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Optimal Circumferential Placement 
of Cylindrical Thermocouple 
Probes for Reduction of 
Excitation Forces 
This paper presents a design methodology to determine the optimal circumferential 
placement of cylindrical probes upstream of a turbine stage for reduced excitation 
forces. The potential flow forcing function generated by the probes is characterized 
by means of a Fourier analysis. A finite difference formulation is used to evaluate 
the sensitivity of the forcing function to the probe positions. An optimization scheme, 
based on the linear programming method, uses the sensitivity analysis results to 
reposition the probes such that the Fourier amplitudes of critical excitation orders 
are reduced. The results for a sample design situation are presented. 

Introduction 
Technological advances in material science and internal 

aerodynamics are quickly exploited by the gas turbine industry 
to produce more efficient and lighter weight products. This 
results in engine operation at higher mechanical stress levels, 
thus demanding more accurate estimations of stress in both 
steady and dynamic states. This has resulted in continuous 
efforts to improve the state of the art in stress analysis. 

The need for more sophisticated approaches, with regard to 
structural dynamics and vibratory stress, is particularly strong. 
Estimation of vibratory stress in the turbine or compressor 
blades of an engine during the paper design phase was once 
considered to be extremely difficult. Now, however, such con
siderations are becoming a matter of routine. In advancing 
such effort, methods for determining critical speeds and the 
deformations and stress profiles of particular modes of vibra
tion have been developed. In short, significant progress has 
been made in addressing the response side of this issue. In this 
paper the forcing function side of vibratory stress analysis is 
addressed. 

The vibratory response of a structural system can be miti
gated by reducing the magnitude of the dynamic force that 
impels its motion. In general, such an approach has not been 
considered practical. However, for certain rather common 
causes, this approach can be put to use with good results. 
Specifically, for the case of upstream flow obstructions, pro
duced by essential instrumentation (such as thermocouple 
probes), the vibratory stress induced on turbine blades resulting 
from wake perturbations can be estimated and systematically 
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altered by analytic methods. Such a method is the subject of 
this paper. This is accomplished by application of linear pro
gramming techniques [1, 2], through which optimal values of 
forcing function spectral distribution and magnitude may be 
obtained. 

It is well known that obstructions in a flow stream will create 
wakes behind the obstructions. Within the wakes, the pressure 
can drop from that of the free-stream pressure to the ther
modynamic static pressure. A turbine blade passing through 
such a wake will be subject to a pressure variation, which can 
induce the unwanted vibratory response of the blade. In this 
paper we consider a set of cylindrical thermocouple probes 
placed immediately upstream of the turbine blades. These 
probes will create wakes, which give rise to a variable circum
ferential pressure, which in turn acts as forcing function on 
the blade. 

The probe wake widths are assumed proportional to the 
diameter of the probes. The wake is also assumed to maintain 
a constant width as it travels downstream. That is, the wake 
does not spread out or decay. For small axial distances between 
the probes and the blades, as is the case in most modern turbine 
engines, this closely represents the true physical situation. 

The general equation of motion for the blade considered as 
a multiple degree of freedom system is 

[M]U+[qu+[tf]U = F(0 (1) 
The excitation forces generated by the variable circumferential 
pressure may be characterized by means of a Fourier series 
analysis. Thus, the right-hand side of Eq. (1) is given by 

F « = P J] C„ cos (nQt+<!>„) (2) 

With the excitation forces in this form, the steady-state solution 
to Eq. (1) is given by 
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as presented by Craig [3]. The complete solution to Eq. (1) 
will include the transient response of the system to the initial 
conditions. Transient response is an important part of the 
impulsive reaction to probe perturbation. However, transient 
response analysis is not treated in this paper in order that the 
impact of the optimization scheme on the steady-state response 
may be clearly demonstrated. 

If the excitation forces generated by the variable circum
ferential pressure coincide with a natural frequency of the 
blade, then large resonant responses will occur. The usual 
solution to this problem is to redesign the turbine blades such 
that the blade is insensitive to the exciting forces. Since aero
dynamic design constraints on the blades do not generally allow 
radical changes in the blade geometry, an effective design 
change is often hard to come by. This is particularly true of 
power turbine blades where there are no internal cavities that 
could be modified to provide some relief [4]. 

