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Abstract—This paper provides a proof of global convergence understanding, see also [18]. The algorithms are classifed
of gradient search for low-rank matrix approximation. Such variations of Newton, conjugate gradient, and gradienteiets
approximations have recently been of interest for large scale (a.k.a steepest descent) methods on Grassmann manifolds.

problems, as well as for dictionary learning for sparse signal . . .
representations and matrix completion. The proof is based on These three methods differ in their speed of convergence.

the interpretation of the problem as an optimization on the Conjugate gradient or Newton algorithms provide in gen-
Grassmann manifold and Fubiny-Study distance on this space. eral faster convergence, but also require higher complexit

Early approaches to RQ maximization are based on extrin-
sic Euclidean algorithms in embedding space with practical
|. INTRODUCTION step sizes. These are locally equivalent to idealizednisiti

Consider the problem of approximating a matrix by anoth@iemannian methods. Among such algorithms, the Rayleigh
lower-rank matrix. The solution to this problem is well-kmo quotient iteration (RQI) is a popular algorithm correspiod
to be given by the truncated singular value decompositiad a Newton method. In general, these algorithms are well-
(SVD) up to the desired rank [1], [2]. In this paper, we invesnown to converge locally, however their global convergenc
tigate if one is always able to find the optimum approximatioproperties seem to be less understood. Following the targno
through a classical first-order optimization algorithmis@s of [13], some results on convergence of RQ algorithms can be
a gradient search. The answer is shown to be positive almgstssified as follows.
surely (i.e. with probability one). Gradient Descent:For a rank-one problem, a steepest

Low-rank matrix approximation is a ubiquitous problenyradient algorithm has been shown to converge globally to
in data processing. Gradient descent has been employedd@eigenvalue [19]. This eigenvalue is the optimum one if the
truncated SVD in large scale problems [3]-[6] and in relatestarting point is not orthogonal to the optimum eigenvector
matrix completion settings [7]-[9]. The considered lowa The higher rank problem is considered in [20] but a proof of
matrix approximation has also application in dictionargrte  convergence is only given for rank one. Some intermediate
ing for sparse signal representations. For some applitatioresults are given for higher rank where at least one dimensio
it is desirable to use a learning-based approach adapting # shown to converge to the rank-one optimum and the other
dictionaries based on training data sets. Dictionary wpdah dimensions are converging to sorather eigenvalues.
be formulated as an optimization problem on manifolds [10] Congugate GradientThe global convergence result of [19]
generalizing the MOD_[11] and K-SVD [12] algorithms.js extended to a generalized RQ conjugate-gradient algo-
Furthermore, several approximation methods are basedeon fithm for rank one in [21]. Local convergence properties
power method which is a gradient-descent type algorithrh [13f conjugate-gradient algorithms are discussed in [223],[2
including non-negative approximation [14], [15] and sparsshowing faster convergence of conjugate-gradient thapsts
approximation [16], [17]. descent.

Singular value decomposition is also directly related to Newton MethodsAccording to [24], the global convergence
Rayleigh quotient (RQ) maximization. RQ extremization igroperties of rank-one RQI are well understood. Rank-oné RQ
a long-standing problem and a number of RQ algorithms anghs shown to either converge to an eigenvector or converge to
their convergence properties have been discussed [13], [#Be bisector of a pair of eigenvectors in [25]. Later, theafet
The seminal work by Edelman, Arias and Smith [13] providgsoints for which the RQI does not convergeao eigenvector
a taxonomy of such algorithms based on a unified geometyi@s shown to be a set of measure zero [26]. A Grassmann-RQI

