
Research Article
Write-Combined Logging: An Optimized Logging for
Consistency in NVRAM

Wenzhe Zhang,1 Kai Lu,1 Mikel Luján,2 Xiaoping Wang,1 and Xu Zhou1

1Science and Technology on Parallel and Distributed Processing Laboratory, College of Computer,
National University of Defense Technology, Changsha 410073, China
2School of Computer Science, The University of Manchester, Manchester M13 9PL, UK

Correspondence should be addressed to Kai Lu; kailu@nudt.edu.cn

Received 31 July 2015; Revised 8 October 2015; Accepted 18 November 2015

Academic Editor: Wan Fokkink

Copyright © 2015 Wenzhe Zhang et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Nonvolatile memory (e.g., Phase Change Memory) blurs the boundary between memory and storage and it could greatly facilitate
the construction of in-memory durable data structures. Data structures can be processed and stored directly in NVRAM. To
maintain the consistency of persistent data, logging is a widely adopted mechanism. However, logging introduces write-twice
overhead.This paper introduces an optimized write-combined logging to reduce the writes to NVRAM log. By leveraging the fast-
read and byte-addressable features of NVRAM, we can perform a read-and-compare operation before writes and thus issue writes
in a finer-grained way. We tested our system on the benchmark suit STAMP which contains real-world applications. Experiment
results show that our system can reduce the writes to NVRAM by 33%–34%, which can help extend the lifetime of NVRAM and
improve performance. Averagely our system can improve performance by 7%–11%.

1. Introduction

Emerging nonvolatile memory (NVRAM) technologies [1]
blur the boundary between memory and storage with its
byte-addressability and fast access similar to DRAM and
nonvolatility similar to disk. Systems withNVRAMattaching
to memory bus have been widely advocated [2] which would
greatly facilitate the construction of in-memory durable data
structures [3]. In such systems, persistent data structures
reside in NVRAM as they are created and modified rather
than being operated in one format and transformed into
another format to be durable [4]. Lots of performance
benefits can be reaped from this uniform state, especially for
the applications of database [4]. However, the consistency of
persistent data is required to bemaintained in case of software
or hardware failure. Otherwise the data that persisted in
NVRAM may be left in an invalid intermediate state after
system reboot and is not reusable. This is also a classic
problem in file systems and databases.

Figure 1 shows an example of data consistency, if we have
a data structure of peoplewhich contains twofields: name and

age. It is stored in NVRAM and its initial state is as Figure 1
shows. If we want to modify the structure to change it to
store other people’s information, such as name: XYZ and age:
28, we have to update the two fields separately (as step 1 and
step 2 in the example) due to the hardware limitation. If the
system crashes right after we finished step 1 and before step 2,
although the information in the data structure is not lost after
rebooting, it is wrong and is not reusable now (state shown in
the dashed box). This is the problem of the data consistency
for NVRAM.

Logging [5] is a widely adopted mechanism to guarantee
the consistency of persistent data. With such mechanism,
every consistent update to nonvolatile media will result
in extra writes. For example, in Figure 1, in write-ahead
logging, an update operation would (a) first write to the
log, wait until the log is persistent, and then (b) update
the correspondent locations according to the log. Thus if
failure happens during the operations,we can recover the data
structure to a consistent state. The write-twice problem [5]
will lead to a degradation of performance and faster wearing
out of NVRAM [6].

Hindawi Publishing Corporation
Scientific Programming
Volume 2015, Article ID 398369, 13 pages
http://dx.doi.org/10.1155/2015/398369

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357378261?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Scientific Programming

Struct people
{
Name: ABC
Age: 20

}

Struct people
{

}

Name: XYZ
Age: 28

Struct people
{

}

Name: XYZ
Age: 20

(1) Modify (2) Modify

log
{
Name: XYZ
Age: 28

}

(a) Write log
(b) F

lush log

name age

Modify name = XYZ
Age = 28

Figure 1: Example of data consistency and write-twice logging.

The write-twice problem has been in research [5] for long
in traditional file systems and databases. Recently some work
[9] proposed using nonvolatile memory as a combination
of data buffer and logging (or journaling) area in front of
the secondary nonvolatile media. This method separates the
two writes to different destinations: one write to nonvolatile
memory as logging and another write to secondary storage
as true update. In this way it could improve performance
by reducing the writes to secondary storage as normally the
secondary storage is much slower than nonvolatile memory.
However, this solution only applieswhenwe store datamainly
in secondary storage. As we introduced before, NVRAM
allows data to be persistent directly in it without any trans-
formation. In this new context the write-twice problem still
exists and has never been studied before. Another study trend
of tackling write-twice problem results in log-structured file
system [10]. In such systems, all data appears in the form
of log. It only does one write to the log for every update.
However, this system may be trapped into large and complex
data indexing problem and thus it fades out of mainstream
use.

Above all, this paper proposes write-combination log-
ging, a novel method to reduce the writes to nonvolatile
memory while maintaining the consistency of data stored in
it. By leveraging the byte-addressable and fast-read properties
of NVRAM, we can perform a read-and-compare operation
before every write and thus eliminate unnecessary writes.
Also we can combine two 32 bits’ modifications into a 64-
bit write to reduce the number of writes to NVRAM. As
nonvolatile memory is limited in terms of bandwidth and
lifetime [11], reducing the number ofwrites to it would be very
beneficial.

The main work of this paper is as follows:

(i) a nonvolatile heap based on NVRAM which offers
transactional interface for upper applications to
access nonvolatile data;

(ii) a novel write-combination mechanism to reduce the
number of writes to NVRAM without sacrificing the
data consistency. All the work is done at operating
system and library level without any changes to the
underlying hardware.

The rest of this paper is organized as follows: we give
the background information and ourmotivation in Section 2.
Sections 3 and 4 show our design and implementation in
detail and the experiments results are shown in Section 5.
Related work is discussed in Section 6 and Section 7 con-
cludes.

2. Background and Motivation

2.1. NonvolatileMemory. Nonvolatilememory (NVRAM), or
storage class memory (SCM) [4], or persistent memory [1],
has been developing fast recently. Phase Change Memory
(PCM) is a representative one and is now available as
prototype. It offers features as byte-addressablility, fast access,
and being nonvolatile. Moreover, it is highly scalable on
density. Along with the Multilevel Cell (MLC) technology
[12], PCM can be very large in capacity. Table 1 shows a
comparison between PCM and DRAM on some key features.
As we can see from the table, the read speed of PCM is almost
the same with DRAM while the write speed is much slower.
This asymmetric access speed has been leveraged in many
previous works [13] in architectural level to accelerate writes
to PCM. Limited lifetime is another problem of PCM. Many
wear-leveling mechanisms have been proposed to tackle this
[14]. Also there are some studies [15, 16] at hardware level to
reduce the number of writes to PCM to extend its lifetime.
Above all, accelerating its write speed and extending its
lifetime are essential for making better use of it.

