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Abstract

The Lanczos tridiagonalization orthogonally transforms a real symmetric matrix A to symmetric tridia-
gonal form. The Golub–Kahan bidiagonalization orthogonally reduces a nonsymmetric rectangular matrix
to upper or lower bidiagonal form. Both algorithms are very closely related.

The paper [C.C. Paige, Z. Strakoš, Core problems in linear algebraic systems, SIAM J. Matrix Anal. Appl.
27 (2006) 861–875] presents a new formulation of orthogonally invariant linear approximation problems
Ax ≈ b. It is proved that the partial upper bidiagonalization of the extended matrix [b, A] determines a core
approximation problem A11x1 ≈ b1, with all necessary and sufficient information for solving the original
problem given by b1 and A11. It is further shown how the core problem can be used in a simple and
efficient way for solving different formulations of the original approximation problem. Our contribution
relates the core problem formulation to the Lanczos tridiagonalization and derives its characteristics from
the relationship between the Golub–Kahan bidiagonalization, the Lanczos tridiagonalization and the well-
known properties of Jacobi matrices.
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1. Introduction

Let A be a nonzero n × m real matrix, and b be a nonzero real n-vector. Consider estimating
x from the linear approximation problem

Ax ≈ b, (1.1)

where the uninteresting case is for clarity of exposition excluded by the natural assumption
b �⊥ R(A), that is ATb /= 0. In a sequence of papers [1–3] it was proposed to orthogonally
transform the original data b, A into the form

P T [
b AQ

] =
[
b1 A11 0
0 0 A22

]
, (1.2)

where P −1 = P T, Q−1 = QT, b1 = β1e1, and A11 is a lower bidiagonal matrix with nonzero
bidiagonal elements. The matrix A11 is either square, when (1.1) is compatible, or rectangular,
when (1.1) is incompatible. The matrix A22 (which need not be bidiagonalized) and the corres-
ponding block row and/or column in (1.2) can be nonexistent. The transformed data b1 and A11
can be computed either directly, using Householder orthogonal transformations (see for example
[4, Section 5.4.3, p. 251]), or iteratively, using the Golub–Kahan bidiagonalization [5], see also
[6]. The bidiagonalization is stopped at the first zero element, giving the block structure in (1.2).
The original problem is in this way decomposed into the approximation problem

A11x1 ≈ b1, (1.3)

which contains the necessary and sufficient information for solving the problem (1.1), and the
remaining part A22x2 ≈ 0. The problem (1.3) is therefore called a core problem within (1.1). In
[3], it was proposed to find x1 from (1.3), set x2 ≡ 0, and substitute for the solution of (1.1)

x ≡ Q

[
x1
0

]
. (1.4)

The (partial) upper bidiagonalization of [b, A] described above represents a fundamental de-
composition of data in the linear approximation problem (1.1), with the following remarkable
characteristics.

Theorem 1.1. Let A be a nonzero n × m real matrix and b a nonzero real n-vector, ATb /= 0.

Then there exists a decomposition

P T [
b AQ

] =
[
b1 A11 0
0 0 A22

]
,

where P −1 = P T, Q−1 = QT, b1 = β1e1 and A11 is a lower bidiagonal matrix with nonzero
bidiagonal elements. Moreover:
B1. The matrix A11 has full column rank and its singular values are simple. Consequently, any

zero singular values or repeats that A has must appear in A22.

B2. The matrix A11 has minimal dimensions, and A22 has maximal dimensions, over all ortho-
gonal transformations giving the block structure above, without any additional assumptions
on the structure of A11 and b1.

B3. All components of b1 = β1e1 in the left singular vector subspaces of A11, i.e., the first
elements of all left singular vectors of A11, are nonzero.
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The proofs of B1–B3 are given in [3, Theorems 2.2, 3.2, 3.3]; they are based on the singular
value decomposition of A and on the properties of the upper bidiagonal form [b1, A11] with
positive bidiagonal elements.

As mentioned above, when A is large and sparse, the Golub–Kahan bidiagonalization is
suggested in [3] as the algorithm for computing the core problem data b1 and A11. At any
iteration step, the computed left principal part of A11 represents an approximation to the core
problem matrix. Practical applications may require stopping the computation before the full
decomposition (1.2) is reached. Therefore it is important to study iterative approximations to the
core problem decomposition. The Golub–Kahan bidiagonalization is closely related to the Lanczos
tridiagonalization [7], which has been throughly investigated as a tool for computation of a few
dominant eigenvalues. We believe that the knowledge about the partial Lanczos tridiagonalization
may prove useful in the future investigation of the partial core problem decomposition. Therefore,
as a first step, we summarize in this paper the relationship of the core problem decomposition
with the Lanczos tridiagonalization. We prove B1–B3 from the connection between the Golub–
Kahan bidiagonalization and the Lanczos tridiagonalization and from well-known properties of
the related Jacobi matrices.