. . _ is presented in [24]. It generalizes the classical RQI tdig
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the first proof showing that an ideal gradient search onweheredy,...,0,. < [0,5] are the principal angles between
Grassmann manifold almost surely solves the multiple-ratkese two subspaces [30]. We will make use of the two
matrix approximation problem. Previously, it was knowntthdollowing distances

there are multiple stationary points for the rank-one matri 1) Thechordal distance:

approximation problem [29]. More recently, for the rank-

one case, it was shown that a gradient descent method will den([Y], [Z])
not converge to any other stationary points than the global

minimizer with probability one [10]. Our results show that

%nw’{—zzf’nlm @)
(=Y z|2)"* )

this is generally true for any higher rank. r 1/2

The proof consists in showing that the Fubiny-Study dis- = (7’ — Z:cos2 9@) (6)
tance to the optimum is monotonically decreasing along the i=1
gradient path for almost all starting points on the Grassman r 1/2
manifold. Since under the Fubiny-Study distance, all othar = (Z sin? 91) @)
tionary points are antipodal to the global optimum, by mgvin i=1

along the gradient path the algorithm is getting closer ® th 2) The Fubini-Study distance

opt|mu_m whlle ultimately never appr_oach!ng the other stati dps([Y],[Z]) = arccos|det[Y Z]| ®)
ary points, i.e. the Grassmann manifold is almost everyaher .

the basin of attraction of the global optimum. The multiple- —  arccos Hcose- )
rank case is more delicate than rank-one as we have to handle '

. . . . . . . Z:]‘
multiple principal angles, which results in a non-uniquéio® 1 .ce two distances are non-equivalent in the sense they

of distance on the Grassmann manifold. As a result, the eho'gre derived from different embeddings thus corresponding t
of distance in the proof is important. We make this argumegtarant Riemannian metrics. The chordal distance isiobth

explicit by showing that a similar argumentation with thg. ., ihe embedding of the Grassmann manifold to the set of
chordal distance would not allow us to claim convergeng?e_by_ﬂ projection matrices of rank [30]. The Fubini-Study

of the algorithm to a global optimum but the decrement Q:fistance is derived via the iiker embedding [31].
the Fubini-Study distance does. Finally, our result presid

theoretical support for application of optimization mededo  Ill. GRADIENT DESCENTPROCEDURE FORL OW-RANK
low-rank matrix approximation problems. MATRIX APPROXIMATION
We describe a gradient descent procedure on the Grassmann
Il. PRELIMINARIES ON MANIFOLDS manifold to solve a low-rank matrix approximation problem.

The gradient descent is performed on a curved surface ) o
consisting of constrained-norm matrices. The proof of coft: LoOW-rank Matrix Approximation
vergence will rely on the notion of Stiefel and Grassmann Consider a matrixA € C**? with p < n, and an integer

manifolds. r < p. The rankr matrix approximation problem is to find the
The complex Stiefel manifold’C  is defined as the spaceapproximationA given by mgl | A — Al . This problem
H H T . rank A=r
of rectangular unitary matrices (with< n): can be reformulated equivalently as the following optirtiza
Pe {Y ecvr | YHY = Ir}~ (1 on the singular subspaces 4f.
Whenr = 1, the Stiefel manifold can be identified as a unit Join f(U) (10)

n,r

hypersphere, and far= n as the unitary grougr,.. We denote
by I, € VS, the truncation of the first columns of the
identity matrix I,,. fU)= min |[A-UWH|3, vUeVS,. (11)
. . WeCpxr

The complex Grassmann manifodtf . is the set of allr- . . : .
dimensional subspaces @f*. This manifold can be expresseq-rhe solution of (10) s "”OW_” to be ach|ev_ed by the left singu-
as the quotient space of the Stiefel manifold and the unit ] subspace associated with théargest singular values J1],
group: GC =~V sy, @) The optimization (10) is actually over the Grassmann man-

wr o/ ifold QS,T. A simultaneous right unitary rotation of any pair

A point in the Grassmann manifold can thus be represented(85, W) leads to the same value of the objective function
the equivalence class ofx r Stiefel matrices whose columns||A — UW||2.. Then for any$) € U,, one can verify that

where

span the same space: fUQ) = f(U). For every fixedU, the optimal solution in
— H
Y] = {YU | Uci}, 3) the I_east square problem (11)W = AU . We may then
rewrite
C
where’ € Vi, fU) = |A-UU"A|} = |(I-UU™) A}

Several different distances can be defined on the Grassmann All2 H 412
manifold [13], [30] based on the notion of principal ang& = [lAlF — 1T AlF. 12)
denote two subspaces 6f" as[Y], [Z] € G, withY, Z € We note here that the power method is a gradient descent to

VSJ,. The singular values o' # Z are {cos,,--- ,cosf,.} minimize the objective function (12) [13], [29].