When modification of the blade structure is not possible, 
the only feasible solution is to reduce or change the forcing 
function acting on the blades. To accomplish this effectively, 
a systematic technique of parameter iteration must be used, 
whereby an optimization of effects is achieved. By using such 
optimization techniques, design parameters that are not aero-
dynamically related to performance can be adjusted to alter 
the shape of circumferential pressure variations. The adjust
ments are made such that a reduction of the amplitudes of 
those Fourier components of the forcing function (produced 
by that shape) can be effected. Most important among these 
are the ones that can generate blade resonance. In effect, the 
energy associated with the resonant components is shifted to 
less critical modes. 

In this study, the design parameters selected are the circum
ferential locations of the thermocouple probes. The locations 
of each probe is assumed to be unrestricted, except that the 
probes may not physically overlap or have excessive movement 

Fig. 1 Geometry parameters for circumferential placement of the ther
mocouple probes 

such that the proper measurements of circumferential tem
perature distributions for engine control are lost. Additional 
proscriptions may be imposed on the specific probe locations 
by some other design criteria, such as avoiding fuel lines or 
oil service lines. 

The circumferential pressure pattern in a plane downstream 
of the probes is defined as a specific pressure, Pp, at a given 
angle of circumference. The circumferential pressure pattern 
between the probes is assumed to be constant and is equal to 
the free-stream pressure, Ps. The pressure in the wake behind 
the probes is assumed to drop to a minimum pressure equal 
to the thermodynamic static pressure, P0. 

The width of the pressure wake downstream of a probe is 
assumed to be equal to the diameter of the probe. Figure 1 
shows the geometry definitions used in defining the wake width 
at the midspan of the probe. The angle that subtends the 
circumferential arc length at the probe midspan radius is de
fined as /3 and is given by 

= 2 tan" 
2R 

(5) 

This angle will increase as the radial position from the engine 

Nomenclature 

An = coefficients of the Fourier co
sine terms N = 

B„ = coefficients of the Fourier sine N,„ = 
terms 

C„ = vector amplitude of the Fou- Nf = 
rier coefficients 

[C\ = structural damping matrix n = 
Dr = modal amplification factor 
d = probe diameter P = 
/ = objective function 

F(0 = vector of time-dependent fore- Po = 
ing function 

g = constraint functions Pp = 
/, j = indices 
[K\ = structural stiffness matrix Ps -
Kr = modal stiffness 

[M] = structural mass matrix q = 
M = number of spatial divisions r = 

within a wake 

number of movable probes 
number of modes to be used in 
the modal analysis 
number of frequencies to be 
constrained 
integer value of the excitation 
order 
vector defining the spatial de
pendence of the loading 
minimum pressure within the 
wake behind a probe 
pressure magnitude within the 
wake behind a probe 
free-stream pressure between 
probes 
number of spatial increments 
variable index of the natural 
frequency mode number 

Rr 
U(0 

a 

P 

e 

e 
tr 

* r 

4>w 

fi 
av 

= frequency ratio = Q/ur 
= displacement vector of physical 

coordinates 
= design variable 
= angle subtending the arc length 

of the probe diameter 
= integration error 
= circumferential angle 
= modal damping factor for the 

rth mode 
= normal mode shape for the rth 

mode 
= phase angle of the nth excita

tion order in the rth normal 
mode 

= rotational speed of the rotor 
= natural frequency of the rth 

mode 
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Fig. 2 Pressure pattern for five equally spaced circumferential ther
mocouple probes with 0.25 in. probe diameter and 7.0 in. radius at mid-
span of the probes 

centerline is decreased. Thus, the optimization analysis is also 
a function of the particular radius from the engine centerline 
used. The methodology presented here does not currently ac
count for the change in the Fourier coefficients as a function 
of the radius. However, this was judged to be a tolerable 
modeling expedient. The analysis for the example given in this 
paper was performed at the midspan radius of the probe, which 
gives a good approximation of the total forcing function. 

The pressure in the wake downstream of a probe varies with 
the circumferential angle. The angle /3 is normalized to range 
from zero to IT so that the pressure is represented by a sine 
squared function using the normalized angle, that is 

P„ = (Ps-Po) 1-sin 0 M (6) 

where Mis the number of divisions of (3. Experimental testing 
has shown that this mathematical definition of the pressure is 
quite accurate [5]. 

As an example, the circumferential pressure distribution 
shown in Fig. 2 is given for the case where the pressure dif
ference between the free-stream pressure and the static pressure 
is normalized to one. There are five identical probes of 0.635 
cm (0.25 in.) diameter, spaced 72 deg apart, and at a radius 
of 17.78 cm (7.0 in.). 

