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Abstract: Building a plug-in hybrid electric vehicle that has a low fuel consumption at low hybridization
cost requires detailed design optimization studies. This paper investigates optimization of a PHEV with
a series powertrain configuration, where plant and control parameters are found concurrently. In this
work two often used methods are implemented to find optimal energy management with component
sizes. In the first method, the optimal energy management is found simultaneously with the optimal
design of the vehicle by using convex optimization to minimize the sum of operational and component
costs over a given driving cycle. To find the integer variable, i.e., engine on-off, dynamic programming
and heuristics are used. In the second method, particle swarm optimization is used to find the optimal
component sizing, together with dynamic programming to find the optimal energy management. The
results show that both methods converge to the same optimal design, achieving a 10.4% fuel reduction
from the initial powertrain design. Additionally, it is highlighted that the usage of each of the method
poses challenges, such as computational time (where convex optimization outperforms particle swarm
optimization by a factor of 20) and the tuning effort for the particle swarm optimization and the ability
to handle integer variables of convex optimization.

Keywords: Plug-in Hybrid Electric Vehicles, Optimal Sizing, Energy Management, Convex
Optimization, Dynamic Programming, Particle Swarm Optimization.

1. INTRODUCTION

Hybrid electric vehicles (HEV) have an electric propulsion sys-
tem, in addition to a conventional combustion engine. HEVs
can reduce the fuel consumption by downsizing the engine, re-
covering braking energy, eliminating engine idling, and having
extra power control freedom by the two power sources. Plug-
in hybrid electric vehicles (PHEV) are the next generation of
hybrid electric vehicles that have the ability to store energy
from the electrical grid, using large capacity batteries. PHEVs
may drive short trips entirely on stored electrical energy, thus
decreasing the vehicle’s dependency on petroleum. However,
the main challenge with PHEVs is their high cost which moti-
vates the study of optimal design for these vehicles.

The total cost of ownership of a PHEV depends directly on the
size of the powertrain components. Moreover, energy manage-
ment, which is the control strategy that determines the power
split between engine and additional energy source at every
time instant, affects the design. To exclude its influence on
component sizing, the control strategy should ideally be part of
the optimal design process (Sundstrom et al. [2008]). Hence,
the problem of optimizing the total vehicle cost should be
approached by optimization of both energy management and
component sizes. The general procedure of sizing PHEVs is
performed by optimizing total cost of vehicle ownership for a
set of driving cycles. To reflect lifetime driving and charging
behaviors of a driver, long driving cycles are needed to repre-
sent different driving situations.

Since the problem of sizing and control of a PHEV is non-
linear, mixed integer, and has several states, this poses signifi-
cant challenges on the algorithms used to solve it. Researchers
have used exhaustive search, i.e., the evaluation of the cost
function for different combinations of the design variables, to
roughly estimate the shape of the cost function and choose a de-
sign. This is both sub-optimal and time inefficient, which lead
to the usage of optimization-based algorithms. Among these,
evolutionary algorithms, such as particle swarm optimization
(PSO), genetic algorithms or simulated annealing, have shown
good results. To calculate the fuel consumption some of these
methods use rule-based control strategies e.g.,Gao et al. [2007].
Besides the heuristic algorithms, dynamic programming (DP)
has been extensively used together with evolutionary algo-
rithms, e.g., by Li et al. [2012], Ebbesen et al. [2012], Ravey
etal. [2012].

Evolutionary algorithms require parameter tuning, large com-
putation times and have no proof of global optimality (Silvas
et al. [2014]). As an alternative to evolutionary algorithms,
the problem can be reformulated as a convex optimization
problem as shown by Murgovski et al. [2011], Egardt et al.
[2014], Pourabdollah et al. [2013]. Both component sizes and
the complete control trajectory of the continuous variables can
be included as optimization variables. Convex problems have a
unique optimum and can be solved fast and reliably. However,
the drawback with convex optimization is that integer variables,
e.g., engine on-off or gear selection, cannot be included in the
problem and therefore, should be given as an input a-priori to



the optimization problem (Murgovski et al. [2011]). The value
can be found either by heuristics e.g., as in Pourabdollah et al.
[2013], or by iterative strategies as in [Murgovski et al., 2014],
where the results are compared with DP.

