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Kinetic Energy and Complementary 
Kinetic Energy in Gyrodynamics 
The concepts of kinetic energy and complementary kinetic energy permit to distin­
guish between two different formulations of what happens to be the same quantity 
in Newtonian mechanics. These formulations turn out to play a significant role in 
gyrodynamics in that they can be used very effectively to establish fundamental 
equations. It is relatively straightforward to establish a complementary kinetic energy 
expression. The establishment of the kinetic energy expression is, in spite of its 
unambiguous definition, more complicated, and a way is presented how to obtain 
it without too much difficulty. Equations are presented for the more common angle 
systems, i.e., forEuler angles of the first kind, Cardan angles of the first kind, both 
because of their fundamental importance, and Cardan angles of the fifth kind because 
of its prevalence in aeronautics. 

Fundamental Concepts 
Following Crandall (1957) and Tabarrok (1981), we adopt 

the concepts of kinetic energy T, and complementary kinetic 
energy T*, as analogies to potential energy V and comple­
mentary potential energy V*. Using generalized coordinates 
q, and generalized momenta p, of analytical mechanics, the 
kinetic energy of a scleronomic (i.e., where the time t does not 
appear explicitly) system with n-degrees-of-freedom is defined 
by 

T= J q,(q,p)dpi (1) 

while its complementary kinetic energy is 

T*=^pAq,q)dq, (2) 

with / = 1, 2, 3, ..., n. 
For a point mass m on a straight path q, as an example, 

T=-— T =- mq . 
2m 2 (3«,6) 

Generalized velocities and generalized momenta are obtained 
by partial differentiation and defined by 

q T{ p) 

dp/ 

Pi = ^-T*(q,q) 

(4) 

(5) 
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For a point mass m on a straight path q, as an example, 

d (If 
Q dp\2m 

_P_ 
m 

_d_ 

'dq 
\mq -mq. (6a, b) 

In Newtonian mechanics it so happens that kinetic energy 
T and complementary kinetic energy T* have the same mag­
nitude (Fig. 1). This circumstance can often be exploited to 
great advantage. But in order to be able to apply formulas (4) 
and (5), the kinetic energy T must be expressed in terms of q 
and p, while the complementary kinetic energy T* must be 
expressed in terms of q and q. Thus it is possible to establish 
T* = T* (q, q) which, in the case of gyrodynamics of rigid 
bodies, is usually readily done. Partial differentiation with 
respect to the generalized velocities q, then results in the gen­
eralized momentap,-. With the generalized momentapt known, 
it becomes then possible to form T = T(q, p), which can 
subsequently be differentiated partially with respect to the 

h 

f 
t 

0 

T* 

-* 

•vV 
"0. / 

JP 

p 

Fig. 1 Kinetic energy T and complementary kinetic energy T* for a 
single point mass in Newtonian mechanics 
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Fig. 2 Euler angles of the first kind 

generalized momenta ph to obtain the generalized velocities 
<jr,. This process is used in the present paper to establish the 
fundamental relationships for a single rigid gyro, first with 
Euler angles as generalized coordinates, and then with Cardan 
angles as generalized coordinates. 

Kinetic Energy of Rotation. A suitable ansatz for the com­
plementary kinetic energy of rotation of a single rigid gyro is 

T*=- (Aul + Bwl + Cul) 

where the angular velocity is 

:fe e j 

and the inertia tensor is 

[/] = 
A 
0 
0 

0 
B 
0 

0 
0 

c 

(7) 

(8) 

(9) 

The Cxyz coordinate system is body fixed, coincides with the 
gyro's principal axes, and originates at the gyro's mass center 
C. 

Since angular momentum components and angular velocity 
components are related by 

Hx=Aux 

Hy = Billy 

Hz=Co>z, (10) 

Eq. (7) can then be rearranged to supply an ansatz for the 
kinetic energy 

„, \(H\ Hi H\ 
r=-(—+-- i :+— 

2\A B C 

Expressions (7) and (11) are, however, neither specifically a 
kinetic energy T, nor specifically a complementary kinetic en­
ergy T*, in the sense of Eqs. (1) and (2). In order to express 
them properly, we need generalized coordinates, for which 
Euler angles are suitable, as well as Cardan angles. 