We assume, for simplicity of notation, that A and b are real. The extension to complex data is
straightforward.

2. Golub and Kahan bidiagonalization and Lanczos tridiagonalization

Consider the partial lower Golub–Kahan bidiagonalization of the n × m real matrix A in
the following form. Given the initial vectors v0 ≡ 0, u1 ≡ b/β1, where β1 ≡ ‖b‖ /= 0 and ‖ · ‖
represents the standard Euclidean norm, the algorithm computes for i = 1, 2, . . .

αivi = ATui − βivi−1, ‖vi‖ = 1, (2.1)

βi+1ui+1 = Avi − αiui, ‖ui+1‖ = 1 (2.2)

until αi = 0 or βi+1 = 0, or until i = min{n, m}.
We present, for completeness, the basic properties of the Golub–Kahan bidiagonalization

as given in [6]. Consider αiβi /= 0 for 1 � i � k + 1 and denote Uk ≡ (u1, . . . , uk),

Vk ≡ (v1, . . . , vk),

Lk ≡

⎛⎜⎜⎜⎝
α1
β2 α2

. . .
. . .
βk αk

⎞⎟⎟⎟⎠ , Lk+ ≡
(

Lk

βk+1e
T
k

)
.

Then (2.1)–(2.2) can be rewritten in the matrix form

ATUk = VkL
T
k , (2.3)

AVk = [Uk, uk+1]Lk+, (2.4)

giving

UT
k AVk = (ATUk)

TVk = LkV
T
k Vk

= UT
k [Uk, uk+1]Lk+ = UT

k UkLk + UT
k uk+1βk+1e

T
k
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and thus

LkV
T
k Vk = UT

k UkLk + UT
k uk+1βk+1e

T
k . (2.5)

Similarly, (2.1) gives for i = k + 1

AT[Uk, uk+1] = VkL
T
k+ + vk+1αk+1e

T
k+1 (2.6)

and therefore

V T
k AT[Uk, uk+1] = V T

k VkL
T
k+ + V T

k vk+1αk+1e
T
k+1

= (AVk)
T[Uk, uk+1] = LT

k+[Uk, uk+1]T[Uk, uk+1],
which yields

LT
k+[Uk, uk+1]T[Uk, uk+1] = V T

k VkL
T
k+ + V T

k vk+1αk+1e
T
k+1. (2.7)

As a direct consequence one gets the following fundamental property: the vectors u1, u2, . . . , uk+1
respectively v1, v2, . . . , vk+1 are orthonormal. Indeed, the induction assumption that UT

k Uk = I ,
V T

k Vk = I gives from (2.5)

Lk = Lk + UT
k uk+1βk+1e

T
k ,

and thus UT
k uk+1 = 0, because βk+1 /= 0. Similarly, (2.7) and αk+1 /= 0 yield

LT
k+ = LT

k+ + V T
k vk+1αk+1e

T
k+1,

that gives V T
k vk+1 = 0.

Summarizing, the Golub–Kahan bidiagonalization (2.1)–(2.2) of the n × m matrix A with
u1 = b/‖b‖ results in one of the two following situations, which will be distinguished throughout
the paper:

Case 1. αiβi /= 0 for i = 1, . . . , p; βp+1 = 0 or p = n. Then (2.3) gives

UT
p AVp = Lp, (2.8)

UT
p [b, AVp] =

⎡⎢⎢⎢⎣
β1 α1

β2 α2
. . .

. . .
βp αp

⎤⎥⎥⎥⎦ ≡ [b1|A11] here (2.9)

and A11x1 ≡ Lpx1 ≈ β1e1 ≡ b1 is the compatible core problem. The matrices Up, Vp represent
the first p columns of the matrices P, Q, respectively, see (1.2).

Case 2. αiβi /= 0 for i = 1, . . . , p, and βp+1 /= 0; αp+1 = 0 or p = m. Then (2.4) gives

[Up, up+1]TAVp = Lp+, (2.10)

[Up, up+1]T[b, AVp] =

⎡⎢⎢⎢⎢⎢⎣
β1 α1

β2 α2
. . .