2.2. Assumptions. In order to facilitate persistent data pro-
cessing, we do our work based on the widely advocated
architecture [4] in which the NVRAM is attached to the
memory bus and forms a single physical address space with
DRAM. In such architecture, NVRAM could be accessed
directly by CPU via normal load and store instructions. The
cache of CPU can accelerate accessing NVRAM as well. As
we are tackling the data consistency problem of NVRAM, we
make several basic assumptions like previous work [17]: (1)
any 64-bit write to NVRAM is atomic, which means any 64-
bit write to NVRAM either is persistent as a whole or has no
effect at all; (2) a special memory fence should be provided
by underlying hardware to stall execution until all previous
writes reach NVRAM.

Scientific Programming 3

Table 1: Comparison between PCM and DRAM [4, 7].

DRAM PCM

Read 60 ns 100–300 ns (present)
50–85 ns (future)

Write 60 ns 10–150 us (present)
150–1000 ns (future)

Density 7𝐹2 4𝐹2

Endurance 10
16

10
7

Nonvolatility N Y
Byte-addressable Y Y

2.3. Observation and Motivation. NVRAM has appealing
features of fast-read and byte-addressability, which allows
us to perform a read-and-compare before writing to it. By
doing this we may have some chances to issue less writes.
For example, if we want to issue a 64-bit write to location
A, we first check the old value in location A. If, luckily, we
find the old value is the same as the new value, then we can
eliminate the write. This lucky case would only account for
small parts and a more common situation is when a 64-bit
write modifies only 32 bits of the location. In this situation
we can combine two 32 bits’ modifications into a 64-bit write
and store it to the log. In this way we reduce a write to the
log (originally it would be two 64-bit writes). As the write
operation of NVRAM is much more expensive than read, by
doing this we can gain performance benefit and extend the
lifetime of NVRAM.

We tested the modification ratio of the benchmark suit
STAMP [18] to show the potential benefits we can reap. We
choose the benchmark suit STAMP because it covers a wide
range of applications domains (as described in Table 3) and
can show real-world cases.More importantly, it is well written
using transactional interface. The concept of transaction
is widely used in database to achieve atomic update of
data and in our system we will also adopt it to support
consistent update of data stored in NVRAM. In transactional
mechanism, every thread will first log all modifications in its
own log and then update the memory locations at commit
time. Here in the test we will show, among all the 64-bit
writes, how many proportions are modifying nothing and
how many are just modifying 32 bits.

Figure 2 shows the modification ratio of benchmark
STAMP with inputs shown in Table 3. We gained the mod-
ification ratio by comparing the new value and old value of
every transactional write at transaction commit time. Like
traditional database systems, we assume that the persistent
data should be consistently updated at the commit time of
every transaction. We recorded information of three types of
update: (1) the new write writes the same value thus modifies
nothing (shown in the figure as unmodified), (2) the new
64-bit write modifies only 32 bits of first half or second
half (shown in the figure as half write); (3) other writes
(shown as other). As we can see from the statistics, almost all
benchmarks contain a dominating part of half write (except
𝑘means). Notice that all the transactional writes in these
benchmarks are 64 bits. Thus this large proportion of half

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

M
od

ifi
ed

 ra
tio

 (%
)

+− +− +− +− +− +− +− +−

ba
ye

s

ge
no

m
e

in
tr

ud
er

k
m

ea
ns

la
by

rin
th

ss
ca

2

va
ca

tio
n

ya
da

Other
Unmodified
Half write

Figure 2:Modification ratio (“−” and “+”mean small and increased
problem scales).

write shows great potential for optimization. Moreover, for
the benchmarks bayes, intruder, vacation, and yada, we can
see a considerable proportion (around 20%) of unmodified
write. These writes are unnecessary and could be eliminated
directly. Above all, for every benchmark we tested here, there
are more than 99% writes (the unmodified part and half
write part) that could be optimized (combined or eliminated)
to tackle the write-twice problem. 𝑘means is an exception
here because of its special memory-intensive accessingmode.
Even so we still have near 10% of writes that could be
optimized. Finally, as we increase the problem scale for every
application, it shows the same trend.

3. Design

We first design a persistent heap based on NVRAM with
transactional interface to facilitate allocating and modifying
persistent data. Base on that, we give a baseline logging
mechanism to maintain consistency and then introduce our
optimized logging to reduce the number of writes.

3.1. Persistent Heap. To enable upper applications to access
NVRAM directly, we extend current virtual memory man-
ager (VMM) to offer a special system call nv map(). Like
mmap(), nv map() is used to allocate a region of virtual
memory but is mapped to NVRAM pages instead of DRAM
pages. The mapping can be controlled in page fault handler
simply. However, an important thing is that as NVRAM is
nonvolatile, we should keep the virtual-physical mapping
relationship nonvolatile too. This is done by storing a non-
volatile page table inNVRAM.We set the first several pages of
NVRAMas reserved to be ametadata part. For every process,
it mainly stores two kinds of information. (1) The process’s
nonvolatile virtual region: this is managed in a simple vector
that describes all the nonvolatile virtual regions of the current
process which are created by nv map(). (2) The process’s

4 Scientific Programming

nonvolatile page table: this page table is not what controls
the current mapping in the kernel. It is just for recovering
purpose and is updated at the end of every transaction.When
a new page in a nonvolatile virtual region is accessed, we will
allocate a new NVRAM physical page and the information
will be updated to the nonvolatile page table at the end of
every transaction. To reduce the usage of metadata part, we
just store the root page directory in the matedata part for
every process. Other NVRAM pages that store the secondary
level directories and tables are allocated and indexed in the
normal way. (3) The process’s id: this is the process’s absolute
path. We use the process’s absolute path as the process’s id.
Thus if a program is reexecuted,wewill recover all its previous
virtual regions and mappings using the information in the
metadata part.

When a program starts after system reboots, we recover
the program’s nonvolatile regions as follows. (1) Firstly at the
start of the program we will recover the nonvolatile virtual
regions using the information stores in the metadata part
and by reexecuting nv map() with specific starting addresses
and lengths. (2)Then when it accesses some previous regions
and triggers page fault, we search the nonvolatile table in the
metadata part. If there has been a previous mapping, we will
recover the mapping. If not, we will allocate a new NVRAM
physical page and update the mapping. All the NVRAM
physical pages which are in use will be set as reserved at
system booting time according to the nonvolatile page tables
in metadata part.