In this paper, convex optimization is used and compared with
a particle swarm optimization for finding optimal design of a
series PHEV. For the convex optimization method, engine on-
off is found by two methods. First, the engine on-off decision
for convex optimization is found based on a simple rule. As
an alternative, convex optimization and dynamic programming
are combined in an iterative manner to update the engine on-
off decisions, and the iterations are performed until the cost
converges. Particle swarm optimization (PSO) also finds the
optimal design in a nested way with DP. This method, used by
Ebbesen et al. [2012], Nuesch et al. [2012], Silvas et al. [2014],
searches for the powertrain component sizes using PSO and for
any fixed powertrain sizes, the optimal energy management is
computed by DP.

The rest of this paper is organized as follows. An overall picture
of the optimization problem, the driving cycle and the model
of the powertrain and its components are presented in Section
2. A brief explanation of the optimization methods, convex
optimization, dynamic programming, and particle swarm opti-
mization are provided in Section 3. Illustrative results from the
study are shown in Section 4. Finally conclusions are drawn in
Section 5.

2. PROBLEM FORMULATION AND MODELING

In this section, the problem formulation and modeling details
are introduced. The studied PHEYV, depicted in Fig. 1, is a series
powertrain, where only the electric motor (EM) is mechanically
linked to the drivetrain and can propel the wheels.
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Fig. 1. Series PHEV powertrain configuration (solid lines:
mechanical link, and dashed lines: electrical links).
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The problem is formulated to find design and control variables
that minimize an objective function under the presence of
constraints. Here, the objective function is a weighted sum of
operational costs over the driving cycle, J,,, and component
costs, Jeomp. The operational cost includes the consumed fossil
fuel and electrical energy, and the components cost is the sum
of the costs of battery and engine-generator unit (EGU). The
problem can be stated as:

min J = Jop(u, 8) + Jeomp(s) €))

subject to:
w(t+1) = fz(t), ult), s)
reX,uelUseSs,

where x is the state variable vector, e.g., the battery state of
charge; and s is the scaling factor for components, i.e., battery

and EGU. The size of the electric motor is directly decided
by the power demand from the driving cycle, and hence is not
included in the problem. The control input variable v is defined
as:

u = [uqg u, )

where u,. includes the continuous control inputs of length N,
e.g., engine or motor torque, and u4 includes the integer control
inputs of size N, e.g., gear or engine on-off, and N is the
number of time samples of the driving cycle. These variables
are explained in more detail at the end of this section. The
constraints in the problem are in the form of powertrain and
component models, which are introduced in Section 2.2.

2.1 Driving cycle and performance requirements

In the optimization problem, we try to find the optimal compo-
nent sizes and the energy management variables over a given
driving cycle. Therefore, designing a vehicle requires knowl-
edge about the lifetime driving of the vehicle. However, since
it is impossible to predict the precise driving cycle and compu-
tational resources are limited, we use a long driving cycle that
represents real-life driving [Kullingsjo et al., 2012].

The long driving cycle used in the optimization can reflect
real-life driving, but might not include extreme situations that
require high performance. Acceleration requirement is consid-
ered as an important vehicle attribute by many drivers, and is
hence added in the constraints. Acceleration as a function of
speed on a flat road is used to make a so called performance
cycle, which is then appended to the driving cycle. The per-
formance cycle includes speeds from zero to maximum speed,
increasing according to the desired accelerations as explained
by Pourabdollah et al. [2013]. The driving cycle used in the
simulations is shown in Section 4. We assume that the battery
has the possibility to be charged with constant power from the
grid at charging occasions overnight, when the car is parked for
8 hours.