It is well known (Magnus, 1971) that Cartesian coordinates 
of the angular velocity are nonholonomic quantities (nonin-
tegrable with respect to time) and therefore cannot be used as 
generalized velocities. However, as long as the kinetic energies 
as defined in Eqs. (1) and (2) are not explicitly dependent on 
generalized coordinates themselves, they can be adopted for 
nonholomic velocities as well. This is specifically the case in 
Eq. (7), and by analogy in Eq. (11). Distinguishing between 
the terms complementary kinetic (7) and kinetic energy (11) is 
justified here solely by the role the expression can play in 
further application in the present paper. 

Euler Angles of the First Kind 
In order to establish the angular position, often called the 

attitude of a gyro, three angular coordinates, the so-called 
Euler angles may be used. In Fig. 2 a Cxyz coordinate system 
is shown at angles \j/, v, o with respect to a CXYZ coordinate 
system. The CXYZ coordinate system is fixed in space, while 
the Cxyz coordinate system is body fixed (i.e., fixed to the 
gyro). The Xi-line, representing the intersection of the xy-plane 
with the XF-plane, is called the node line. The time derivatives 
of the Euler angles are the Euler frequencies (or Euler rates), 
viz. precession \j/, nutation v, and spin a. The Euler frequencies 
can readily be integrated to yield the Euler angles 

v — vo+ \ vdt 

(11) a = a0+ \ adt (12) 
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Fig. 3 Angular momentum components and generalized momenta for 
Euler angles of the first kind (when H„ = 0) 

and thus give the attitude of the gyro as a function of time. 
This property makes Euler angles suitable as generalized co­
ordinates. 

The angular velocity w of the gyro can be written (Rimrott, 
1988) 

u=[ex e j = [e* e j (13) 

p^ =—- = A(\j/ sin v sin a+ v cos ff)sin v sin a 
dtp 

+ B(\p sin y cos a- v sin <r)sin v cos a+C(\j/ cos v + a)cos v 

(17a) 

dT* • . 
pv =—— = A(\p sin v sm a+ v cos a)cos a 

dv 
B(\j/ sin v cos a- v sin a)sin a {lib) 

(17c) 
AT1* 

p„ = —^=C(\]/ cos v+b) 
da 

Note that the generalized momenta/?,- are angular and represent 
the projections (covariant components) of the angular mo­
mentum vector H onto the i/s y, and a directions. They do 
not represent the (contravariant) components H^, Hv, and Ha 

of the angular momentum vector, to which they are related 
by (Fig. 3) 

Pi, 

Pv 

Pa 

1 
0 1 

cose 0 

0 cose 
0 
1 

Hv 

H„ 

The inverse relationship is 

H$ 
Hv 

H„ 

1 
0 

;in"y 

0 1 
•cosy 
sin2? 

0 

-cosv 
sin2c 

0 
1 

sin2y _ 

Pi, 
Pv 
Pa 

Equations (17) can be written in matrix form 

(18) 

(19) 

Pi, 

Pv 

Pa 

(A sin2<i + B cos2<r)sin2y + C cos2y 
{A -B)smv sincr coscr 
C cose 

(A -B)sinv sina coscr C cosy 
A cos2a + B sm2a 0 

0 C 

(20) 

where Cxyz are gyro-fixed Cartesian coordinate axes, and q\ 
= \̂ , Qi = ", q-i = a are the generalized position coordinates 
of analytical mechanics. 

The transition is given by 

sin y sin a cos a 0 
sin v cos a - sin a 0 

cos v 0 1 
(14) 

The angular momentum components follow the same tran­
sition (14), i.e., 

Hx 

Hy 
H, 

siny sintr 
siny cosff 

cosy 

COSCJ 

-sinff 
0 

0 
0 
1 

Hj, 

Hv 
H„ 

(15) 

Complementary Kinetic Energy. Combining Eqs. (2), (7), 
and (14) gives us now the complementary kinetic energy, prop­
erly expressed in terms of generalized coordinates and gen­
eralized velocities, 

* 1 • i 
T = - [A(\p sin y sm a + y cos a) 

+ B(\j/ sin y cos a—'v sin a)2 + C(4> cos v+ a)2], (16) 

where the Euler angles \j/, v, a are the generalized coordinates 
q, of analytical mechanics. 