Based on the system call nv map(), we can easily build a
persistent heap for allocating persistent objects. We build our
persistent heap based on previous memory allocator Hoard
[19]. What a traditional memory allocator does is basically
asking for large memory regions from operating system via
mmap() and then retailing small objects to upper applica-
tions. Here we just modify Hoard to use nv map() instead
of traditional mmap() to ask for large persistent memory
regions from operating system and offer memory allocation
interface nv malloc() and nv free() for upper applications
to allocate and deallocate persistent memory structures or
objects.

3.2. Transaction System and Baseline Logging. The persistent
heap introduced above enables upper applications to access
NVRAM directly as they access traditional DRAM. They
can allocate persistent objects through the persistent heap
and read or store data in NVRAM. However, when they
are writing NVRAM, they are not informed of nor assured
about the order in which the writes would reach NVRAM.
Furthermore, they would not know whether a write has
reached NVRAM before a system crash. Thus there is no
guarantee here that the data they stored in NVRAM is
reusable after the system reboot. It is the classic consistency
problem for persistent data.

Similar to the traditional database systems [20] and
NVRAM-based work [3], we adopt the notion of transaction
to support consistent update of data in NVRAM. We build
our transaction system based on TinySTM [21, 22] and
provide interface shown in Table 2. TinySTM is lightweight
software transactional memory (STM) system. Compared

Table 2: Interface.

Interface Description
nv malloc (size, name) Allocate a persistent object
nv free (addr) Free a persistent object
tm begin () Start a transaction
tm end () End and try to commit a transaction
tm read () Transactional read
tm write () Transactional write

with traditional database transactions which offer ACID
(atomicity, consistency, isolation, and durability), software
transactional memory systems usually only offer atomicity,
consistency, and isolation but no durability. Here, with
NVRAM, we can easily add durability to STM by storing data
structures directly in NVRAM. On the other hand, we can
easily achieve consistent update of data with the help of STM.

Our transactional system is shown in Figure 3. The
whole system acts as follows. (1) We first allocate persistent
objects or data structures in NVRAM. Upper applications
are required to access them using our transactional interface
(or the persistent data can be accessed directly without
using our transactional interface but in this case we do not
guarantee the update to be consistent). During transaction
running, TinySTM will keep a writing buffer to isolate the
writes of different transactions (step 1 shown in the figure).
In our system we put the writing buffer in DRAM to
accelerate accessing NVRAM (as previous work [17] shows
putting frequently accessed data in NVRAM would result
in a performance degradation of around 25%). (2) When
a transaction finishes and is ready to commit, we make it
commit to a log stored in NVRAM instead of the original
locations as traditional STM does. This step is shown as step
2 in Figure 3. The logging we added is the key to guarantee
the update of persistent data to be consistent. Otherwise if a
system failure happens during the committing to the original
locations, we will lose the data stored in DRAM and the data
stored in NVRAM are in a nonconsistent state. (3) After all
data have reached the log in NVRAM, we can then do the
logging flush to update the original locations (shown as step
3 in the figure).

In order to protect the metadata (objects allocation
information) of our persistent heap, we also add log. The
difference is that our memory allocator is based on Hoard
which has been well written using fine-grained lock.Thus we
just need to add log to buffer writes and do not have to detect
transaction conflicts.

3.3. Write-Combined Logging. The logging we added is like
journaling in file system which is important to maintain the
consistency of the data stored in NVRAM.However, it comes
with costs, which is the write-twice problem. Steps 2 and 3 in
Figure 3 demonstrate the write-twice problem: every update
of persistent data results in two writes to NVRAM (a write to
log and another write to the original location).

In this section we design a mechanism called write-
combined logging to reduce the writes to log (step 2 in
Figure 3) without sacrificing information to maintain the

Scientific Programming 5

DRAM NVRAM

Obj a

Obj b

Obj c

Obj d
TM write buffer

Addr a Addr b Addr c Addr a Addr b Addr c
Val a Val b Val c (1) Transactional

update Logging

Val a Val b Val c

(2) Transactional
commit

(3) Log flush

· · · · · ·

Figure 3: Transactional mechanism.
(1)

 Rea
d a

nd
 co

mpa
re

Obj a

Obj b

Obj c

NVRAM objects

NVRAM log

(3) Optimized commit

(2) Baseline commit
TM write buffer Optimized NVRAM log

Saved

Addr a Addr a
Addr b

Addr b

Addr c

Addr a

Addr b

Addr c

0x5555555522222222

0x1111111111111111 0x3333333333333333

0x2222222222222222

0x1111111144444444

0x3333333333333333

0x1111111144444444

0x5555555522222222

0x3333333333333333

0x5555555544444444

Figure 4: Transactional mechanism.

consistency of data. Our idea is based on the following key
insights. (1) NVRAM is fast to serve read. Reading data
from NVRAM is much cheaper than writing data to it. (2)
Compared with traditional secondary storage, NVRAM is
byte-addressable. Reading data from it is much more faster
even when cache misses, while reading data from secondary
storage may result into copying pages into main memory
buffer. (3) Our tests (Figure 2) show that there is great
potential to optimize the writing to log.

Based on the insights and observations introduced above,
our write-combined logging mechanism is straightforward.
Wemainly modify step 2 in Figure 3 to optimize the writes to
log at transaction commit time. Our write-combined logging
is shown in Figure 4. Assuming, in this transaction, thatObj a
andObj b are bothmodified partially (Obj a ismodified at last
32 bits and Obj b is modified at first 32 bits), Obj c is written
in the same value as its old value. In the baseline design, the
transaction commit will write 6 ∗ 64 bits of data (3 addresses
and 3 new values) into the NVRAM log (shown as step 2
in Figure 4). However, if we first do a read-and-compare
operation to check the modifications, we can eliminate and
combine the writes. As step 3 shows in the figure, we combine
themodifications ofObj a andObj b into a single 64-bit write.
Moreover, the update of Obj c is eliminated. In this case our
write-combined logging reduces as much as 50% writes to

NVRAM. Notice that when we combine two writes into one,
we can reduce one write to NVRAM log. But if we eliminate
one write, we reduce two writes (one for address and one for
value) to NVRAM log. Thus although the unmodified write
accounts only for small parts in a transaction, we can benefit
greatly from it.

When we are combining the writes in the NVRAM log,
we need to store extra information of the combination. We
do not add extra space to achieve this. In the benchmarks
we tested, all the writes are in the form of 64 bits, which
leads to the addresses all having their last 4 bits to be zero.
We can leverage the last 4 bits of every address to store the
combination information. Moreover, for applications which
need to do an update at arbitrary granularity less than 8
bytes, a mask field is often introduced in traditional STM
[21] systems. In such situation we can reduce the writes to
NVRAM more by combining the mask field with the value
field. By comparing with the old value, we can store flipping
bits in the new value field instead of the original new value.
The flipping bits indicate which bit in the old value should
be reversed in order to get the new value. In this way we can
combine the mask field and value field in the NVRAM log
efficiently. However, we argue that this less-than-64-bits write
is rare in 64-bit systems; thus we do not implement this mask
combination in our system. We tackle this problem by just

6 Scientific Programming

aligning the pointer which has been passed to our interface
tm read() or tm write() to the former 64-bit boundary and
record 64 bits anyway.This may introduce some unnecessary
records but we believe this situation will do no harm to the
overall performance.