Fourier Analysis 

For a given number of probes at specified circumferential 
locations, the resulting pressure versus circumferential angle 
for a complete traverse of the turbine stage can be developed 
and represented by a Fourier series [6]. In the general case, 
this pressure pattern will have a spatial period equal to the 
probe mid span circumference, or in angular measure, 2ir. 
Thus: 

Pp{e)=A0+Yi {An cos (ne)+B„ sin (nd)} (7) 

The Fourier coefficients of the pressure pattern may now be 
evaluated using the well-known Euler formulas: 

--IS 
in = ~ \ PP< 

IT J_r 

PP(d)d6 

B„=-

,(6) cos (nd)dd 

Pp(6) sin (nd)dO (8) 

The pressure pattern may also be described in the vector am
plitude form: 

where 

PP(8)=J]cr cos (nQ + 4>„) 
B = l 

C„=\JAI+BI 

(9) 

= tan 
B„ 

(10) 

Using simple numerical integration methods, the Fourier 
series coefficients described in Eq. (8) can be easily obtained 
for a specific pressure distribution. A Simpson's rule numerical 
integration scheme was used in this study to evaluate the Fou
rier coefficients. 

In the frequency domain, the forcing function can be spec
ified conveniently by these Fourier coefficients. Derivatives of 
the Fourier coefficients with respect to the locations of the 
probes provide the trend of variation of the amplitudes of 
various excitation modes due to the change of probe locations. 
These derivatives are required by the linear programming tech
nique to find the optimal placement of the probes for reduced 
excitation. 

Analysis Procedure 
The problem of the optimal placement of thermocouples 

can be stated as to minimize an objective function, / , which 
can be selected as the amplitude of the most critical mode, 
subject to the design constraints on selected modal amplitudes, 
of: 

tfr^gjz.g? j=l,...,Nf 

and the side constraints of the design variables 

(11) 

af < a, < off i=l,...,N (12) 

where N is the total number of movable probes and the design 
variables are selected as angular locations of the probes. 

Using the first-order Taylor series expansion centered at the 
current locations, / and g of the new placement can be ap
proximated as 

df 
f=h + 2 T"-. ("' ~ a'°) 3a,-

(13) 

Si = Sjo+ y\ T1 Wi-otio) y ' = l , . . . , Nf (14) 
f~t °ai 

to form a linear programming problem over a limited range 
of design variables. Calculations of the derivatives of the ob
jective function and the constraint functions are called sen
sitivity analyses because these derivatives provide the trend of 
variations of those functions due to the change in the design 
variables. In this paper these derivatives are calculated using 
a central finite difference formulation presented in the follow
ing. 

When using central finite difference to perform sensitivity 
analysis, the derivatives are calculated for each design variable 
one at a time. All of the probes except the one for which the 
derivative is being calculated are considered fixed. For the 
design variable associated with the movable probe, a small 
perturbation in the circumferential location is added to and to 
and subtracted from the current probe location. The Fourier 
coefficients are evaluated for the modified circumferential 
pressure patterns resulting from these positive and negative 
perturbations. The derivatives of the coefficients with respect 
to the probe location are approximated by the change in the 
Fourier coefficient amplitudes divided by twice the pertur
bation. For the nth vector amplitude, the derivative with re
spect to the rth design variable is: 
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dC„ C„( + AcQ-C„(-AcQ n = 0, 1, . . . , o o 
dai" 2Aa, ;=1 , 2, . . . , N 

The derivatives of Ai and B„ may also be calculated in the 
same manner. 

Sample Problem 
The methodology developed above was implemented by a 

FORTRAN program for automatic computation. As a sample 
case, the situation of a thermocouple harness containing five 
probes upstream of a turbine stage in a small gas turbine engine 
was analyzed. The probes were uniformly spaced at 0, 72, 144, 
216, and 288 deg. All five probes were given the same diameter, 
0.635 cm (0.25 in.). The pressure difference between the free-
stream pressure and the static pressure was normalized to one. 
The analysis is carried out at the midspan radius of the probes 
which was defined as 17.78 cm (7.0 in.). Figure 2 shows the 
resulting idealized circumferential pressure distribution for this 
example. The turbine blades were considered to be sensitive 
to the fifth-order excitation at the operating rotational speed. 
The design goal was to reduce the magnitude of the fifth-order 
excitation generated by the thermocouple probe wakes. 