Generalized Momenta. According to Eq. (5), the gener­
alized momenta p, are obtained by partial differentiation of 
the complementary kinetic energy T* with respect to the gen­
eralized velocities q,, with qi = \l, q2 = v, and #3 = a. Thus 
(Greenwood, 1988), 

[A] = 
aPi 
dqj 

(22) 

or, in shorthand notation, 

ip)=lA][q). (21) 

It is seen that the inertia coefficient matrix [A] is a symmetric 
transformation matrix which maps the generalized velocities 
into the generalized momenta. 

The transformation matrix contains, partial derivatives as 
elements. 

dpj, dpj, dpj, 

d\p dv da 

bPv bpy dpv 

b\p dv da 

dpa dp„ dpa 

dxl/ dv da 

Symmetry means that, e.g., 

dp* dpv 

dv d\j/' 

etc., or in general we have that 

dp, _ dpj 
dqj dq, 

With the help of Eq. (21) the complementary kinetic energy 
(16) can now be expressed as 

iJ=^,v,a. 

(23) 

(24) 

T=2 [q}T[A]{q] (25) 

Lagrange Equation. All loading cases for a single rigid gyro 
are covered by Lagrange's equation in its fundamental form 
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T.T^—rr=Q/ 
d dT* dT* 

dt dqi dq, 

With the generalized momenta (17) and the complementary 
kinetic energy (16), the three Lagrange equations become 

d dT 

(26) T= 

dtP*~ H 

d dT 

ItP> — 

:Po-

{21a) 

(27c) 

. ^ (275) 
av 

dT* 
dr° ' da 

An inspection of Eq. (16) shows that the complementary kinetic 
energy T* does not contain the generalized coordinate tp ex­
plicitly, thus dT*/d^ = 0 in Eq. (27a). Note that the Q, are 
covariant torque components, which are related to the con-
travariant torque components M, by the same transformation 
as in Eq. (19), i.e., 

1 
sin2!' 

0 
-cosy 
sin2c 

-cos? 

sin2!' 
0 
1 

sin2f 
Qa 

(28) 

The square of the magnitude of the torque applied can be 
shown to be 

M2 = M2
X + M2 + M2

Z (29a) 

M2 = M% + Ml + Ml + lM^Ma cosv (29Z>) 

Ml = 
1 

sin2i< (Ql + QUin2v + Ql)-
2 cosy 

sin2v 
Q*Q, (29c) 

D'Alembert's Principle. D'Alembert's principle, involving 
the vanishing of the virtual work of applied torques and inertial 
torques, reads 

8W=(M-H)-50 = 0. (30) 

Using Eulerian angles as generalized coordinates, D'Alem­
bert's principle can now be written as 

Q*-[p*-i!jr))ty+\Q>-\p> bw= 
d^p dv 

ov 

+ [Qa-[Pa-
dT 
da 

5CT = 0 . (31) 

Since the three variations 8\j/, 8v, and da do not vanish and are 
independent, their coefficients must vanish, i.e., they must 
satisfy the Lagrange Eqs. (27). 

Kinetic Energy. Inverting Eq. (21) results in 

IQ) = \A]-1[P) (32) 
and the kinetic energy (1) can then be obtained as 

T=\{p}T[Arl{p\. (33) 

The inversion of the matrix [A] is, however, cumbersome, and 
a more tractable approach for obtaining the kinetic energy is 
the following: beginning with Eqs. (11) and (15) we obtain, as 
an intermediate expression, 

l / l , 
T=-\— (Hj, sin? sina + HV cosa) 

1 , 1 , \ 
+ - (Hj, sine cosa-7f„ sina) + — (H+ cosv + H0) 1. (34) 

B C I 

The reader is asked to compare Eqs. (34) and (16) and to note 
the similarity of the terms in round brackets. 

Properly expressed in terms of the generalized momenta p+, 
pv, pa, the kinetic energy (1) is, from Eqs. (19) and (34), 

sin2<7 cos2a 

B 

+ « 4 +
 l 

, i COS2CT sin2a\ , 

pl+\—T-+-ir)p> A B 

C tan2A A B 

2 sina cosa / 1 1 

sinv A B Pi,Pv~ 
2 sina cosa / 1 1 

tan? A-B)P*' 

2 /sin2tr cos2tj 
sin? tan? \ A B P4,P„ (35) 

Generalized Velocities. According to definition (4), the 
generalized velocities are obtained by partial differentiation of 
the kinetic energy (35) with respect to the generalized momenta. 