3.4. Discussion. The log in NVRAM can be flushed in ways
of synchronous or asynchronous flushing.The asynchronous
flushing can move the flushing out of critical path thus
improving performance. However, it needs extra coding to
indicate the flushing and we need to search and index data
in the NVRAM log which introduces overhead, especially
when the logging is getting large. Anyhow, both strategies
need the log to be whole persistent at the time of transaction
commit, which is in the critical path. This paper aims to
reduce the logging data and thus could accelerate step 2 in
Figure 3 no matter which flushing strategies we adopt. We
do not discuss which strategy is better in this paper and just
adopt synchronous flushing for simplicity.

4. Implementation

The whole system we implemented include a kernel patch
to Linux kernel 3.11 to maintain the persistent mapping and
a runtime library to manage the memory allocation and
transactional accessing of persistent data structures. Our
system needs no modification on underlying hardware.

4.1. Memory Management of NVRAM. As NVRAM is not
widely available now, we add latency to DRAM to emulate
NVRAM. We separate the whole physical address space into
two parts (DRAM and NVRAM) by modifying the memory
scanning process at system booting time. The DRAM part is
used as usual andwe run operating systemon it.TheNVRAM
part will be managed by our kernel patch. Specifically, when
an upper application asks for a region of virtual memory
through nv map(), it will firstly get a normal virtual memory
region. Then if it accesses any virtual page of the region, our
kernel patch would allocate one physical page from NVRAM
and map the virtual page to that physical page in the page
fault handler. Also the mapping relationship will be recorded
into NVRAM. As in this scenario we just need one physical
page at a time, we list all the free pages of NVRAM in a free
list instead of using traditional body system to manage pages
into large continuous blocks. At the system rebooting time,
we scan the mapping information in NVRAM and set the
already-in-mapping pages as reserved and other pages as free.

In order to emulate the nonvolatility of NVRAM, we
dump all the physical pages of NVRAM part into disk before
system rebooting and copy them back after system rebooting.
Thus it seems that the data stored in NVRAM part are
persistent. In order to emulate the access latency of NVRAM,
we add latency after write to NVRAM which is like what the
previous works [4, 17] do. The read speed of NVRAM is as
fast as DRAM so we do not tackle reading specially. Notice
that, as we adopt a DRAM buffer for updating NVRAM, the
writes to NVRAM only happen at transaction commit time.
At transaction commit time we firstly perform the writes to

NVRAM log and then flush all the cache lines accordingly
using clflush. The latency is added per cache line because
the cache line is actually the granularity of updating main
memory. After flushing all the cache lines and adding latency,
we issue a memory fence using mfence.

4.2. Volatile Cache. Cache is volatile and will affect the
consistency of persistent data in memory. In order to solve
this problem, every time when we write to the persistent
log (at transaction commit time), we firstly write to the
log, then flush the corresponding cache lines and issue a
memory fence, and then write a complete bit indicating that
the log is good and consistent. Thus next time after system
crash, we can check this complete bit and we will know if
this transaction finishes successfully. The cache flushing and
memory fence are used to rule out the faulty situation affected
by volatile cache.

4.3. Atomic Heap Operations. We achieve the atomicity of
heap operations (i.e., allocation and deallocation) by logging
at two different levels. Our memory allocator runs in user
level that asks for memory regions through system calls and
then serves objects allocations. Here there are two kinds of
information we should record and update consistently: (1)
the page mapping relationship for NVRAM in the kernel
and (2) the objects allocation information in the heap. We
add logging to protect these two parts of information but
at different privileged level. The logging of NVRAM page
mapping is kept in the first several pages in NVRAM which
could only be accessed by kernel code. Or otherwise the
logging could be modified by user code to gain access to
any physical memory region.The logging of object allocation
is done by user code and is combined with the way we
process the accesses of upper applications. At the point of
view of our transactional system, our memory allocator can
be regarded as a special upper application. We make our
memory allocator run based on nv map() and add logging
to its codes.

The commit operation of the above two special logs can
be delayed to the commit time of an upper application’s
transaction. This is because if we allocate an object and have
not accessed it yet, the value of the object is invalid and thus
the object could be discarded when system crashes.

4.4. Recovery. Wedo the recovery at two levels too. At system
rebooting time, we first use the log written by kernel code to
recover the mapping into a consistent state and then use the
mapping table to locate all the reserved pages and free pages.
At process starting, we then use the user level log to recover
the process’s persistent heap into a consistent state. The log
will be alwaysmapped at a fixed address to facilitate accessing.

Note that we are not using NVRAM to achieve a check-
point. So the programs cannot recover from where they
have been left off. What we are focusing on is the persistent
data. We can guarantee that all the persistent data are in a
consistent state at next time when the programs access these
data again after system reboot. This goal is the same as the
previous work of Mnemosyne [4] and NV-heap [3].

Scientific Programming 7

5. Experiments

This paper proposes an optimized write-combined logging
mechanism to reduce the writes to NVRAM without sacri-
ficing the information used to maintain the consistency of
persistent data. In order to show how our work is able to
tackle the write-twice problem, we mainly test and compare
our work (referred to as WCL) with the baseline design
(referred to as BSL) to show its advantages of reducing writes
to NVRAM. Notice that the baseline design introduced in
this paper is actually very similar to the method in previous
work of Mnemosyne [4]. Mnemosyne focuses on providing
lightweight programming interface for NVRAM and it does
not show attention to tackling the write-twice problem.
Moreover, our work differs from Mnemosyne in managing
NVRAM where we extend virtual memory manager to
manage it while Mnemosyne relies on traditional file system
withmemorymappingwhich has been proved to be heavy for
managing NVRAM [23]. In this section we will give a small
test to show the comparison of overhead between these two
different memory management methods.

5.1. Methodology and Benchmarks. We choose STAMP
benchmark suit [18] and STMBench7 [8] as our benchmark.
STAMP benchmark suit contains applications that can cover
different domains of algorithms (as described in Table 3).
STMBench7 benchmark is derived from OO7 [24] and focus
on simulating the CAD, CAM, and CASE programs. It
contains a lot of data structures which are related to graphs
and indexes and are often used in complex applications.These
two benchmark suits are well-written using transactional
interface; thus we do not have to modify the source code
of the benchmarks. We set the input of the benchmarks as
shown in Tables 3 and 4 with different problem scales to show
that our mechanism could fit for different problem scales.
We hook the memory allocation function to make all the
benchmarks allocate objects from our memory allocator.