As a practical matter, it is not feasible to compute every 
term in the displacement solution summation of Eq. (3). In 
addition, for practical engineering problems, not every Fourier 
coefficient is required to be constrained. Thus, we impose limits 
only on the excitation orders immediately above and below 
the critical excitation order. This is an acceptable approxi
mation as a result of the inverse square relationship of the 
response to the frequency ratio given in Eq. (3). Because of 
this relationship, energy transferred to excitation orders other 
than those in immediate proximity of the critical order will 
have little effect on the response. Therefore, because the fifth-
order excitation was specified as the critical excitation order 
in the example, only the fourth and sixth excitation order 
coefficients are required to be constrained. However, in order 
to demonstrate the capacity of the software developed, the 
first through fourth and the sixth through ninth excitation 
order coefficients are constrained to have an upper limit of 
0.01 on their amplitudes. 

Additional constraints due to the locations of other me
chanical components were: Because of an oil supply line, the 
number one probe (located at 0.0 deg) was not permitted to 
move in the clockwise direction, and, because of a structural 
support, the number five probe (located at 288 deg) was also 
not allowed to move in the clockwise direction. 

To perform the numerical integration to calculate the Fourier 
coefficients, an initial spatial increment of ten points per degree 
of circumference was selected. Using the selected spatial in
crement, the circumferential pressure pattern was discretized. 
The discretization process yields a total of 3600 spatial points 
in one period and allows 1800 Fourier coefficients to be com
puted. The reconstruction of the actual pressure distribution 
requires an infinite series summation of the Fourier coefficients 
and their associated functionals. However, as indicated before, 
each of the individual Fourier coefficients is calculated with a 
high degree of accuracy because of the number of points used 
to define the function in the spatial domain. Therefore, only 
those coefficients and their derivatives pertinent to the objec
tive and constraint functions require calculation. 

The present example used three design variables. The three 
design variables selected, a\, ai, and 0:3, were the locations of 
probe numbers 1,3, and 5, respectively. The objective was to 
reduce the amplitude of the fifth-order coefficient while con
straining the amplitudes of the first through fourth and the 
sixth through ninth-order coefficients to be less than or equal 
to 0.01 psi. At the same time, geometry constraints are placed 
on the maximum motion (in degrees) that the design variables 
may move. 

Therefore, the objective function is stated simply as: 
f=C5 (16) 

while the constraint functions are defined by: 
C,<0.01 /= 1,2, 3,4, 

6, 7, 8, 9, (17) 
and the side constraints on the probe locations are given by: 

- l < a ! < 0 
- 1 < a2 < 1 
- l < a 3 < 0 (18) 

These side constraints prevent the first and fifth probes from 
moving in the clockwise direction (positive changes of a{ and 
a3) but allow the third probe to move in either direction. These 
side constraints also serve as the maximum move limits of 
design variables used for each iteration in the linear program
ming. By experience, these move limits allow the functions to 
be linearized to give a good approximation of the nonlinear 
characteristics of the problem while retaining a reasonable 
computation cost. 

The computation results for this example are presented in 
Tables 1-7. The computation proceeded through three global 
iterations, each with a different integration increment size. 
There are a number of local iterations within each global it
eration. The local iterations of each global iteration are con
sidered converged when all the movable probes cannot move 
with an angle larger than the integration increment size of the 
associated global iteration. A final global iteration is per
formed with a very small integration increment size to verify 
that the analysis has converged. 

The integration increment size is fixed within each global 
iteration. However, the integration increment size is reduced 
by an order of magnitude when computation proceeds from 

Table 1 Change of probe locations (deg) for the first global iteration 

Iteration 
Number 

1 
2 
3 
4 
5 
6 
7 
8 

0 
-1 
-1 
-1 
0 
0 
0 
0 

1 

0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 

0 
0 
0 
0 
0 
0 
0 
0 

2 

0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 

Probe Number 
3 

1.0000000 
1.0000000 
1.0000000 
1.0000000 
1. 0000000 
1.0000000 
0.1000000 
0.0000000 