2.2 Modeling

In this section the models of the powertrain and its components
are presented. The same models are used both for DP and con-
vex optimization. A part of the problem in (1) fulfills convexity
requirements, as it will be shown in the following. A convex
function satisfies f(Az+ (1 —A)y) < Af(z)+ (1 —N)f(y) for
all z,y € R™ with 0 < A < 1 [Boyd and Vandenberghe, 2009].
Powertrain components that are being described by quasi-static
functions are approximated with nonlinear convex functions,
together with some necessary variable changes. The accuracy
of these approximations is acceptable and discussed in detail
by Murgovski et al. [2011].

Powertrain:  Starting from the driving cycle that is fully
described by the velocity v(t) and acceleration a(t) (and, in
this particular case, a zero road slope) at discrete time instants,
the required traction force, F;, and power demand, Py, are
calculated from the driving cycle as

2
Fi(t) = chfgv(t)

Piem(t) = Fe(t)v(t),

+ Myorgcr + Myora(t), 3)



Table 1. Vehicle parameters

parameter value

Baseline mass m=1600 kg
Glider mass mg=1280 kg
Frontal area Ap=237 m?2
Rolling resistance ¢-=0.009
Aerodynamic drag coefficient  ¢4=0.33

Air density p=1.293 kg/m?
Wheel radius rw=0.3 m
Ratio of the final gear rrg=4.2

EM reduction gear rem=2

where cq, Ay, Mo, p» g, ¢, and a are air drag coefficient,
frontal area, total vehicle mass, air density, gravitational ac-
celeration, rolling resistance coefficient, and acceleration, re-
spectively, with values given in Table 1. The total vehicle mass,
Myot, 1S the sum of the masses of the glider, battery, and EGU.

The powertrain model is described by mechanical power bal-
ance equation, given as

Piem (t) + Porr(t) = Pea(t), “4)

where P, and Pgj)s are the power dissipated at friction
brakes and EM mechanical power. The electrical power balance
equations during driving times, 7Tgive, and charging times,
Teharge, are given as

power losses are approximated by a second-order polynomial
in torque as

Prjoss(t) = a1 (t)Pea(t)? + ab(t) Pea(t) + az(t), (9)
Penel(t) = Peam(t) + P ioss (), (10)

= a1(t)Ppy (t)* + az(t) Pear(t) + as(t), (1)
where the coefficients a; > 0, aa = a4 + 1 and a3 are
functions of EM speed, wgs, and hence time. The values are
calculated from data using least squares method for a number of
grid points of wgs. For the speed values not belonging to the

grid nodes, the coefficients are obtained by linear interpolation
(Murgovski et al. [2011]).

Engine-generator unit:  The fuel power, Pt pqse, of a baseline
EGU is a function of the generator power and is approximated
with a second-order polynomial in Pggy as
Pf,base(PEGU,base) = bl-P%GUvbase +b2PEGU,base +b3 (12)
where b; > 0; j € {0,1,2} [Murgovski et al., 2011]. The
model of the scaled EGU is obtained by applying linear relation
to the fuel and electric power of the baseline EGU, i.e. Py =

5EGU P} pase and Pegu = spquPrGU,pase- The fuel power
of the scaled EGU then becomes

P2, (t
Py (t) = bl%[]() + baPpcu(t) + eon(t)bsspcu, (13)

where e, is a binary signal that is introduced to remove the
idling losses b3spgu, when the EGU is off. To preserve the

Perer(t) + Paus(t) = Ppcu(t) + Point(t) — Poloss(1), t € %@Peblem convexity, e, is decided prior to the optimization.

Pb,int(t) - Pb,loss(t) = _Pg(t)ngv ke 7-chargev (5)
where Py e, PEqu, Pbints Db loss, Py, and 14 are the EM
electrical power, the EGU power, the battery internal power
(before the losses), the battery loss power, grid power, and
grid efficiency. The electrical power used by auxiliary devices,
P2, 1s estimated by a constant value of 500 W. For simplicity,
the losses in the power electronics are included in the EM losses
and the rotational inertia (including the inertia of the wheels, the
differential, the EM and the EGU) is neglected in the models.