sina c o s a / l 1 ; dT 1 
3/fy sin v\ A 

sm2a cos2a 
+ B Pi, + -

1 

sine \A 5 

siiw tan? V A B 
(36a) 

dT sina c o s a / l 1 

Bp, 

dPo 

sine A B 
Pi + 

cos2a sin2a 

A B 

sina c o s a / l l \ 

-1^-[A-B)P' (36Z,) 

/ r : „2_ 2 

sin? tany 

sin a cos a \ 
+ —^-\P<l, 

B 

sina cosa / 1 1 

tanv ~\A B)P"+[c + tan'v\ A 

sm2a cos2a 

B Po 

(36c) 

Writing Eqs. (36) in matrix form gives 

1 sm2a cos2a 

~A~ + ~B~Jsiniv 

1 1 \ sina cosa 
A B 

1 1 \ sina cosa 
A Bl sine 

cos2a sin2a 
——+ —— sinv 

sin2a cos2a 
+ A B 

1 

sin^ tanc 

1 l \ sina cosa 

4 Bl tanv 

1 sm2a cos2a 

A B I sin? tanc 

1 l \ sina cosa 

A B tanc 

1 1 /sin2a cos2a\ 

C + \A~+ B )tan2v 

P* 
Pv 
Po 

(37) 

or, in shorthand notation, 

iQ)=[A)-l[p}, (38) 

i.e., the same as Eq. (32). The (symmetric) matrix [Ay1 is the 
inverse of the transformation matrix of Eq. (20) and maps the 
generalized momenta into the generalized velocities. 

Cardan Angles of the First Kind 
Just as was the case with Euler angles, Cardan frequencies 

can be integrated to yield the Cardan angles 
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Fig. 4 Cardan angles of the first kind 

1 

r=r0+ frf? (39) 

and thus give the attitude of the gyro as function of time. This 
property makes Cardan angles suitable as generalized coor­
dinates. 

When terms such as yaw (or heading) angle, pitch {ox flight 
path) angle, and roll (or bank) angle are used, then Cardan 
angles are involved. Depending on the choice of axes, alto­
gether six kinds of Cardan angle systems can be employed 
(Rimrott, 1988). The subsequent equations are for Cardan 
angles of the first kind (Fig. 4), consisting of £ (about the 
space-fixed .Y-axis), ?) (about the once carried jvaxis), and f 
(about the twice-carried z-axis). 

The angular velocity w of the gyro can either be expressed 
in terms of components along the body-fixed Cxyz coordinate 
system, or in terms of the Cardan frequencies along the per­
tinent (nonorthogonal) carried coordinates: 

w=[ex ey ez] = [e? e„ e f] (40) 

T" =- 1/4(£ cos?; cosf + 7) sinf)2 + Z?( - £ cos?) sinf+?) cosf)2 

+ C(£ sinrj+f)2], (43) 

where the Cardan angles £, ij, and f are the generalized co­
ordinates Qj of analytical mechanics. 

Generalized Momenta. The generalized momenta p, are 
obtained by partial differentiation of the complementary ki­
netic energy T* with respect to the generalized velocities qh 

with g, = £, q2 = ^, q3 = f. Thus, 

dT* 
Pi = -rr=A(% cos?j cosf+r/ sinf)cosr? cosf 

+ 5(£ cos?) sinf- r) cosf)cos7/ sinf + C(£ sin?) + f)sinij 

(44a) 
dT* 

Py, = -jp- = A(£ COST/ cosf+r; sinf)sinf 

+ B(- £ cos?) sinf+ ij cosftcosf (446) 

Pi = Tr=Ctt sinrt+D- (44c) 

The generalized momenta p{ are related to the components 
H%, Hn, and H^ of the angular momentum vector (Fig. 5), 

(41) 

The transition between the two coordinate system can be 
effected by 

cox COST; c o s f s in f 0 £ 
uy = - C O S T ) s in f c o s f 0 T) 
u 2 sinij 0 1 f 

Transition (41) is also valid for the angular momentum com 
ponents, i.e., 

Hx ' COST) cosf sinf 0 
Hy = — COST) sinf cosf 0 
Hz sinTj 0 1 

Pi 
Pr, 

Pi 

The inverse relationship is 

1 

1 0 sini) 
0 1 0 

sin?) 0 1 

Hi 
H, 
Hi 

(45) 

Hi 
(42) 

Hi 

Hn 

0 
COS2T) 

0 1 
— sin?) 
COS2T) 

0 

- sini) ' 
COS2?) 