In the experiments, we first test and show the number of
writes to NVRAM our WCL performs in every benchmark.
Then we show the overall speedup our WCL can achieve
over BSL by reducing writes. Finally we show the software
overhead of the write-combine mechanism compared with
the non-write-combining.

The experiments platform is anAMD server (2.2 GHz, 12-
core CPU) with 16GB DRAM running Linux kernel 3.11. We
use 8GB DRAM to emulate NVRAM and emulate the write
latency of NVRAM to be 600 ns which is 10 times slower than
its read as shown in Table 1.

5.2. Results

5.2.1. Results of Small Tests of Memory Management. As we
manage nonvolatile memory and the mapping relationship
in a different way from previous work [3, 4], here we did a
simple test to show the comparison of corresponding over-
head. WCL represents our mechanism while Mnemosyne
represents the previous work [3, 4] which relies on file system
to maintain the persistent mapping.

Table 3: STAMP benchmarks (“−” and “+” mean small and
increased problem scales).

Benchmarks Description Input

bayes Machine
learning

(−) -e-1 -i1 -n4 -p10 -q1 -r128 -s1
-v32
(+) -e-1 -i1 -n4 -p10 -q1 -r8192 -s1
-v32

genome Bioinformatics (−) -g8192 -s64 -n32768
(+) -g16384 -s64 -n65536

intruder Security (−) -a10 -l16 -n524288 -s1
(+) -a10 -l16 -n1048576 -s1

𝑘means Data mining (−) -i random-n16384-d24-c16
(+) -i random-n65536-d32-c16

labyrinth Engineering (−) -i random-x256-y256-z3-n256
(+) -i random-x512-y512-z3-n512

ssca2 Scientific (−) -s18 -i1.0 -u1.0 -l3 -p3
(+) -s20 -i1.0 -u1.0 -l3 -p3

vacation Transaction
processing

(−) -n2 -q90 -u98 -r16384
-t1048576
(+) -n2 -q90 -u98 -r16384
-t4194304

yada Scientific (−) -a10 -i ttimeu1000000.2
(+) -a15 -i ttimeu1000000.2

We did three simple tests. (1) Region creation: we create
several persistent regions. (2) Page fault: we create a region
and then trigger all page faults in that region to set up the
mapping. (3) Access after all regions have been created and
all mapping have been set up. Figure 5 shows the first two
situations.

As we can see, our mechanism performs much better in
the first two cases. This is because (1) for region creation,
previous work which relies on file system will create a file
and map the file on every creation of a region and (2) for
triggering page fault, previous work will look into the file
system to find a proper page when serving the page fault.
These two cases are the sources of main overhead. For the
third case, our work and the previous work both introduce
no overhead and thus we do not show it.

5.2.2. Results of STAMP. Firstly, Figures 6 and 7 show the
total NVRAMwrites ourWCL performs compared with BSL.
We can see that, for all the benchmarks except 𝑘means, our
WCL reduces large amount of NVRAMwrites.WCL behaves
best on the benchmarks bayes, intruder, and yada, because
there is considerable amount of unmodified writes in these
three benchmarks. As we introduced before, by reducing
every one of these unmodified writes, we can reduce two
writes to NVRAM. Comparing Figures 6 and 7 we can see
that WCL is able to behave well for both small or increased
problem scales. The statistics are shown in Table 5. For small
problem scale, WCL reduces less writes while the whole
number of writes is small as well, resulting in the same
proportion, which is compatible with our early observation
shown in Figure 2. WCL does not reduce much writes in the

8 Scientific Programming

Table 4: STMBench7 benchmarks (workload type is read-write mixed; nonmentioned parameters are by default [8]).

Benchmarks Description Input

STMBench7-small Small data structures and small scale -w rw -s s (AtomicPartsPerComponent = 200,
ComponentsPerModule = 500)

STMBench7-medium Medium data structures and medium scale -w rw -s m (AtomicPartsPerComponent = 500,
ComponentsPerModule = 800)

STMBench7-big Big data structures and big scale -w rw -s b (AtomicPartsPerComponent = 800,
ComponentsPerModule = 800)

WCL

0

1

2

3

4

5

6

7

8

9

N
or

m
al

iz
ed

 ti
m

e

Mnemosyne

64 128 256 512 1024
Region creation (MB)

(a)

WCL
Mnemosyne

Page fault (MB)
64 128 256 512 1024

0

1

2

3

4

5

6

7

8

9

N
or

m
al

iz
ed

 ti
m

e

(b)

Figure 5: Tests of memory management.

Benchmarks (small scale)

ba
ye

s

ge
no

m
e

in
tr

ud
er

la
by

rin
th

ss
ca

2

va
ca

tio
n

ya
da

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 n
um

be
r o

f

BSL
WCL

N
V

RA
M

 w
rit

es

k
m

ea
ns

Figure 6: Comparison of total number of NVRAM writes (small
scale).

benchmark 𝑘means, which is also as expected according to
Figure 2. Averagely, WCL can reduce the number of writes by
33%, which can greatly help extend the lifetime of NVRAM.

Figures 8 and 9 show the normalized runtime of WCL
compared with BSL. WCL achieves better performance by
reducing writes to NVRAM. Averagely, WCL achieves a
speedup of 11% over BSL. How many performance benefits

Benchmarks (increased scale)

ba
ye

s

ge
no

m
e

in
tr

ud
er

la
by

rin
th

ss
ca

2

va
ca

tio
n

ya
da

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 n
um

be
r o

f

BSL
WCL

N
V

RA
M

 w
rit

es

k
m

ea
ns

Figure 7: Comparison of total number of NVRAM writes
(increased scale).

WCL can get mainly relies on how much proportion the
writes occupy in the program. As shown in Figure 10, the
benchmarks genome, ssca2, vacation, and yada spend con-
siderable proportions of time on NVRAM writing. Thus we
can see obvious improvements in these benchmarks after
reducing writes. Moreover, we can see that WCL is able to
improve performance on both small and increased problem

Scientific Programming 9

Table 5: Total NVRAM writes (“−” and “+” mean small and
increased problem scales).