Battery:  The battery consists of s; identical cells, each mod-
eled as a constant open circuit voltage V,. in series with a
constant internal resistance, R. The power losses and the stored
energy of the battery, E}, are calculated as

_ ]%[)b,int(t)2
Pb,loss (t) - Sbvozc 5 (6)
Eb(t + 1) = Eb(t) — h(t) Py int (t). @)

The battery internal power is positive when discharging. Dur-
ing the available parking periods the vehicle is charged with
constant current and power. Then, without loss of generality,
the charging energy can be modeled as if entering the battery
in one extra long sample at the parking occasions. The battery
cells have capacity of QQ = 159W h, power of 880W, and mass
of my,1, giving the total pack mass as my = my,15p.

Electric Machine:  The losses of the EM and power elec-
tronics are gathered in a power loss map, Pg s 1055, Where the
losses are measured at steady-state for different torque-speed
combinations. At each time instant on the driving cycle, the EM
angular speed, wgyy, is calculated in advance as

weMm(t) = TEJV[U(t)Zﬁ, €]

where 7, 74, and rgs are the wheel radius, ratio of the final
gear (differential), and EM reduction gear respectively. The

The EGU mass scales linearly with the mass of the baseline
EGU with 100 kW power , i.e. mpgu = MEegu,1SEGU, Where
mEqgu,1 18 a linear weight coefficient.

2.3 Problem Formulation

The problem introduced briefly in (1) is now given in more
detail. The operational cost J,, includes the consumed fossil
fuel and electrical energy as

N
Jop = > _wyPp(t)h(t) +we Py(t)h(t), (14)

where wy = pﬁrv’ We = To06%600> and prav is the lower
heating value of gasoline. The fuel power, Py, and charger
power, P,, are converted to an equivalent cost in EUR us-
ing energy prices py for gasoline and p.; for electricity. The
sampling interval h(¢) is equal to 1 s at the driving instances

and at charging instances is equal to the entire charging period
[Pourabdollah et al., 2013].

The component cost, Jeomp($), is the sum of the costs of battery
and EGU. The remaining cost of the vehicle is independent
of sizing and can be therefore excluded from the problem.
The components cost is calculated as the depreciation over the
driving cycle, i.e., the proportion of the components cost given
by the ratio between the length of the cycle, d, and the lifetime
driving distance of the vehicle. If payment is equally divided
in vehicle lifetime with yearly interest rate of p. = 5%, the
components cost is given by

d v+ 1
Jeomp = <1 —|—pr + ) (costy + costgau), (15)
dyyy 2

where v, is the vehicle lifetime, and d,, is the average traveled
distance of the vehicle in one year. For each component, the
cost model is a linear function

costy = costj o + costj15;Vj € {b,EGU},

(16)



where cost; o is the initial cost and cost; ; is the linear cost
coefficients.

The state variable, z, in (1) is the energy in the battery given in
(7). The decision variables firstly include, s, the dimensionless
component sizes for battery and EGU. The continuous input
variables, u., which are related to the energy management,
are determined for every time instant. These variables are
EGU power, Pggy (t), battery internal power, P, ;,,¢ (t), battery
state of energy, Ej(t), grid power, P,(t), and braking power,
Py, (t). The integer input variable, w4, consists of the binary
engine on-off variable, e, (t).

As mentioned earlier, the total vehicle mass in (3) is computed
as the sum of the masses of the glider, my, battery, and EGU,

A7)

Here, we distinguish the concept of a baseline vehicle that has
predefined values for the scaling factors s, and sgpgy. The
demanded power of the baseline vehicle is hereafter denoted
by Pdem,base~

Mot = Mo + Mp,18p + MEGU,1SEGU -

3. OPTIMIZATION METHODS

The optimization methods used in this paper, namely dynamic
programming, convex optimization and particle swarm opti-
mization are explained in this section.