0 
1 

COS2?) 

Pi 
A, (46) 

Complementary Kinetic Energy. Combining Eqs. (2), (7), 
and (41) gives us now, for the complementary kinetic energy, 

Lagrange Equation. With the generalized momenta (44) 
and the complementary kinetic energy (43), the three Lagrange 
equations become 
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* = 
dT_ 1 /cos2r sin2f 
dp{ cos2?) I A B Pi 

H 

X 

• « — 

"5 
pC 

\ n 

^ 

ft. 

s inTcosf / l l \ tanr//cos2r sin2f\ 

. 9 7 s in | -cosr / l 1 
V ~dpn~~ COST; \A~B)Pi + 

sin2t cos2f 
— + 
1 5 A, 

- tanr/s inf c o s f l — - - j / ? r (516) 

• dT tann/cos2f sin2f\ 

dpf cos?)\ 4̂ B J 
sinfcosf ( — - - ) / ? , 

Fig. S Angular momentum components and generalized momenta for 
Cardan angles of the first kind (when H, = 0) 

+ | - + tan"r? 
cos'T sin2?"' 

- + 
4 B 

A B 

Pi (51c) 

P f - ^ r = G f 

Pv-~=Q<> 

= Q^ 

(47a) 

(41b) 

(47c) 

d dT* 

dtPi~^~ 

i. ...dT* 
dtPn~ dr, 

d_ dT^ 

dtPi~ H ' 
For Cardan angles of the first kind, the angle £ is taken about 
aspace-fixedaxis.thusdrVdJ = OinEq. (47a). D'Alembert's 
principle (30) can be expressed in terms of Cardan angles of 
the first kind by using the Lagrange Eqs. (47). 

Note that the generalized forces Q, are covariant components 
of the applied torque similar to Eqs. (29) and the square of 
the magnitude of the torque applied can be shown to be 

(48a) 

(486) 

Equations for Cardan angles of the second and third kinds 
(Rimrott, 1988) can be obtained by appropriate cyclic inter­
changes. 

Cardan Angles of the Fifth Kind 
Of importance in airplane flight dynamics, Euler angles of 

the fifth kind (Rimrott, 1988) consist of a yaw (heading) angle 
f about a space-fixed line to the zenith, a pitch angle 77 about 
a once-carried (through J) line to the horizon, and a roll (bank) 
angle £ about a twice-carried (through f and r?) gyro-fixed line 
(Fig. 6). 

The angular velocity can be expressed in two ways: 

k' 
u=[ex e j 

M2 = M2
X + M2 + M2

Z 
u. 

:[e{ e, er] 

M2 = M\ + M2
ri + M) + 2MkMf sin?) 

M2 = - ^ - (Ql + Q] c o s V Q 2 , ) 
2 sin?) 

cos2?; 

The transition relation is 

1 0 
- . _ , _ , . _ . . . Q&, (48c) 

COS 7) COS 7) 5 s 

where Mx, My, Mz are the torque components along gyro-fixed 
Cartesian axes, and Mj, M,, M f are the contravariant torque 
components. 

Kinetic Energy. Using Eqs. (11) and (42) an intermediate 
expression is obtained: 

l / l 

Olz 

-sin?) 

0 cos£ sin£ COST; 
0 -sin£ cos£ cos?) 

Similarly, for the angular momentum components, 

Hx 

Hy 

H, 

1 0 - sin?) 
0 cos£ sin£ cos?) 
0 -sin£ cos£ cos?? 

H, 

(52) 

(53) 

(54) 

T=2\A {H* C°SV c o s f + / / " s i n f ) 

+ - ( - t f j cos?) s in f+ / / , cosf)2 + - (H( smr,+H^)2). (49) 

Note again the similarities, of the terms in round brackets, 
between Eqs. (49) and (43). 