B. Global Minimizer on the Grassmann Manifold For completeness, we note that an alternative formulation
of the geodesic formula was given in [13, Eq. (2.65)] in terms

The singular value decomposition e¢f is A = U,~VH
of the SVD Ofo = LHEHRII_LII,

with ordered singular values; > --- > o,, and left
singular. vectorsUy = (Ugpy Uo'pu) 'where Uopt € Vi, U(t) = URycos(Sut)RY + Lysin(Sut)RY (18)
The notion of Grassmann manifold is essential in the proof.

We will assume the case, > o,.1, so that all global Due to the quotient space structure, the right-multipicraby
minimizers of f are in the subspace spanned by, i.e RH can be omitted for simplification.

there is a unique global minimizer on the Grassmann manifold

[Uopt] € GF .. For the degenerate case, there are several global IV. CONVERGENCERESULT

minimizers on the Grassmann manifold, nevertheless thaf pro

of convergence still holds. In this section, global convergence of Grassmannian gradi-

ent search for low-rank approximation is presented with the
main lines of the proof. The crux of the proof is to polarize
C. Gradient Descent Procedure the Grassmann manifold with the Fubini-Study distanceh wit

The gradient off at U is obtained by differentiating’ this choice of distance the global optimum is antipodal to al
and projecting onto the tangent spacelat The definitions Other stationary points. Then along the gradient desceht pa
used for derivatives and gradients are given in Appendix A.IS shown that this distance is monotonically decreasing a
The differential of f at U is Df(U) = —AAU, and the thus guaranteeing not approaching any other stationantsoi

gradient restricted to the Grassmann manifold is The result generalizes [10, Thm 1] to higher rank matrix
approximation, but we note that the techniques used here,
VFU)=—-(I-UU")AA"U. (13) notably for the proof of Lemma 1, are rather different than
in [10].

Note that here projecting to the tangent spacd/abf the
Stiefel manifold, or to the tangent space[&t| of the Grass-
mann manifold leads to the same gradient, cf. Equation8)2.
and (2.70) in [13].

An ideal gradient search moves towards the optimum along Vu,f=—-|VfII* <o. (19)
an intrinsic path on the Grassmann manifold. LHt = . _
—Vf(U) be the negative gradient matrix of the objectivghe existence of a convergent sequence is guaranteed by the

funtion f atU. The geodesic in directioff; emanating from Smoothness off. The assumption of an infinitesimal step
[U] can be written from a matrix exponential [13] insures a decrease jfhat every step of the algorithm and hence
convergence to a finite value. Since the overall step lergyth i

Ut) = (U UL )exp (t( 0 —B€>> I, (14) gradie_nt-related_, the convergence is guaranteed to berdowa
By 0 ' a stationary point, see Appendix B. Local convergence with

where By — U H; as H; should satisfy [13, Eq. (2.63)] more elaborated step rules for faster convergence aressisdu

in order to be in the horizontal space &t and U, is an in [29].
orthogonal complement di/ so that(U U.) is a unitary Theorem 1. Starting from a uniformly randomly chosen point
matrix. This follows from the embedding of the Grassmanon the Stiefel manifold, the gradient descent procedure on
manifold into the unitary group and taking the correspogdirlow-rank matrix approximation(10) with infinitesimal steps
exponential map. There exists several practical methodscmnverges to a global minimizer with probability one.
efficiently approximate the matrix exponential [32].

A gradient search with constant step sizeproceeds as

We consider an idealized gradient search with infinitesimal
tep size. By construction, the objective function is dasimey
long the gradient path as

Sketch of Proof:First, with infinitesimal steps, the gradient
search converges locally to a stationary point, see AppeBdi

follows: Then, let define the Fubini-Study distance between the
Gradient descent procedure: subspace spanned Wy and the subspace spanned by the
« GivenU € V[, compute the negative gradient matrip@PtimumU,,, denoted by
Hy = -Vf(U). distps(U) = dps([U], [U 20
« Move from U in the directionH; to U(«) according istes(U) = drs({U], [Uopt])- (20)
to (14). Accordingly, define the set

« Repeat until convergence.