0 
0 
0 
0 
0 
0 
0 
0 

4 

0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 
0000000 

0 

-a 
-1 
-X 
-1 
-0 
0 
0 

5 

0000000 
0000000 
0000000 
0000000 
0000000 
2000000 
0000000 
0000000 

Table 2 Change of probe locations (deg) for the second global iteration 

Iteration 
Number 

1 
2 
3 

1 

0.0000000 
0.0000000 
0.0000000 

2 

0.0000000 
0.0000000 
0.0000000 

Probe Number 
3 

0.9500000 
0.0400000 
0.0000000 

4 

0.0000000 
0.0000000 
0.0000000 

0 
0 
0 

5 

0000000 
0000000 
0000000 

Table 3 Change of probe locations (deg) for the third global iteration 

Iteration 
Number 

0 
0 
0 
0 
0 
0 

1 

0000000 
0000000 
0000000 
0000000 
0000000 
0000000 

0 
0 
0 
0 
0 
0 

2 

0000000 
0000000 
0000000 
0000000 
0000000 
0000000 

Probe Number 
3 

1.0000000 
0,2470000 
0.0290000 
0.0230000 
0.0080000 
0.0000000 

0 
0 
0 
0 
0 
0 

4 

0000000 
0000000 
0000000 
0000000 
0000000 
0000000 

0 
0 
0 
0 
0 
0 

5 

0000000 
0000000 
0000000 
0000000 
0000000 
0000000 

Table 4 Probe locations (deg) for the global iterations 

Iteration 
Number 

0 
1 
2 
3 

0 
-3 
-3 
-3 

1 

000000 
000000 
000000 
000000 

17. 
72 
72 
72 

2 

000000 
000000 
000000 
000000 

Probe Number 

144 
150 
151 
152 

3 

000000 
100000 
090000 
397000 

216 
216 
216 
216 

4 

000000 
000000 
000000 
000000 

288 
283 
283 
283 

5 

000000 
800000 
800000 
800000 
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Table 5 Harmonic amplitudes for the first global iteration 

I t e r a t i o n 
Number 

1 
2 
3 
4 
5 
6 
7 
8 

9 8 5 
9 8 5 
9 8 7 
9 8 8 
9 8 8 
9 8 8 
9 8 8 
9 8 8 

C o 

7877 
7877 
0519 
6292 
6302 
6302 
6302 
6307 

0 
0 

• 2 
6 
6 
6 
6 
6 

C, 

1513 
2398 
7436. 
0608 
2 2 0 1 
3 7 8 1 
4572 
4622 

0 
0 
2 
5 
5 
5 
5 
5 

C2 

1540 
2026 
2826 
3680 
3172 
2760 
1481 
1341 

H a r m o n i c 
c i 

0 . 1 5 6 4 
0 . 3 0 3 0 
2 . 9 3 6 9 
6 . 2 0 3 5 
6 . 3 2 1 3 
6 . 4 3 2 9 
6 . 6 9 0 1 
6 . 7 1 9 3 

0 
0 
1 
4 
3 
3 
3 
3 

A m p l i t u d e ( 1 0 ' 3 

C4 

1578 
5238 
8656 
3708 
9343 
6155 
4842 
4732 

C 5 

2 8 . 3 8 4 8 
2 8 . 3 6 4 7 
2 5 . 7 6 4 1 
2 2 . 4 3 0 1 
2 2 . 1 7 1 8 
2 1 . 8 3 3 1 
2 1 . 5 7 7 2 
2 1 . 5 5 2 7 

) 