. . .
βp αp

βp+1

⎤⎥⎥⎥⎥⎥⎦ ≡ [b1|A11] here (2.11)
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and A11x1 ≡ Lp+x1 ≈ β1e1 ≡ b1 is the incompatible core problem. The matrices Up+1 and Vp

represent the first (p + 1) and p columns of the matrices P and Q, respectively.

For clarity of exposition we review the situations when the bidiagonalization is not stopped
until the maximum number of steps is reached. If p = n = m, then Up = Un = P, Vp = Vm = Q

and

P T [
b AQ

] = [
b1 A11

]
.

If p = n < m, then Up = Un = P, and completing Vp by (m − n) additional columns into the
orthogonal matrix Q gives

P T [
b AQ

] = [
b1 A11 0

]
.

If p = m < n, then Vp = Vm = Q, and completing Up+1 by (n − m − 1) additional columns
into the orthogonal matrix P gives

P T [
b AQ

] =
[

b1 A11

0 0

]
.

The bidiagonalization algorithm is closely connected with the Lanczos tridiagonalization (see
[7]). Let B be a t × t real symmetric matrix. Given the initial vector w1, ‖w1‖ = 1; w0 ≡ 0, δ1 ≡ 0,
the algorithm computes for i = 1, 2, . . .

yi = Bwi − δiwi−1,

γi = (yi, wi),

δi+1wi+1 = yi − γiwi, ‖wi+1‖ = 1

until δi+1 =0, or until i + 1= t . Consider δi /= 0 for 1� i �k + 1 and denote Wk ≡ (w1, . . . , wk),

Tk ≡

⎛⎜⎜⎜⎜⎝
γ1 δ2

δ2 γ2
. . .

. . .
. . . δk

δk γk

⎞⎟⎟⎟⎟⎠ .

Then Wk has orthonormal columns and Tk represents the symmetric tridiagonal matrix with
positive elements on the subdiagonal (Jacobi matrix). The Lanczos algorithm can be written in
the matrix form

BWk = WkTk + δk+1wk+1e
T
k , WT

k wk+1 = 0. (2.12)

Given a real symmetric B, (2.12) is fully determined by the starting vector w1. Moreover, by the
well-known properties of Jacobi matrices:

J1. Tk has distinct eigenvalues (see, e.g., [8, Lemma 7.7.1, p. 134]);
J2. If B is real symmetric positive semidefinite and w1 ⊥ ker (B), then all eigenvalues of Tk are

positive;
J3. The first (as well as the last) components of all eigenvectors of Tk are nonzero (see, e.g.,

[8, Theorem 7.9.3, p. 140]).

Note that J2 follows from the fact that the final Jacobi matrix Tl , for which BWl = WlTl ,
must be nonsingular (and, using the assumption in J2, symmetric positive definite) and from the
interlacing property (see [8, Theorem 10.1.1, p. 203]).
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The relationship between the Lanczos tridiagonalization and the Golub–Kahan bidiagonali-
zation can be described in several ways, see [9, pp. 662–663], [10, pp. 513–515], [11, p. 611],
[5, pp. 212–214] and also [6, pp. 199–200], [12, pp. 44–48], [13, pp. 115–118]. Consider αiβi /= 0
for 1 � i � k + 1. The Lanczos tridiagonalization applied to the augmented matrix

B ≡
(

0 A

AT 0

)
with the starting vector w1 ≡ (u1, 0)T yields in 2k steps the orthogonal matrix

W2k =
(

u1 0 · · · uk 0
0 v1 · · · 0 vk

)
and the Jacobi matrix T2k with the zero main diagonal and the subdiagonals equal to (α1, β2, . . . ,

βk, αk). Note the equivalence of (2.12) (using this B and W ) with (2.1)–(2.2). Furthermore, (2.3)
multiplied by A and combined with (2.4) gives

AATUk = AVk LT
k = [Uk, uk+1]Lk+LT

k = UkLkL
T
k + αkβk+1uk+1e

T
k , (2.13)

where

LkL
T
k =

⎛⎜⎜⎜⎜⎜⎝
α2

1 α1β2

α1β2 α2
2 + β2

2
. . .

. . .
. . . αk−1βk

αk−1βk α2
k + β2

k

⎞⎟⎟⎟⎟⎟⎠ .