— . . . B={UeVi, | distes(U)=7} (1)
For an infinitesimal step sizg the Riemann gradient update ' 2
can be approximated by an Euclidean update in the tangebtresponding to matrices generating Grassmannian planes
space, and one recovers the classical linear gradientquoze with a maximal principal angle w.r.{U,] equal to%, so

0 _BH that the FS-distance attains its maximal valfie This is a
UU,] (I +e <B OV>> I,, (15) set of measure zero [33] of ‘bad’ starting points.Uf € B,

v the subspac@] has a dimension orthogonal witb/, ], i.e.

U+eU By =U—-UU'Vf  (16) rank U U) < r or det[UZ, U] = 0. Conversely, ifU ¢ B,
= U—-¢€Vf. (17) by definition one satisfiedistrs(U) < 5.

U(e)

Q



Recall thatH; = —V f(U) is the negative gradient matrix VI. CONCLUSION
of the objective funtionf atU. The following result is proved

_ _ A proof of the global convergence of an ideal gradient
in Appendix C.

search for low-rank matrix approximations has been present
Lemma 1. Starting fromU ¢ B, the Fubini-Study distance This generalizes a recently shown result for rank-one appro
to the optimum solution is striclty monotonically decremsi imation to higher rank.

along the gradient descent path, i.®.g,distps < 0, YU

satisfyingdistrs(U) € (0, ). APPENDIX

Lemma 1 implies that first starting frofi ¢ B, the gradient A. Definitions of Derivatives and Gradients
procedure will step away fro8 and thus never entd?, since
distrs(U) < 7 will hold along the gradient path. Secondly,
verifies thatV f # 0 for all U satisfyingdistps(U) € (0, Z).

Hence, the only stationary points M7, \ B belong to  gen 4 real functionf of complex matrix inputX, we

the equivalence clasfl,.]. So if the gradient proceduredeﬁne the complex derivative as
converges to a stationary point, it can only be the global

. Since the result is presented for complex matrices, the
'tgeneralized definition of complex derivative as in [34][36
is used.

optimum on the Grassmann manifold. Finally, sinSeis a Df(X) = daf (22)
zero-measure set, Theorem 1 is proved. dX*
where the derivative for matrix input is defined component-
V. DIsCUsSIONS wise, i.e. such tha{df/dX*]., = df/d[X*]x,;; and the
A. Chordal Distance complex derivative of a real-valued scalar functignwith
To emphasize the importance of the choice of distance in th@Mplex inputz is defined as
proof of Theorem 1, we provide a similar result than Lemma 1 df 1/( Of . of
for the chordal distance. The proof is in Appendix D. I — 3 <8%%[m] + Zasm) (23)

Lemma 2. The chordal distance to the optimum solution i§e variables: andz* can be treated as independent variables,
monotonically decreasing along the gradient descent pagh, leading e.g. to

Vg, distcy < 0. 1f U is not a stationary point, there is a strict
decrease in the chordal distance w.r.t. the optimum. DT XA MX]=MX. (24)

Replacing Lemma 1 by Lemma 2 would not be sufficient to Note that the derivativd® f is the conventional gradient in
prove the convergence to a global optimum. A strict decreagf: ambient space of our manifold problem. The functions
in the chordal distance w.r.t. the optimum does not guaeanigonsidered are rather functions acting on the Grassmana man
that none of the principal angles is converginggtomeaning ifold rather than its linear representation. For compote
that the algorithm would enteB and converge to anotherpurpose, it is appropriated, with a small abuse of notation,
stationary point than the global minimum. On the other hangxpress derivatives on the Grassmann manifold by deragtiv
when starting from3, the chordal distance to the optimumon the Stiefel manifold, i.e. with respect to the matRxrather
will decrease but be strictly lower-bounded R§K, where than its column spaceX] [37]. Define the tangent space Xt
K > 0 is the number of dimensions in the starting plab8 by 7x, we then introduce the notion of directional derivative:
orthogonal to the optimum. The gradient search will coneerghe derivative off along the directio¥” at X is defined by
to the closest point to the optimum 5 as only the principal FX 41V) — F(X)