Benchmarks BSL WCL

bayes (−) 4701 (−) 2803
(+) 3795 (+) 2269

genome (−) 3251313 (−) 2175511
(+) 6552450 (+) 4384360

intruder (−) 56129379 (−) 33188986
(+) 112200870 (+) 66342596

𝑘means (−) 36044910 (−) 34843101
(+) 337379526 (+) 328728706

labyrinth (−) 136002 (−) 90668
(+) 558789 (+) 372526

ssca2 (−) 33344904 (−) 22229910
(+) 134173668 (+) 89449089

vacation (−) 19708551 (−) 12316239
(+) 104356923 (+) 62029785

yada (−) 32814681 (−) 20292095
(+) 78473364 (+) 48613975

Benchmarks (small scale)

ba
ye

s

ge
no

m
e

in
tr

ud
er

la
by

rin
th

ss
ca

2

va
ca

tio
n

ya
da

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 ru
nt

im
e

BSL
WCL

k
m

ea
ns

Figure 8: Comparison of runtime (small scale).

scales. For the benchmark genome, WCL behaves better on
small problem scales than increased problem scales. This is
because when we increase the problem scale in genome, it
does 2 times more writes while the runtime increases by 4
times.
𝑘means also spends large proportion of time on NVRAM

writing. However, WCL cannot reduce much of the writing
in 𝑘means as we discussed before. For the benchmarks bayes
and labyrinth, although WCL reduces large proportion of
writes, the writes only account for very small part of the
execution.

5.2.3. Results of STMBench7. Figure 11 shows the comparison
of total NVRAM writes and runtime. We can see that WCL
can reduce a large proportion of NVRAM writes over BSL
in different program scales and data structure sizes. The
statistics are shown in Table 6. STMBench7 uses a lot of data
structures for graph processing or data indexing. These data

Benchmarks (increased scale)

ba
ye

s

ge
no

m
e

in
tr

ud
er

la
by

rin
th

ss
ca

2

va
ca

tio
n

ya
da

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

N
or

m
al

iz
ed

 ru
nt

im
e

BSL
WCL

k
m

ea
ns

Figure 9: Comparison of runtime (increased scale).

Pr
op

or
tio

n
of

 ti
m

e o
n

N
V

RA
M

 w
rit

es

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

+− +− +− +− +− +− +− +−

ba
ye

s

ge
no

m
e

in
tr

ud
er

la
by

rin
th

ss
ca

2

va
ca

tio
n

ya
da

Benchmarks

k
m

ea
ns

Figure 10: Proportion of time on NVRAM writes.

structures rely heavily on pointer operations. Usually for a
64-bit pointer, it is less likely to be modified more than 32
bits because most data are allocated nearby. Averagely, WCL
performs 34% less than BSL and achieves 7% speedup.

Finally, the software overhead of write-combining is
shown in Figure 12. Generally our mechanism incurs ignor-
able overhead. The overhead is mainly determined by the
number of writes in every transaction, as our combining
mechanism needs to perform a comparing operating for
every writes in the write buffer. Generally, this is very simple
and fast. Moreover, most read operations for comparing are
cached by cache because they have been just accessed in this
transaction. Compared with previous data compress work,
our work actually leverages the fact that, for each value,
we have two persistent copies of the value: (1) one resides
at the original place which is waiting for being updated
and (2) another one is in the persistent log. As these two
versions of value are both persistent, we actually have data
abundance here. Thus we can easily take advantage of these
abundant persistent data to reduce the log, while, for previous
data compress work, it has only one version of data and
thus the problem is to achieve compression without losing
any information, which would incur more overhead on
discovering the abundance in data.

10 Scientific Programming

BSL
WCL

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 n
um

be
r o

f N
V

RA
M

 w
rit

es

Benchmarks
STMBench7-s STMBench7-m STMBench7-b

(a)

BSL
WCL

Benchmarks
STMBench7-s STMBench7-m STMBench7-b

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
or

m
al

iz
ed

 ru
nt

im
e

(b)

Figure 11: Comparison of total writes and runtime on STMBench7.

Table 6: Total NVRAM writes (Un: unmodified writes; Half: half
writes).

Benchmarks BSL WCL Un Half
STMBench7-small 915573 609386 0 306187
STMBench7-medium 3634074 2422277 0 1211797
STMBench7-big 5803089 3860895 0 1942194

Benchmarks

ba
ye

s

ge
no

m
e

in
tr

ud
er

la
by

rin
th

ss
ca

2

va
ca

tio
n

ya
da

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4

N
or

m
al

iz
ed

 o
ve

rh
ea

d

Baseline
WCL

ST
M

Be
nc

h7
-s

ST
M

Be
nc

h7
-m

ST
M

Be
nc

h7
-b

k
m

ea
ns

Figure 12: Normalized software overhead.

5.2.4. Discuss. How much NVRAM writes WCL can reduce
lies on the lucky cases of unmodified write and half write. In
these cases we can leverage the fast-read-slow-write feature
of NVRAM to gain some benefit. However, it is not totally all
lucky cases we are counting on.

Indeed, for the case of unmodified writes, it is lucky that
we can have it in a program; the more, the better. However, as
shown in Figure 2, only few applications perform only small
parts of unmodified write. It is good but we are not counting
on it to reduce large amount of NVRAMwrites. What we are
counting on is the case of half write. The half write mainly
consists of two situations: (1) pointers; as discussed before,
a 64-bit pointer is less likely to be modified more than 32
bits; this is because normally we allocate objects nearby; if
a program does a lot of pointer operations such as using
an iterator to traverse some data structures, the pointer is
normally modified less than 32 bits; STMBench7 shows a
good example as discussed before; (2) counters or indexes:
a lot of programs heavily use counters or indexes as part of a
loop or for statistics; these counters, although in 64 bits, are
less likely to be modified much, leaving us the opportunities
to reap the benefit.

Generally our mechanism incurs ignorable overhead.
Compared with previous data compress work, our work actu-
ally leverages a natural fact that, for each value, we have two
persistent copies of the value: (1) one resides at the original
place which is waiting for being updated and (2) another one
is in the persistent log. As these two versions of value are both
persistent, we actually have data abundance here. Thus we
can easily take advantage of these abundant persistent data to
reduce the log, while, for previous data compress work, it has
only one version of data and thus the problem is to achieve
compression without losing any information, which would
incur more overhead on discovering the abundance in data.

Above all, in the benchmark suit STAMP and STM-
Bench7, WCL can effectively reduce NVRAM writes while
maintaining the data consistency. WCL can help extend
lifetime of NVRAM and improve performance by reducing
writes to NVRAM.

Scientific Programming 11

6. Related Work

Data consistency in nonvolatile media has been in research
for a long time. The maturing of NVRAM brings new
opportunities to this. NVRAM has been used as a union
of buffer cache and journaling to move the journal of file
system from secondary storage to nonvolatile main memory
[9], which could reduce the writes to secondary storage and
improve performance. Similar research has been conducted
for database systems [20, 25, 26]. However, these studies
do not tackle the write-twice problem [27]. The write-twice
problemhas beennoticed and addressed in log-structured file
system [28, 29], which is not widely adopted due to large data
indexing overhead.

