*

Py= a‘/; = A(Y sin » sin o+ » cos o)sin » sin ¢
+B(¢ sin » cos ¢— ¥ sin o)sin » cos o+‘C(\l'x €os v+ G)cos v
(17a)
pu=aaT’.}* =A(Y sin » sin o+ ¥ cos 0)cos @
—B() sin v cos o— » sin o)sin o (17h)
pa=aaj;*=C(¢ cos v+ 0). (17¢)

Note that the generalized momenta p; are angular and represent
the projections (covariant components) of the angular mo-
mentum vector H onto the ¥, », and ¢ directions. They do
not represent the (contravariant) components Hy, H,, and H,
of the angular momentum vector, to which they are related
by (Fig. 3)

Euler angles of the first kind (when H, = 0) Py 10 cosv|| Hy
pl=l 0 1 o ||H (18)
and thus give the attitude of the gyro as a function of time. DPs cosv 0 1 H,
;Frkgisnzigsperty makes Euler angles suitable as generalized co-  y. inverse relationship is
The angular velocity w of the gyro can be written (Rimrott, —cosy
1988) H, sin’y sin®» || py
Wy 1// Hu = 0 1 0 Dy (19)
w=le, ¢ el|lw|=[e, e el 13) H, —cosy 1 Do
w, g sin®y sin’y
Equations (17) can be written in matrix form
Py (A sin?o + B cos’)sin®» + C cos’» (A — B)sinv sino coss C cosv | |
D, | =| (A~ B)sinv sino cose A cos*s+ B sin’e 0 v (20)
Do C cosv 0 C o
where Cxyz are gyro-fixed Cartesian coordinate axes, and g, or, in shorthand notation, )
=, g2 = v, q; = o are the generalized position coordinates {p}=[Al{q]}. 2n

of analytical mechanics.
The transition is given by

coso O \//

Wy sin » sin ¢
wy|=|sinvcose —sinoc 0 v (14)
| @ cos v 0 L{}a

The angular momentum components follow th; same tran-
sition (14),_i.e.,

H, siny sinc  coss 0 Hﬂ
H,|=|sinvcoss —sinc 0| H,]|. (15)
H, cosy 0 1 H,

Complementary Kinetic Energy. Combining Egs. (2), (7),
and (14) gives us now the complementary kinetic energy, prop-
erly expressed in terms of generalized coordinates and gen-
eralized velocities,

T*=% [A(Y sin » sin o+ ¥ cos 6)?

+B(J sin » cos o— » sin 62+ C() cos v+ &), (16)

where the Euler angles ¢, v, ¢ are the generalized coordinates
q; of analytical mechanics.

Generalized Momenta. According to Eq. (5), the gener-
alized momenta p; are obtained by partial differentiation of
the complementary kinetic energy T with respect to the gen-
eralized velocities g;, with ¢, = ¥, g, = », and g3 = ¢. Thus
{Greenwood, 1988),
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It is seen that the inertia coefficient matrix [A4] is a symmetric
transformation matrix which maps the generalized velocities
into the generalized momenta.

The transformation matrix contains, partial derivatives as
elements.

9y 9y Iy
oy 9y ds
ap, dp, Ip, ap;
4] oy dr do aq; (22)
9P, 9Py 9P
[ 3y 9y 90|
Symmetry means that, e.g.,
) 3
W L0 23)
ar
etc., or in general we have that
ap,‘ 3_pl . .
~o = LJ=y.w,0. 24
24, 24; J=v 29

With the help of Eq. (21) the complementary kinetic energy
(16) can now be expressed as
1. .
T*=-2'{q}T[A]{ql- (25)
Lagrange Equation. Allloading cases for a single rigid gyro
are covered by Lagrange’s equation in its fundamental form
Jransactions of the ASME

M



d aT* 3T’

dt dq; dg;
With the generalized momenta (17) and the complementary
kinetic energy (16), the three Lagrange equations become

=Q; (26)

d aT*
Lo, - 27
AP ey = 27a)
d 3T
a. o 27b
dtpu. £ Q, (27b)
d oT*
—Po= =0y 27
aP Q, (27¢)

An mspectlon of Eq. (16) shows that the complementary kinetic
energy T™ does not contain the generalized coordinate ' ex-
plicitly, thus 37*/3¢ = 0 in Eq. (27a). Note that the Q; are
covariant torque components, which are related to the con-
travariant torque components M; by the same transformation
as in Eq. (19), i.e.,

1 —cosv
M, sin’p siny {1 Q,
M, | = 0 1 0 0, (28)
M, — COSy R Q.

sin®y sin®y

The square of the magnitude of the torque applied can be
shown to be

M*=Mi+ M2+ M? (29a)

M2=M2 L+ M2+ ML+ 2MM, cosy (29b)
2 cos

o7 (@5 +0lsinv+ 0 -~ 0,0, (29¢)

~sin’y

D’Alembert’s Principle. D’Alembert’s prmmple, involving
the vanishing of the virtual work of applied torques and inertial
torques, reads

SW=(M—H)50=0. (30

Using Eulerian angles as generalized coordinates, D’Alem-
bert’s principle can now be written as

<Q¢— (pwa;))sw (Qr (m—"’; >>6u
+ (Qa- (m—%»aa:o. (31

Since the three variations 6y, é», and éc do not vanish and are
independent, their coefficients must vanish, i.e., they must
satisfy the Lagrange Eqgs. (27).