0 
0 
3 
7 
8 
9 
9 
9 

C 6 

1648 
7463 
9559 
9 1 5 1 
8 0 2 1 
6 2 8 1 
9717 
9928 

0 
0 
1 
4 
5 
5 
6 
6 

c7 

1 6 4 1 
6293 
8865 
9 8 3 1 
3040 
8870 
2187 
2495 

0 
0 
3 
7 
7 
7 
7 
7 

C 8 

1678 
7930 
6298 
0553 
2367 
2993 
7950 
8548 

0 
1 
1 
3 
3 
4 
5 
5 

C9 

1683 
0074 
9934 
4160 
6619 
5743 
0551 
0863 

Table 6 Harmonic amplitudes for the second global iteration 

I t e r a t i o n 
Number 

1 
2 
3 

988 
988 
988 

Co 

6312 
6312 
6312 

C 1 

6 . 4 0 1 9 
6 . 4 5 0 9 
6 . 4 5 2 7 

5 
5 
5 

C2 

2564 
1348 
1303 

Harmon ic Ampli 
c, c4 

6 . 7 7 5 2 
7 . 0 4 7 3 
7 . 0 5 9 4 

3 . 0 8 5 2 
2 . 9 6 5 9 
2 . 9 6 1 3 

t u d e ( 1 0 ' 3 

C5 

2 1 . 5 7 7 5 
2 1 . 3 4 7 5 
2 1 . 3 3 7 3 

) 
C6 

9 . 8 1 5 1 
9 . 9 9 2 4 
9 . 9 9 9 2 

C7 

6 . 4 9 2 2 
6 . 8 5 5 4 
6 . 8 7 2 9 

C 8 

7 . 8 6 3 2 
8 . 4 0 2 2 
8 . 4 2 4 1 

C9 

4 . 9 0 0 3 
5 . 2 2 9 0 
5 . 2 4 2 9 

Table 7 Harmonic amplitudes for the third global iteration 

I t e r a t i o n 
Number 

1 
2 
3 
4 
5 
6 

9 8 8 
9 8 8 
9 8 8 
9 8 8 
9 8 8 
9 8 8 

C o 

6312 
6312 
6312 
6312 
6312 
6312 

9 
9 
9 
9 
9 
9 

C, 

2801 
2473 
2408 
2433 
2410 
2415 

8 
8 
8 
8 
8 
8 

C 2 

6817 
6910 
6975 
6971 
6976 
6972 

Harmonic A m p l i t u d e ( l o ' 3 

C 3 

9 . 0 4 3 9 
9 . 2 6 4 9 
9 . 3 1 3 2 
9 . 3 0 7 2 
9 . 3 1 2 2 
9 . 3 1 0 5 

C 4 

2 . 2 2 0 1 
1 . 8 3 8 1 
1.7462 
1 .7570 
1 .7484 
1 .7513 

C
5 

2 1 . 5 0 6 7 
2 1 . 2 3 6 5 
2 1 . 1 6 7 6 
2 1 . 1 7 5 7 
2 1 . 1 6 9 2 
2 1 . 1 7 1 6 

) 
C 6 

9 . 8 2 5 9 
9 . 9 7 0 3 

1 0 . 0 0 2 0 
9 . 9 9 8 3 

1 0 . 0 0 1 2 
1 0 . 0 0 0 2 

7 
7 
7 
7 
7 
7 

C 7 

1561 
6561 
7924 
7761 
7890 
7845 

8 
8 
8 
8 
8 
8 

=8 

3794 
8714 
9865 
9730 
9838 
9800 

4 
5 
5 
5 
5 
5 

C, 

8395 
2421 
3408 
3293 
3384 
3353 

one global iteration to the next. The analysis within the first 
global iteration uses an integration increment size of 0.1 deg. 
Once the local iterations converge, the step size is reduced to 
0.01 deg. The second global iteration then continues beginning 
from the probe positions determined in the last global iteration. 
The smaller integration increment size increases the accuracy 
of the Fourier coefficient calculation and the sensitivity anal
ysis. Therefore, the algorithm may move the probes a larger 
amount in the local iteration immediately following the inte
gration increment size change. However, the trend of conver
gence is always in toward the order of the step size. The analysis 
proceeds within the seconds global iteration until the local 
iterations converge. The integration increment size is reduced 
further to 0.001 deg and the analysis continues until the local 
iteration converges. Tables 2 and 3 clearly show this behavior 
occurring in the first local iteration after the integration in
crement size change for both the second and third global it
erations. 

In our example, the overall program was considered con
verged when the change in location of any one of the movable 
probes was less than 0.001 deg. This limit was set from the 
practical consideration that angles smaller than this cannot 
easily be measured in a manufacturing situation. This con
vergence criterion was reached after the third global iteration. 
A final global iteration was run with a very small integration 
step size of 0.0005 deg. Since the changes of all of the probe 
locations were zero at the first local iteration of the fourth 
global iteration, it was verified that the algorithm had con
verged. 

Table 4 shows an iteration history of the probe locations. 
For each iteration, the change in the angular location of each 
probe is given. Because their position specifications are fixed, 
there are no changes in the locations of the number 2 and 4 
probes. 