angles not equal ta/2 will converge to zero. Vv f(X) = lim - (25)
t—0
B. Comments for Non-Infinitesimal Steps The_gradient off at X is the unique tangent vectdv f
Theorem 1 implies that there exists a small step sizkat Satisfying
guarantee global convergence. In practice, for fast coevere (VI(X), V) =V [f(X) (26)

rate, one desires to use the largest possible steps, radmer bor all vV ¢ Tx. This can be computed by projecting the

infinitesimal steps. In the rank-one case, starting from a'&ﬁmplex derivativeD f on Tx as given by
point in B a gradient descent path would stayBn[10] with

any step size. However, for ranks higher than one and with VHX)=(I-XX")Df(X). 27)
non-infinitesimal steps, the s&tis not anymore an absolute
bottleneck. If the starting point is not a stationary potiig
search is able to escap® with a large-enough step size.
On the other hand, starting fro ¢ B and following the Local convergence of gradient-related search are disdusse
geodesic direction of the gradient&, one enters3 only for ©.9. in [38]. Define a sequencgl/;} emanating from the
some discrete, periodic values of step sizeThe periodicity 9radient procedure. Note that the functighis infinitely
comes from the fact that the path goes around the Grassméfgrentiable. Using the Taylor expansion, we have thezer
manifold which is a closed curved surface. order and first order term:

'Otherwise one would hav¥  ; distps = —(Vdistrs, V ) = 0. fUgt1) = f(Ur)+(Df(Uyg), Uks1—Ur))+o(|Uk+1—Ux|)

B. Local Convergence



combined with an expansion of the matrix exponential for Given a matrix X, the Taylor series expansion of the
Ui+1 = Ug(e) according to (14) function det[I + tX] with real parametet, at¢ — 0, yields

ddet[I +tX] F+o(t). (35)

dt _

o0 (e 2n+1 . B o o _ t=0
er+z:1(—1) (Qn!Uk + (2”4-1)!Hf> (H{'Hy;)"  The coefficient oft in this polynomial can be computed from
-

Uiy — U, = det[I + tX] = det[I] +

Jacobi’'s formula for the derivative of the determinant:

I+tX
leads to ddetll +1X] dt—H ) et +¢X] T [(T +1X)X] . (36)
fUks) = [f(Ui) = e(Df(Uk), Vf(Ur)) + ole) So for an infinitesimak, we have the following well-known
= f(Up) — €[V £(Up)|?* + o(e) (28) approximation of the determinant close to identity
where the last equality comes from the property of a projecto det[I + eX] =1+ €Tr[X] + o(e). (37)
(I -UUT)? = (I -UU7), and thus From this, we can reformulate (32) as
Te[Df(Un)PVF] = To[((I - UUHDf(U))H | det[(U + eH ) U0
(I = U U )DS(U)] = (1+ €Te[M; ' M) + o(¢)) det[M;].  (38)

Te[VAIV = VU (29)

For further simplification, let us write from the SVD o,

Therefore with e > 0 sufficiently small, one has AAH:UoptEZ UHt+U0pu22 UH | (39)
op op

f(Ux) > f(Ugy41) >0 and ) . . oo .
andX,,.x is a diagonal matrix containing thelargest singular

F(UR) = f(Ugs1) > €| VF(UR)|? (30) values of A. Similarly ,,;, contains the remaining singular
values ofA in decreasing order. Then one helgl, AA" =

Since the sequencdf(Uy)} is decreasing and lowers2 U and the first-order term in the right-hand side
bounded by zero, it converges to a finite valyg(Ux)}. By