Kinetic Energy. Inverting Eq. (21) results in

(¢)=1A1""{p} (32)
and the kinetic energy (1) can then be obtained as
1
T=-2- (p}7141  (p}. (33)

The inversion of the matrix [A4] is, however, cumbersome, and
a more tractable approach for obtaining the kinetic energy is
the following: beginning with Eqs. (11) and (15) we obtain, as
an intermediate expression,

1

1 o 5
T—2<A (H, sinv sino+ H, coso)

1
(H\, siny coso — H, sino)? + (H‘L cosv+ H,) ) (34)

The reader is asked to compare Eqs. (34) and (16) and to note
the similarity of the terms in round brackets. :

Properly expressed in terms of the generalized momenta py,
Dy Do, the Kinetic energy (1) is, from Egs. (19) and (34),

T—l 1 sin20+00820 2 coszo+sin20 2
“2lsin\ A B )PV T4 T )P
N —1—+ 1 sinza_l_cosza .
C tan®\ A B Po
+2 sing coso (1 1 2singcosof1 1
sing A B Pypr= tany A B)PPe
2 sinfe  cos®c
_ + 1. (35
siny tanu( A B )p‘,,p] (33)

Generalized Velocities. According to definition (4), the
generalized velocities are obtained by partial differentiation of
the kinetic energy (35) with respect to the generalized momenta.

‘!-/__B_T_ 1 sinza+ cos’c + sing coso (1 1
dp, sin’y\ A B )" sy \4 B)”
1 sin20+00520 360)
siny tany\ A B )P (36a
; _9T singcoso(1 1 N coszo+ sino
ap, sinw \4_B/P¥ A B )P
sino coso 11
tany A B Pa
G297 _ L (sin’e cos’o
Tdp, sinytanp\ A B Py

sing coso (1 1 . i+ 1 sin20+cos20
tany \4 B)P""\cTtanm\"a B )P

(36¢)
Writing Eqs. (36) in matrix form gives
B (sin20+ cosza> 1 (l_l) sing coso
A B Jsin® A BJ sinw
f B ( 11 ) sine coso cos20+sin20
5 A B siny A B

sin’s N cos’s 1 1 3 l sing coso
A B /siny tany A B tany

sin’e . cos’s 1]
A B Jsiny tany

Dy
1 1 sing cosc
ER— .| @37
A "B tany
Do
1 N sin2¢r+ cos’o\ 1
C A B Jtan%
or, in shorthand notation,
{g}=141""(p}, (38)
i.e., the same as Eq. (32). The (symmetric) matrix [4] ' is the

inverse of the transformation matrix of Eq. (20) and maps the
generalized momenta into the generalized velocities.

Cardan Angles of the First Kind

Just as was the case with Euler angles, Cardan frequencies
can be integrated to yield the Cardan angles
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Fig. 4 Cardan angles of the first ki

s=to+ | dar
77=770+S ndt
= §'0+S ¢at, (39)

and thus give the attitude of the gyro as function of time. This
property makes Cardan angles suitable as generalized coor-
dinates. :

When terms such as yaw (or heading) angle, pitch (or flight
path) angle, and roll (or bank) angle are used, then Cardan
angles are involved. Depending on the choice of axes, alto-
gether six kinds of Cardan angle systems can be employed
(Rimrott, 1988). The subsequent equations are for Cardan
angles of the first kind (Fig. 4), consisting of ¢ (about the
space-fixed X-axis), n (about the once carried y,-axis), and ¢
(about the twice-carried z-axis).

The angular velocity w of the gyro can either be expressed
in terms of components along the body-fixed Cxyz coordinate
system, or in terms of the Cardan frequencies along the per-
tinent (nonorthogonal) carried coordinates:

Wy E
wo=[e, e elluwl=[e e el n (40)
Wz ¢

The transition between the two coordinate system can be
effected by

Wy cosn cos{ sin{ 0 E
wy|=| —cosysiny cos{ O[] 7 (41
Wy sinn 0 . 1 §'

Transition (41) is also valid for the angular momentum com-
ponents, i.e.,

H, cosp cos{ sing 0} ] H;
H,|=| —cosysin{ cos{ 0| H,|. (42)
H, sinn 0 1} H;

Complementary Kinetic Energy. Combining Egs. (2), (7),
and (41) gives us now, for the complementary kinetic energy,

402 / Vol. 60, JUNE 1993
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. 1 . .o : . .
T =3 [A(& cosy cos¢+ g sing)® + B(— £ cosy sing+ 5 cosp)?