The kinetic energy (1) in terms of Cardan angles and Cardan 
momenta is obtained by combining Eqs. (49) and (46), and is 

T=-
1 / C O S T sin2f 

cos 77 B pi+ 
sin f cos t 

— + 
I B 

Complementary Kinetic Energy. Combining Eqs. (1) and 
(53) gives the complementary kinetic energy 

T*=- (A(k - t smri)2 + B(^ cos£ + f sin£ cos?))2 

+ C ( - ?) sin£ + t cos£ cos?))2). (55) 

Generalized Momenta. Forming partial derivatives leads 
to the generalized momenta (5) 

Pv 

+ ( - + tan?/ 
cos2f s i n 2 n \ 2 2 s i n f c o s f / l 1 

B Pi+ 

-2 tan?) sinf c o s H — - - i / ? „ / ? r 

cos?) \A B 

2 tan?) /cos2f sin2f' 

pi = —r = A(k-lsmri) (56a) 

COS?) \ -
- + -B 

PiPr, 

PUPi 

(50) 

dT* 
p = — - = B(?7 cos£+ f sin£ cos?))cos£ 

0?) 

+ C(?) s in£- f cos£ cos?))sin£ (566) 

dT 
p$=——= —.4(j - f sin?j)sin?)+5(?) cos£ 

Generalized Velocities. The generalized velocities are ob­
tained by forming the appropriate partial derivatives 

+ t sin£ cos?j)sin£ cos?/ 

+ C(- r) sin£ + I cos£ cos?))cos£ cos?). (56c) 
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Fig. 6 Cardan angles of the fifth kind 

The generalized momenta pj are related to the angular mo­
mentum components H, (Fig. 7) by 

1 0 
0 1 

- sin?) 0 

-sin?; 
0 
1 

Hi 
H, 
H, 

(57) 

The inverse relationship is 

1 

Hi 
Hn 

cos2?? 
0 

sin?) 
cos2?) 

sin?) 

COS2?) 

0 
1 

COS2?)_ 

Pi 

Pr, 

Pi 

(58) 

Kinetic Energy. The kinetic energy can be obtained by first 
using the angular momentum components (54) and Eq. (11), 
resulting in 

1/1 T=o 7 (Hi:-H<;smi1y + - (H„ cos? + / / r s in? cos?)) 
2\A B 

+ — (-Hv sin£ + / / f cos J cos?;)' (59) 

Note again the similarity of the terms in round brackets of 
Eqs. (59) and (55). But Eq. (59) is not yet in terms of generalized 
momenta. To achieve this we call upon Eq. (59), with the help 
of which we eventually obtain 

1 /sin2? cos2? 

B C tan*?, \p\ 

(cos ? sin ? 
t B +~C~ Pn + T 

COS 7) 

sin2? cos2?\ 2 

Fig. 7 Angular momentum components and generalized momenta for 
Cardan angles of the fifth kind (when H, = 0) 

+ 2 sin? cos? tan?) 
B C 

1 \ 2 sin? cos? 
PiPv + - COS?) 

1 1 
+ IS" C. 

tan?) /sin2? cos2?\ 
(60) 

Generalized Velocities. By partial differentiation we obtain 
the generalized velocities (4). 
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i = 
1 

A + 

sin ? cos ? \ , 
- ^ + - ^ i ) t a n 2 i ? A 

A l \ . . . /sin2? cos2?\tanrj 
[ 5 - c J a * « * tan, p„ + ( - ^ — j — - , , (61a) 

V = 
dT_ 

dPn 

1 l \ • , , /cos2? sin2? 
- - - I s m J cos? tanr,p{ + I — ^ - + — 

1 1 \ sin? cos? 
+ I - - - I — ±pt (616) 

B C COST/ 

dpf 
sin2? cos2?\ tanr; 

B+- C 
1 1 \ sin? cos? 

cost; \i? Cy COST; 

| ^sin2? ( cos2?\ 1 

B • C / c o s V r ( 6 1 C ) 

The Lagrange equations are valid in the form given by Eqs. 
(47), and D'Alembert's principle (30) can also readily be ex­
pressed in terms of Cardan angles of the fifth kind. Equations 

for Cardan angles of the fourth and sixth kinds (Rimrott, 1988) 
can be obtained by appropriate cyclic interchanges. 

Conclusions 

For a proper analytical mechanics treatment of gyrodynamic 
problems, generalized coordinates are essential. Depending on 
circumstances, either Euler angles or Cardan angles are suit­
able. In the present paper the fundamental equations for gen­
eralized momenta and generalized velocities are given. For their 
derivation, the concepts of kinetic energy and complementary 
kinetic energy have been employed. 
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