3.1 Dynamic programing

Dynamic programming is a method to solve optimal control
problems based on the Bellman’s principle of optimality (Bell-
man [1957]). The dynamic programming algorithm proceeds
backward in time. The problem starts with a final time cost,
which is assumed to be zero for PHEVs, because, unlike HEVs,
there is no constraint on the final battery state of charge. At
each time instant, DP finds the optimal energy management and
engine on-off that minimizes a total cost. DP has been widely
used in automotive applications to find the optimal energy
management which minimizes fuel consumption, since it can
handle nonlinear constraints and integer variables (Lin et al.
[2003], Hofman et al. [2012]). The main drawback of DP is
its computational time which increases exponentially with the
number of states and number of components sizes. Therefore,
in order to find the optimal design of vehicles, DP is often used
with other optimization methods.

3.2 Convex optimization

Convex optimization is also used to solve the problem of find-
ing the optimal design and energy management [Egardt et al.,
2014, Murgovski et al., 2011, Pourabdollah et al., 2013]. The
powertrain and component models, in addition to the cost and
weight models, are formulated as convex to solve a convex
problem. Modeling of the powertrain and its components to
guarantee the convexity is the main step of the optimization
method. Once the problem is defined as a convex optimization
problem, it can be solved in a relatively short time, using effi-
cient solvers. Integer variables such as engine on-off cannot be
included in the problem and hence need to be decided a-priori to
the convex optimization to preserve convexity. The constraints
in the convex problem include the physical limits of the com-
ponents in addition to the powertrain and component models,

introduced in Section 2.2. The complete problem formulation
is given as

N N

minwy Y Pr(t)h(t) + we Y Py(t)h(t) + Jeomp  (18a)
t=1 t=1

variables: Prgu, Py,ints £, Pyy Pork, S, SEGU

subject to:

Pdem(t) + Pbrk(t) = PEM(t) (18b)

PEM,el(t) + Pauw(t) = PEG’U(t) + Pb7int(t) - Pb7loss(t)

(18¢)

Pg (t)ng = _Pb,int (t) + Pb,loss (t), te 7Zhwrge (18d)
pr,int (t)Q

Pb,loss(t) > 81;7‘/026 (186)

Prare(t) > a1 (t)Pea(t)® + ax(t) Peas(t) +as(t) (186

Ey(t + 1) = Ey(t) — h(t) Py ine (1) (18g)

P t)?
Py(t) = p, Pecu ) by Pecu (t) + on(t)bsspar (18h)
SEGU

Ey(t) € sp[Ep,min, Ebmac]

Pb,int (t) € Sb[Pb,int,min; Pb,int,maw]
Py(t) € 10, Py,max(t)]

Prcu(t) € secul0, PEGU,maz,base)

for t € Tgrive unless is defined otherwise.

In order to guarantee the problem convexity, the equality signs
in (18e) and (18f) are relaxed to inequalities. The optimal result
will satisfy equality because otherwise energy is wasted which
is not optimal. Moreover, the number of cells, s, is relaxed
to a real value. The relaxation will introduce a rounding error
that has a small influence on the optimal result [Egardt et al.,
2014, Murgovski et al., 2011]. To solve the problem, a tool,
CVX [Grant and Boyd, 2010], is used to automatically translate
it to a second order cone form, required by a publicly available
solver, e.g. Sedumi [Strum, 2011].

Integer variables in convex optimization problem  As men-
tioned earlier, integer variables cannot be included in the con-
vex optimization problem. Therefore the decision on engine
on-off is found a-priori to the problem. The problem has been
studied by different researchers. Elbert et al. [2014] derived the
globally optimal engine on-off analytically, whereas Murgovski
et al. [2014] used a heuristic method based on pontryagin’s
maximum principle. However, these approaches do not include
sizing of the engine.