+C(E sinn+ )1, (43)
where the Cardan angles £, 5, and ¢ are the generalized co-
ordinates g; of analytical mechanics.

Generalized Momenta. The generalized momenta D; are
obtained by pa*rtial differentiation of the complementary ki-
netic energy T~ with respect to the generalized velocities g;,

with ¢ = £, ¢, = 9, g5 = [. Thus,
aT” :
pe= aé =A(£ cosy cos{+ g sin{)cosy cos{
+B(£ cosy sing— 5 cosf)cosn sing+ C(£ sing + {)siny
(44a)
aT* . L
Py= an =A({ cosy cos¢+ 7 sinf)sing

+B(~ £ cosy sinf+ 7 cos{)cos¢ (44b)
T* . .
—=C(& sing+ ).
oF (& sinp+ {)
The generalized momenta p; are related to the components
Hy, H,, and H; of the angular momentum vector (Fig. 5),

D= (44c)

2 1 0 sing|| H;
pl=1 0 1 0 H,/|. 45)
D¢ sing 0 1 H,
The inverse relationship is
1 0 = siny
H, cos™y cos’y || py
H, = 0 1 0 DPyl- (46)
H, —siny 1 D;
cosy cos’y

Lagrange Equation.. With the generalized momenta (44)
and the complementary kinetic energy (43), the three Lagrange
equations become

Transa tigns of the ASME
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Fig. 5 Angular momentum components and generalized momenta for
Cardan angles of the first kind (when H, = 0)

d aT*
P i QO 47a)
d aT*
d aT*

For Cardan angles of the first kind, the angle { is taken about
a space-fixed axis, thus 37" /9¢ = 0in Eq. (47a). D’ Alembert’s
principle (30) can be expressed in terms of Cardan angles of
the first kind by using the Lagrange Eqgs. (47).

Note that the generalized forces Q; are covariant components
of the applied torque similar to Eqs. (29) and the square of
the magnitude of the torque applied can be shown to be

M*=M2+ Mi+M? (484a)
M?*=M}+ M2+ M3+ 2MM; sing (48D)
1 2 siny
M?= 2 2 2 2y
cos’ (Q:+ Q5 cos™m + QJ7) cos? 0:Qr,  (48¢c)

where My, M,,, M, are the torque components along gyro-fixed
Cartesian axes, and M, M,, M, are the contravariant torque
components.

Kinetic Energy. Using Eqs. (11) and (42) an intermediate
expression is obtained:

1/1
T=E<Z (H, cosy cos{+H, sing)?

1 1
+§ (— H; cosy sin{+H, cosg‘)2+6 (H; siny +Hr)2>- 49)
Note again the similarities, of the terms in round brackets,
between Eqs. (49) and (43).

The kinetic energy (1) in terms of Cardan angles and Cardan
momenta is obtained by combining Eqgs. (49) and (46), and is

1] 1 fcos®t sin*\ , [sin’f cos’¢\ ,
T=- SRS, o8
2{coszn< A * B Pet A * B )P
1 , fcos’¢ sin’f\\ , 2sin{cos{(1 1
+<-6+tan ‘r]< P +? Pet—— ———\5—351P:Py

cosyn A B
) 11 2 tany fcos¢  sinf
—2 tany sxn{cos{(Z—T;)pﬂp(— cosy < 4 + 5 e |-

(50

Generalized Velocities. The generalized velocities are ob-
tained by forming the appropriate partial derivatives

Journal of Applied Mechanics

oT 1 [cos’t sin’¢
T ap. cos? + Pz
ip: cosg\ A B

sinfcos¢f1 1 tang fcos®t sin®f
e Bt I e 51
cosn <A B) P cosp\ A B pe (3la)

. 8T sinfcostf1 1 sin*¢  cos*t
"o o a7 8) A B )P

1 1
—tany sin{ cos§'<Z—E>p; (51b)

_oT_ tam @_2_{4_% tany sin{ cos{ 11
_apr— cosg\ A B Py U} 4~ B Py

1 cos?¢ sin’¢
+ <E+tan2n <—A‘“+T py (Slc)

Equations for Cardan angles of the second and third kinds
(Rimrott, 1988) can be obtained by appropriate cyclic inter-
changes.