T ) ; . f (38) simplies to
continuity of f, the sequencéUy} is converging to a finite

value Uy, and f (Uy,) = f(Uy). Tr[M; ' M)
By definition, one hagV f(U)|| = 0 only if U is a station- = 2RTr[ M, 'U 1L, H/]
ary p0|r_1t. Now, let assume that the accumulation péfptis  _ 2mTr[M1—1UHH0ptAAHU]
not stationary. By convergence, one (f&#&/;)— f (Ui+1) — 0 ey "
which implies thate||Vf(U,)||2 — 0 , which leads to a — 2T (M U lop 1, AATU]
contradiction since the finite step> 0 is strictly positive. = 2RTy[22,, UX UM U U,y
— 2XRTY[M; ' M U" AAT U]
C. Proof of Lemma 1 =2Tr[22,.] — 2Tr[AAMTL,] (40)
Consider the directional derivativ¥ g, | det[lU”U,,¢]|>, where in the last equality we have used the fact
which by definition is M = (UZU)" (U"U,)~! and that the traces are real
since matrices inside are Hermitian. In the intermediatpst
Vi, | det[UTUqpi]|* = the real parts have been used for simplicity but it could be
| det[(U + eH ) HUyps]|> — | det[ U Uy |? verified also that all traces in (40) are actually real.
lim c . (31) This leads directly to
This is equal toV g, det[U 1., U*] where for simplicity  |det[(U + eH )" Upp]|? = det[M]
: . B -
we have defined the projectdi,,; = UypiU,p,- We shall x (14 26(Te[82,.] — TI[AATIL]) + o)) (41)

also usell, = UU". o o o
A direct expansion of the first term in the limit in (31) carfnd the directional derivative (31) is given by

be written as VHf|det[UHU0pt]|2 _
|det[(U + eH ) Uy |? 2(Tr[¥2,.] — Tr[AATTL)) | det[UP U, ). (42)

max
=det[(U + eH ;) T, (U + eHy)] As II, is a projector of rankr, it has only r non-zero

= det[M;] det[I + eM; My + M, ' Mjs] (32) fsingula_r values all equal to one. Using the Von Neuman trace
inequality, we can upper bound the last term by

whereM; = UHHOth is an invertible matrix sinc&’ ¢ B, p
Tr[AAPTL,] < J[AAT)s; (11, 43
M = UMl Hy + Hf T U, (33) 'l I < ;S (AAT s (43)
and - 2 2
= o x 1="Tr[E; 4] (44)
Mz = H T, Hy. (34) ; ’



wheres;[M], i = 1,...,r are the singular values of the matrix Since (I — 2II,,) is Hermitian and unitary, it follows that

M in decreasing order. The equality holds if and onlyifA 7

(I -

21T, )T, (I — 211,,) is a projector of same rank &g, ;.

can be diagonalized simultaneously with,, which would By construction, these projectors haveigenvalues (and thus
happen only if it projects on some left-singular subspades also singular values) equal to one, while the others arelequa
A [39]. ForU ¢ B, this condition is fulfilled if and only if to zero.

U € [Uypi). ForU satysfyingdistrs(U) € (0, ), one can
conclude that

Vi, | detlU" Uy |* > 0.

Finally, using the chain rule of the directional derivative
with the fact thatarccos is a strictly decreasing function,
implies thatV g, distrg < 0 for distps(U) € (0, ). Namely,
one has

Using a similar argument than in the proof of Lemma 1,
we can upper bound the first term with the Von Neuman trace
inequality

TI'[AAH(I - 2IIu)IIopt(I - 2Hu)]

< 3 SAAT (T - 21 - 21L)] (52)

i=1

=> o} = Tr[AA I ). (53)
=1
Vi distrs (U) This proves the clainV g, distcy < 0. Again, equality holds
_ darccos+/z X Vi,|detlUH U,y ]|?  if and only if AA* can be diagonalized simultaneously with
dz | det[UH Uppi]|2 ! : (I — 2I1,)IIop (I — 2I1,,), which would happen only ifI,,
—VHfIdet[UHUopt]IQ prqjects on some singular space 4f[39], i.e. a stationary
2 /T AU AU 2 — [ det[U AUy 3 point.
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