Heuristics have been used also by Pourabdollah et al. [2013]
to find the integer variables in the problem of component
sizing. The engine is turned on if at a certain time instant the
power demand is higher than a power threshold, P,,, and is
turned off otherwise. The optimization is then repeated over
different values of P,,, to find the threshold that minimizes
the cost. An alternative way to find engine on-off decision is
by using convex optimization and DP methods alternately. In
order to do this, the optimization starts with DP with initial
component sizes. DP finds the optimal energy management
including engine on-off for the given component sizes. The
engine on-off decision is then given to the convex optimization
to find the new component sizes. This iteration is continued
until the cost and component sizes converge. The procedure is
illustrated in the right part of in Fig. 2.
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Fig. 2. Bi-level optimization frameworks compared for com-
ponent sizing and control: (Method 1/right) the proposed
combined convex optimization and DP, and (Method
2/left) the combination of Particle Swarm Optimization
and DP.

3.3 Particle swarm optimization

Particle swarm optimization (PSO) is a stochastic search
method inspired by the coordinated motion of animals living in
groups, originally developed by Kennedy and Eberhart [1995].
Using a population of candidate solutions, called particles, in
the design space, called swarm, PSO optimizes the problem by
improving the candidate solution with regard to a given quality
measure. To begin with, the method initializes the swarm ran-
domly in the design space, with each particle having assigned
a position, x, and a velocity, v. Then, the objective function is
evaluated for each particle and a global best is determined, G.
Iteratively the velocity, v;, and position, x;, of each particle are
changing towards their own best, B;, and globally best location
by

I = ¢FuF + aq [B1i(Bi — XF)] + az[Ba,i(G — Xm(l9)
X = x4 oft

with x* and v¥ the current position and velocity of particle 7 in
generation number k, and ¢ the particle inertia which causes a
certain momentum of the particles. Parameters 31 o € [0, 1] are
uniformly distributed random values and o o are acceleration
constants.

In nested combinations with other algorithms, PSO has proven
as a good candidate in design of HEVSs, as shown by Williamson
et al. [2005], Gao et al. [2007], Sundstrom [2009], Nuesch et al.
[2012], Silvas et al. [2014]. Motivated by these studies, we will
combine PSO with DP, as depicted in Fig. 2 and use this bi-level
design method as a benchmark comparison.

4. RESULTS

In this section, the results of the simultaneous optimization
of energy management and component sizing are given. The
optimization is performed over near 3 hours/176 km long real
life driving cycle, followed by a performance cycle. There are
also 4 occasions where the car has the possibility to charge the
battery with constant grid power for 8 hours. As mentioned, the
size of the EM is decided by the maximum power demand of
the driving cycle, which is equal to 108.5 kW.

In the first method, convex optimization is used to find the
optimal design. A simple rule is used to find the engine on-off

based on the baseline power demand required by the vehicle
when following the driving cycle, Pyepm, base (). At every time
instant, if the power demand is higher than a power threshold,
P,,, the engine is turned on and is turned off otherwise. The
convex optimization problem is iterated over several values of
P,, to find the best result. The result of battery size and total
cost for different values of P,,, are shown in Fig. 3. The optimal
power threshold to turn the engine on is equal to 16kW which
gives total cost as €20.81, battery size equal to 8.07 kWh
(sp = 50.64) and EGU size of 66.87 kW (spgu = 0.69).
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Fig. 3. Number of battery cells and the total cost obtained by

convex optimization using different power threshold to
turn engine on.

The convex optimization is then combined with DP in an
iterative manner to optimize the engine on-off as shown in
Fig.2. As mentioned, the iteration starts with DP, with initial
component sizes. These initial inputs can have some impact
on the final results ending in a local optimum. For example,
if the initial battery size is much larger than the optimal value,
in the first iteration of DP, the vehicle is propelled most of the
time by the cheap energy from the battery and the engine is
turned off in order to reduce the losses. Giving this engine on-
off to the convex optimization, the battery may stay oversized
since the convex optimization is not able to alter the engine on-
off decision. In this way, the iterative optimization never gets
a chance to converge to a smaller battery size. To avoid this
problem, a small battery with s, = 13, or size equal to 2 kWh,
is chosen as the initial value.