Cardan Angles of the Fifth Kind

Of importance in airplane flight dynamics, Euler angles of
the fifth kind (Rimrott, 1988) consist of a yaw (heading) angle
¢ about a space-fixed line to the zenith, a pitch angle n about
a once-carried (through ¢) line to the horizon, and a ro/l (bank)
angle £ about a twice-carried (through ¢ and ») gyro-fixed line
(Fig. 6).

The angular velocity can be expressed in two ways:

Wy £
w=le, e el|w|=e; e efn (52)
Wy §
The transition relation is
Wy 1 0 —sing g
wy,|=|0 cost singcosyl|| 7 63)
W, 0 —sin¢ cosé cosy ¢
Similarly, for the angular momentum components,
H, 1 0 —sing H;
H,|=10 cost sinfcosy||H,]. (54)
H, 0 —sing cos§ cosy || Hy

Complementary Kinetic Energy. Combining Egs. (1) and
(53) gives the complementary kinetic energy

T =% (A(E - { sing)*+ B(# cost + ¢ sing cosn)?
+C(~ 7 sinf + ¢ cost cosp)).  (55)

Generalized Momenta. Forming partial derivatives leads
to the generalized momenta (5)

aT*

Pr=—"—

at
aT* ) -
Dy= Py = B(n cosE + ¢ sing cosn)cosé

=A(£ - § sing) (56a)

)

+C(y sing — { cost cosp)sing  (56b)
Biz —A(f - g' siny)siny + B(n cosé

D= ag_

+ { sin cosy)sing cosy
+ C(— 7 sinf + ; cos¢ cosnp)cosé cosy.  (56¢)

UNE 1993, Vol. 60 / 403
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Fig. 6 Cardan angles of the fifth kind

The generalized momenta p; are related to the angular mo-
mentum components H; (Fig. 7) by

D 1 0 ~sing|| He
Dyl = 0 1 0 H, . 57
D —siny 0 1 H;
The inverse relationship is
1 sing
—5- 0 )
H, cos™n cosn || pe
Hyf= 0 1 0 {|p] (58)
H, siny 1 D
Y )
cos“y cos™n
Kinetic Energy. The kinetic energy can be obtained by first

using the angular momentum components (54) and Eq. (11),
resulting in

1

1 1
T== <Z (H;— H; sing)*+ 3 (H, cost + H; sink cosn)®

2
1 N 2
+6 (—H, sinf + H cos§ cosn)” ). (59)
Note again the similarity of the terms in round brackets of
Eqgs. (59) and (55). But Eq. (59) is not yet in terms of generalized

momenta. To achieve this we call upon Eq. (59), with the help
of which we eventually obtain

1 1 sin®t  cos*t 3
T==| (—+ (222 2
2[<A+<B +=g Jtan’n ) p
cos’t sin*\ , 1 (sin% cos¥%\ ,
+ + +
<B c )P costn B T C )P

404 | Vol. 60, JUNE 1993

x
)/ C
i}
x 2 pg

Fig. 7 Angular momentum components and generalized momenta for
Cardan angles of the fifth kind (when H, = 0)

2 sinf cosé
cosn

tany (sin*(  cos’f
2 <——B + C >p£pr] (60)

1 1
+2 sin cosé tany (E —E> DDy +

cosy

Y LN
B C)PPr

Generalized Velocities. By partial differentiation we obtain
the generalized velocities (4).
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. AT [ 1 [sin®t cos’t\. ,
E—ap,;_[A+<B + C tany | p;

1 1\ . sin®e  cos\ tany
+ <E_Z‘> sin§ cos¢ tany p, + < 3 +—&— — pr (6la)

cosn
. oT 1 1Yy, 2 in?
=£;= (E—~E> sin cos¢ tany pg + <00; £+ Slz g)p,,
+ 1 1\sing cosé
B C] cosy Py

+ 1 1\sin cost
PeT\B ¢ cosy P

() 2
Sm [e82)
. < £ cos’t

(61b)

aT <sin2£ N c052£> tany

=a_p(= B C Jcosy

B (&

The Lagrange equations are valid in the form given by Eqs.
(47), and D’Alembert’s principle (30) can also readily be ex-
pressed in terms of Cardan angles of the fifth kind. Equations

1
) cos’y 2

for Cardan angles of the fourth and sixth kinds (Rimrott, 1988)
can be obtained by appropriate cyclic interchanges.

Conclusions

For a proper analytical mechanics treatment of gyrodynamic
problems, generalized coordinates are essential. Depending on
circumstances, either Euler angles or Cardan angles are suit-
able. In the present paper the fundamental equations for gen-
eralized momenta and generalized velocities are given. For their
derivation, the concepts of kinetic energy and complementary
kinetic energy have been employed.
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