In order to reduce writes to NVRAM to extend its
lifetime, Flip-N-write [15] and Coset [16] also adopt a read-
and-compare scheme and rely on special coding algorithms
to reduce writes to NVRAM. Similarly, our work leverages
NVRAM’s feature of byte-addressable and asymmetric read-
write to reduce theNVRAMwrites. However, we are based on
different layer. Flip-N-Write is at the hardware layer, which
makes it adopt a general and blind way to just test and
flip, while we are at the runtime system layer which directly
serves the upper applications. Our idea is based on the fact
that there must be a substantial proportion of half writes
in all 64-bit updates in an application. This is because that
the pointers, counters, and indexes are massively used in
applications and they are less likely to be modified much.
Moreover, Flip-N-write is at the architectural level which
needs modifications on the underlying hardware. Finally, our
work can be combined with the previous hardware work to
achieve better performance.

The logging [30, 31] mechanism incurs overhead for both
failure-free and failure cases. Some work [32, 33] introduces
architectural mechanism to leverage residual energy in the
system to flush volatile states into NVM and thus achieves
zero overhead for failure-free operations. These studies are
orthogonal to ours.

Previous work Shortcut-JFS [34] leverages the byte-
addressability and adopts a shadow-update mechanism to
reduce the write amount to PCM. It is another way of
reducing write amount to PCM and it focuses on the block-
based file system. Our work focuses on offering support for
programming directly on PCM. The goal is similar, but the
idea and the application are different. In our work, actually,
we found some natural information of data abundance and
we developed an easy and efficient way to leverage this
information, as discussed in Section 5.2.4. For data com-
pression work, a main challenge is to discover the abundant
information. This point is new and different from previous
work. While another data compress work [35] leverages the
byte-addressability of NVRAM to store a compressed delta
journal in it, the delta journal is generated by comparing the
new block with the old one. For the data compression phase,
it actually faces a 0-1 block with no semantics information.
The overhead of its data compression is very likely to be
more than us. Moreover, it is based on blocks.The block with
modification ratio less than a threshold will be updated in the
traditional way. Compared with it, our work is fine-grained.

Mnemosyne [4] and NV-Heaps [3] both introduce
lightweight programming interfaces to support allocating
and processing durable in-memory data structures based
on NVRAM. They both adopt logging to maintain the
consistency of persistent data. However, they do not show
attention to the consistency-maintaining overhead of write-
twice problem. Moreover, they rely on traditional file system
andmemorymapping tomanage NVRAMpages, whichmay
also incur overhead [36]. They also offer some features that
we do not have. The NV-heap offers some higher language
level support such as safe pointer. Mnemosyne offers a high-
performance raw word log (RAWL) to reduce the memory
fence at commit time.

For torn writes when some writes are failed to go to
memory, traditional detection method [37] is to perform
a read-after-write. It can be done in both hardware and
software. In our system, it could easily be checked because
all the writes to NVRAM happen just at the commit time of
every transaction.

Traditional file system is heavy for NVRAM due to its
block layer. Many studies tried to optimize file system to
reduce the block layer (PMFS [23], Aerie [38], BPFS [36], and
SCMFS [39]).

7. Conclusion

This paper proposed an optimized write-combined logging
to reduce the writes to NVRAM log without sacrificing the
information to maintain the data consistency in NVRAM.
We leverage the fast-read and byte-addressable features of
NVRAM to perform a read-and-compare before performing
writes.This can help us reducewrites toNVRAMto extend its
lifetime and improve performance. We tested our system on
the benchmark suit STAMP and STMBench7. Experiments
show that our system is able to reduce 33% of writes
and improve performance by 11% in STAMP and reduce
34% NVRAM writes and improve performance by 7% in
STMBench7.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is partially supported by National High-tech
R&D Program of China (863 Program) under Grants
2012AA01A301 and 2012AA010901, by program for New
Century Excellent Talents in University, by National Science
Foundation (NSF) China 61272142, 61402492, 61402486, and
by the State Key Laboratory of High-end Server & Storage
Technology (2014HSSA01). Mikel Luján is supported by a
Royal Society University Research Fellowship and funded
by UK EPSRC Grants DOME EP/J016330/1 and PAMELA
EP/K008730/1.

12 Scientific Programming

References

[1] A. Badam, “How persistent memory will change software
systems,” Computer, vol. 46, no. 8, Article ID 6521316, pp. 45–
51, 2013.

[2] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy, “Operating
system implications of fast, cheap, non-volatile memory,” in
Proceedings of the 13th USENIX Conference on Hot Topics in
Operating Systems (HotOS ’13), p. 2, USENIX Association, 2013.

[3] J. Coburn, A. M. Caulfield, A. Akel et al., “Nv-heaps: making
persistent objects fast and safe with next-generation, non-
volatile memories,” ACM SIGARCH Computer Architecture
News, vol. 39, no. 1, pp. 105–118, 2011.

[4] H. Volos, A. J. Tack, andM.M. Swift, “Mnemosyne: lightweight
persistent memory,” ACM SIGARCH Computer Architecture
News, vol. 39, no. 1, pp. 91–104, 2011.

[5] K. Shen, S. Park, and M. Zhu, “Journaling of journal is (almost)
free,” in Proceedings of the 12th USENIX Conference on File and
Storage Technologies (FAST ’14), pp. 287–293, 2014.

[6] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase
changememory as a scalable dram alternative,”ACMSIGARCH
Computer Architecture News, vol. 37, no. 3, pp. 2–13, 2009.

[7] I. Koltsidas, R. Pletka, P.Mueller et al., “PSS: a prototype storage
subsystem based on PCM,” in Proceedings of the 5th Annual
Non-Volatile Memories Workshop (NVMW ’14), La Jolla, Calif,
USA, March 2014.

[8] R. Guerraoui, M. Kapalka, and J. Vitek, “Stmbench7: a bench-
mark for software transactional memory,” Tech. Rep., 2006.

[9] E. Lee, H. Bahn, and S. H. Noh, “Unioning of the buffer cache
and journaling layers with non-volatilememory,” in Proceedings
of the 11th USENIX Conference on File and Storage Technologies
(FAST ’13), pp. 73–80, Amsterdam,TheNetherlands, December
2013.

[10] M. Rosenblum and J. K. Ousterhout, “The design and imple-
mentation of a log-structured file system,” ACM Transactions
on Computer Systems (TOCS), vol. 10, no. 1, pp. 26–52, 1992.

[11] B. G. Johnson and C. H. Dennison, “Phase changememory,” US
Patent 6,791,102, 2004.

[12] H. Yoon, N. Muralimanohar, J. Meza, O. Mutlu, and N. P.
Jouppi, “Techniques for data mapping and buffering to exploit
asymmetry inmulti-level cell (phase change)memory,” SAFARI
Technical Report 2013-002, 2013.