The procedure of using convex optimization and DP is contin-
ued until the cost and component sizes converge. In Fig. 4 the
results of 12 iterations are given. As we can see, the optimal
sizes of the engine-generator unit and the battery converge
after the first iteration. The cost however, decreases in the next
iteration, where DP finds the optimal energy management for
the given sizes. The total cost decreases from € 22.93 in the
first iteration to € 20.54 in the last. The optimal battery size is
equal to 8.2 kWh (s, = 51.42) and EGU size is equal to 66.17
kW (sggu = 0.66). The driving cycle used in the optimization
together with the result of the optimal state of charge from the
last iteration are shown in Fig. 5.

In the second method, and for comparison, we solve the same
sizing and control problem using PSO for finding component
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Fig. 5. The optimal SoC (top) and the speed profile of the driv-
ing cycle (bottom). The charging occasions are denoted by
black dots.

sizing and DP for finding the optimal control as shown in
Fig.2. The PSO algorithm is simulated for different particles
number, p € [5,40], and generations number, g € [5,10]. It
is required to have at least 30 particles for the algorithm to
reach the global optimum (see Fig. 6), or 10 particles to reach a
“close to” optimum value (within 0.5% of the global optimum),
while 8 generations are required in average for the algorithm
to converge to a solution. The optimal battery size is equal
to 8.2 kWh (s, = 51.44), EGU size is equal to 66.17 kW
(segu = 0.66) and the total cost is 20.54 euros.

4.1 Computational Efficiency

As shown in the results, both convex optimization/DP and
PSO/DP methods find the same optimized solution. However,
the computational time of the two methods differ. For the
167 minutes long driving cycle, the evaluation of each DP
simulation takes 250 seconds and each convex optimization
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Fig. 6. The optimal sizing, using the PSO method, results in an
design with s, = 51.44 and spguy = 0.66, that gives a
total cost of 20.54 euros.

problem takes around 120 seconds of calculations!. Using
convex optimization together with heuristics to find e,,, takes
13 - 120 seconds or 26 minutes. Computation of the iterative
method of convex optimization/DP takes 6-(250+120) seconds
or 37 minutes.

In the second method presented in Fig. 6, several particles are
computed at each iteration. With each DP evaluation taking 150
seconds, the total computation time is 150 sec -30 particles -10
generations = 45000 seconds (~ 12hours and 30 min). The re-
sults show the significant benefit of using convex optimization
to optimally size a series PHEV.

5. CONCLUSIONS

In this paper, we address the problem of finding the optimal
powertrain component sizing and control algorithm of a PHEV,
with respect to hybridization and fuel costs, using a real-life
measured driving cycle. To solve this problem, we use convex
optimization together with heuristics or dynamic programming
to find the engine on-off decisions. The results are compared
with another existing method, i.e., PSO/DP. As shown by re-
sults, the convex optimization based method proves to be faster
alternative to current methods that can find the global unique
solution. Using simple rules to find the engine on-off gives
results close to optimal, whereas DP can improve the result with
a very high accuracy, with a relatively short time compared to
an evolutionary based algorithm, PSO. Moreover, extra states,
such as battery state of health or engine thermal state, or design
variables, such as electric motor scaling, can simply be added
to convex optimization problem without much increase in com-
putational burden. However, the computational time of DP or
evolutionary methods explodes exponentially by increasing the
number of states or design parameters.

In this work we have investigated a series configuration, on
one driving cycle. Future work can include more studies, in-
cluding different configurations, larger set of driving cycles,
different battery technologies, and pricing scenarios. Although
both methods used in this study have converged to the same
results, there is no general proof that the global minimum is
reached. Further studies is needed for a theoretical basis to
proof the convergence of the algorithms used.

1 Simulations for method 1 were performed on a PC with Intel core 2
processor, at 2.67 GHz and 8 GB memory, and for method 2 on a similar PC,
with Intel 17 processor at 2.2 GHz and 8 GB of memory.
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