Tables 5-7 show the iteration history of the harmonic am
plitudes. Figure 3 is a histogram showing the change in the 

EXCITATION ORDER 

Fig. 3 Initial and final vector amplitudes for the example 

vector amplitudes of the first nine excitation orders between 
the condition at the beginning of the analysis and the condition 
at the conclusion of the analysis. After three global iterations, 
amplitude of the fifth-order excitation has been reduced by 26 
percent. The amplitudes of all other excitation orders have 
been increased and are approaching the constraint upper limit. 
The amplitudes of the first, second, third, sixth, and eighth-
order excitations have closely approached the constraint upper 
limit of 0.01 psi. Because the amplitudes of these coefficients 
are approaching the upper limit, an alternate convergence cri
terion could be specified by defining a tolerance bound on 
these constraint amplitudes. 

Three simple examples of the application of the methodology 
are represented in the Goodman diagram shown in Fig. 4. For 
a linear system, a 26 percent reduction in the excitation force 
will result in a 26 percent reduction in the alternating stress. 

Consider the following three hypothetical cases. The first 
case is an engine component with a mean stress of 25 ksi, and 
an alternating stress of 11 ksi, point A in Fig. 4. Assuming 
that the contributions to the alternating stress from excitation 
orders other than the fifth order are negligible, a reduction of 
26 percent in the alternating stress brings the alternating stress 
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to 8.14 ksi, or point B in Fig. 4. Using the Goodman line at 
temperature I, Fig. 4 clearly shows that such a reduction in 
alternating stress brings the component from the finite life 
region to the infinite life region. 

The second case again uses the Goodman line at temperature 
I. This case is that of an engine component with a mean stress 
of 25 ksi and an alternating stress of 7 ksi, point C in Fig. 4. 
This stress condition provides a vibratory margin of 2.64 ksi. 
A reduction of the alternating stress by 26 percent brings the 
alternating stress to 5.18 ksi, point D. In this case the mean 
stress may safely be increased to 33.5 ksi while retaining an 
infinite life of the component and maintaining a vibratory 
margin of 2.64 ksi. This increase in allowable mean stress 
means that the component could be operated safely at a speed 
16 percent higher, thus improving performance without sac
rificing component life or vibratory margin. 

The third case is that where the engine component also has 
an alternating stress of 7 ksi and a mean stress of 25 ksi. With 
a 26 percent reduction of the alternating stress, from 7 ksi to 
5.18 ksi, and a constant mean stress, the temperature of the 
component could be increased. With an increase in tempera
ture, the Goodman line would move from that given by the 
temperature 7 line to that at temperature 77, the dashed line 
shown in Fig. 4. An increase in the overall temperature of the 
engine will result in improved performance. By reducing the 
forcing function acting on the blades, the alternating stress in 
the blades will be reduced. A temperature increase to improve 
engine performance can then be made without sacrificing com
ponent life. 

All three of these examples demonstrate a marked improve
ment in the quality of the components resulting from reduction 
of the forcing function driving the vibration of the compo
nents. The application of this methodology allows any one or 
a combination of all three improvements to be made to an 
engine component. 

Conclusion 
A methodology has been presented that provides a simple 

and powerful automated tool for use in reducing the amplitude 
of the excitation generated by thermocouple probes upstream 
of a turbine rotor. Using this methodology, the aerodynamic 
parameters upstream of the probes are not altered. Therefore, 
the aerodynamic performance of the engine is impacted min
imally. The methodology presented is capable of handling a 
large spectrum of complex design situations. The methodology 
associated with this type of problem. This is accomplished by 
providing a computational approach for determining the lo
cations of thermocouple probes to reduce the downstream 
wake excitation amplitudes. The algorithm itself is highly ef
ficient. The example given in this paper was executed on an 
IBM 3090 mainframe computer using 14.4, 53.4, 460.2 CPU 
seconds for the first, second, and third global iterations re
spectively. The verification run required 145.2 CPU seconds 
to confirm the convergence of the solution. 

The methodology can be extended in the following manner. 
First, the methodology can be adapted to consider other objects 
in the flow path. The methodology has general applicability 
if the pressure wake downstream of the obstruction can be 
described in a piecewise analytic manner. Thus excitations 
generated by stator vanes or inlets or inlet struts may also be 
considered by the methods presented here. Secondly, a pseudo-
three-dimensional analysis may be conducted by including the 
effects of various radii on the Fourier coefficients. Finally, a 
transient response analysis can be included, if desired, by in
cluding the system initial conditions in the solution of Eq. (1). 

In summary, this paper presents an effective and efficient 
methodology to improve the quality and reliability of gas tur
bine engine components. The software developed to implement 
this methodology is highly accurate and cost effective. There
fore, component quality assurance can be achieved with re
duced design effort. 
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