[13] M. K. Qureshi, M. M. Franceschini, A. Jagmohan, and L.
A. Lastras, “Preset: improving performance of phase change
memories by exploiting asymmetry in write times,” ACM
SIGARCH Computer Architecture News, vol. 40, no. 3, pp. 380–
391, 2012.

[14] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and
energy efficient main memory using phase change memory
technology,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture, pp. 14–23, ACM, June
2009.

[15] S. Cho and H. Lee, “Flip-N-write: a simple deterministic
technique to improve PRAM write performance, energy and
endurance,” in Proceedings of the 42nd Annual IEEE/ACM
International Symposium on Microarchitecture (Micro ’09), pp.
347–357, ACM, New York, NY, USA, December 2009.

[16] A. N. Jacobvitz, R. Calderbank, and D. J. Sorin, “Coset coding
to extend the lifetime of memory,” in Proceedings of the 19th
IEEE International Symposium on High Performance Computer
Architecture (HPCA ’13), pp. 222–233, Shenzhen, China, Febru-
ary 2013.

[17] S. Kannan, A. Gavrilovska, K. Schwan, and D. Milojicic,
“Optimizing checkpoints using NVM as virtual memory,”
in Proceedings of the IEEE 27th International Symposium on
Parallel &Distributed Processing (IPDPS ’13), pp. 29–40, Boston,
Mass, USA, May 2013.

[18] C. C.Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
stanford transactional applications for multi-processing,” in
Proceedings of the IEEE International Symposium on Workload
Characterization (IISWC ’08), pp. 35–46, Seattle, Wash, USA,
September 2008.

[19] E. D. Berger, K. S. McKinley, R. D. Blumofe, and P. R. Wilson,
“Hoard: a scalable memory allocator for multithreaded applica-
tions,” ACM Sigplan Notices, vol. 35, no. 11, pp. 117–128, 2000.

[20] T. Wang and R. Johnson, “Transaction logging unleashed with
NVRAM”.

[21] P. Felber, C. Fetzer, P. Marlier, and T. Riegel, “Time-based
software transactional memory,” IEEE Transactions on Parallel
and Distributed Systems, vol. 21, no. 12, pp. 1793–1807, 2010.

[22] P. Felber, C. Fetzer, andT. Riegel, “Dynamic performance tuning
of word-based software transactional memory,” in Proceedings
of the 13thACMSIGPLANSymposium onPrinciples and Practice
of Parallel Programming, pp. 237–245, ACM, February 2008.

[23] S. R. Dulloor, S. Kumar, A. Keshavamurthy et al., “System
software for persistent memory,” in Proceedings of the 9th
ACM European Conference on Computer Systems (EuroSys ’14),
Amsterdam, The Netherlands, April 2014.

[24] M. J. Carey, D. J. DeWitt, and J. F. Naughton, “The 007
benchmark,” ACM SIGMOD Record, vol. 22, no. 2, pp. 12–21,
1993.

[25] J. Huang, K. Schwan, and M. K. Qureshi, “NVRAM-aware
logging in transaction systems,” Proceedings of the VLDB
Endowment, vol. 8, no. 4, pp. 389–400, 2014.

[26] S. G. J. Xu, B. He, and B. C. H. Hu, “PCMLogging: reducing
transaction logging overhead with PCM,” in Proceedings of
the 20th ACM International Conference on Information and
Knowledge Management, October 2011.

[27] F. Douglis and J. Ousterhout, “Log-structured file systems,” in
Proceedings of the 34th IEEE Computer Society International
Conference: Intellectual Leverage, Digest of Papers (COMPCON
Spring ’89), pp. 124–129, 1989.

[28] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and
S. Moriai, “The linux implementation of a log-structured file
system,” ACM SIGOPS Operating Systems Review, vol. 40, no.
3, pp. 102–107, 2006.

[29] J. Ousterhout and F. Douglis, “Beating the i/o bottleneck: a
case for log-structured file systems,” ACM SIGOPS Operating
Systems Review, vol. 23, no. 1, pp. 11–28, 1989.

[30] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P.
Schwarz, “ARIES: a transaction recovery method supporting
fine-granularity locking and partial rollbacks using write-ahead
logging,” ACM Transactions on Database Systems, vol. 17, no. 1,
pp. 94–162, 1992.

[31] R. Fang, H.-I. Hsiao, B. He, C. Mohan, and Y. Wang, “High
performance database logging using storage class memory,”
in Proceedings of the IEEE 27th International Conference on
Data Engineering (ICDE ’11), pp. 1221–1231, IEEE, Hannover,
Germany, April 2011.

[32] F. Nawab, D. R. Chakrabarti, T. Kelly, and C. B. Morrey III,
“Procrastination beats prevention,” Tech. Rep. HPL-2014-70,
HP Labs, 2014.

Scientific Programming 13

[33] D. Narayanan and O. Hodson, “Whole-system persistence,”
ACM SIGARCH Computer Architecture News, vol. 40, no. 1, pp.
401–410, 2012.

[34] E. Lee, S. Yoo, J.-E. Jang, and H. Bahn, “Shortcut-JFS: a write
efficient journaling file system for phase change memory,” in
Proceedings of the 28th Symposium onMass Storage Systems and
Technologies (MSST ’12), pp. 1–6, IEEE, San Diego, Calif, USA,
April 2012.

[35] J. Kim, C. Min, and Y. I. Eom, “Reducing excessive journaling
overhead in mobile devices with small-sized NVRAM,” in
Proceedings of the IEEE International Conference on Consumer
Electronics (ICCE ’14), pp. 19–20, Las Vegas, Nev, USA, January
2014.

[36] J. Condit, E. B. Nightingale, C. Frost et al., “Better I/O through
byte-addressable, persistentmemory,” inProceedings of the 22nd
ACM SIGOPS Symposium on Operating Systems Principles, pp.
133–146, ACM, October 2009.

[37] E. Ipek, J. Condit, E. B. Nightingale, D. Burger, and T. Mosci-
broda, “Dynamically replicated memory: building reliable sys-
tems from nanoscale resistive memories,” ACM SIGARCH
Computer Architecture News, vol. 38, no. 1, pp. 3–14, 2010.

[38] H. Volos, S. Nalli, S. Panneerselvam, V. Varadarajan, P. Saxena,
and M. M. Swift, “Aerie: flexible file-system interfaces to
storage-class memory,” in Proceedings of the 9th ACM European
Conference on Computer Systems (EuroSys ’14), Amsterdam,The
Netherlands, April 2014.

[39] X.WuandA. L.N. Reddy, “SCMFS: a file system for storage class
memory,” in Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC
’11), p. 39, ACM, Seattle, Wash, USA, November 2011.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