In short, (2.13) represents k steps of the Lanczos tridiagonalization of the matrix AAT with the
starting vector u1 = b/β1 = b/‖b‖. Here we have B(1) ≡ AAT, W

(1)
k ≡ Uk, T

(1)
k ≡ LkL

T
k and

δ
(1)
k+1 ≡ αkβk+1. Similarly, (2.4) together with (2.6) gives

ATAVk = AT[Uk, uk+1]Lk+ = VkL
T
k+Lk+ + αk+1βk+1vk+1e

T
k , (2.14)

where

LT
k+Lk+ = LT

k Lk + β2
k+1eke

T
k =

⎛⎜⎜⎜⎜⎜⎝
α2

1 + β2
2 α2β2

α2β2 α2
2 + β2

3
. . .

. . .
. . . αkβk

αkβk α2
k + β2

k+1

⎞⎟⎟⎟⎟⎟⎠ .

The identity (2.14) represents k steps of the Lanczos tridiagonalization of the matrix ATA

with the starting vector v1 = ATu1/α1 = ATb/‖ATb‖. Here we have B(2) ≡ ATA, W
(2)
k ≡ Vk,

T
(2)
k ≡ LT

k+Lk+ and δ
(2)
k+1 ≡ αk+1βk+1.

3. The core problem characteristics

In this section, we prove Theorem 1.1 by relating the characteristics B1–B3 of the core problem
to the well known properties of the Lanczos tridiagonalization and the Jacobi matrices. We
distinguish two cases described above.

Case 1. αiβi /= 0 for i = 1, . . . , p; βp+1 = 0 or p = n (i.e. n � m), see (2.8) and (2.9). The

square matrix A11 ≡ Lp represents a Cholesky factor of T
(1)
p ≡ LpLT

p, which we see by (2.13)
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results from the Lanczos tridiagonalization of B(1) ≡ AAT with the starting vector u1 = b/‖b‖,
which stops exactly in p steps, i.e.

AATUp = UpLpLT
p. (3.1)

Consider the singular value decomposition Lp = R�ST, where � = diag(σ1, . . . , σp),
R−1 = RT, S−1 = ST. Then

T (1)
p = LpLT

p = R�2RT

is the spectral decomposition of the matrix T
(1)
p , σ 2

i are its eigenvalues and ri ≡ Rei its eigen-
vectors, i = 1, . . . , p. Consequently, from J1 the singular values of Lp are distinct. Lp is square
with positive elements on its diagonal. Therefore all its singular values must be positive, which
proves B1. Moreover B3 follows from J3, since bT

1 ri = β1e
T
1 ri /= 0 for i = 1, . . . , p.

The minimality property B2 can be proved by contradiction. For some P̃ , Q̃, let
P̃ −1 = P̃ T, Q̃−1 = Q̃T,

P̃ T [
b AQ̃

] =
[
b̃1 Ã11 0

0 0 Ã22

]
,

where Ã11 is a q × q matrix with q < p. (The system (1.2) is compatible, see (2.9), and therefore,
for example by considering the QR factorization of Ã11, we can with no loss of generality assume
that Ã11 is square.) Substituting

A = P̃

[
Ã11 0

0 Ã22

]
Q̃T

into the Lanczos tridiagonalization (3.1) gives

P̃

[
Ã11 0

0 Ã22

] [
ÃT

11 0

0 ÃT
22

]
P̃ TUp = UpT (1)

p ,

i.e. [
Ã11Ã

T
11 0

0 Ã22Ã
T
22

]
(P̃ TUp) = (P̃ TUp)T (1)

p (3.2)

with

P̃ Tu1 = P̃ Tb/‖b‖ =
(

b̃1/‖b‖
0

)
.

Since Ã11Ã
T
11 is the q × q matrix and b̃1 is the vector of length q, the Lanczos tridiagonalization

represented by (3.2) must stop in at most q steps, and T
(1)
p must have δ

(1)
q+1 = 0, which contradicts

the fact that T
(1)
p is a Jacobi matrix.

Case 2. αiβi /= 0 for i = 1, . . . , p, and βp+1 /= 0; αp+1 = 0 or p = m (i.e. n � m), see (2.10)

and (2.11). The rectangular matrix A11 ≡ Lp+ can be linked to the matrix T
(2)
p ≡ LT

p+Lp+,

which we see by (2.14) results from the Lanczos tridiagonalization of B(2) ≡ ATA with the
starting vector v1 = ATb/‖ATb‖. It stops exactly in p steps, i.e.

ATAVp = VpLT
p+Lp+. (3.3)
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Consider the singular value decomposition Lp+ = R�ST, where R is now a rectangular matrix
with orthonormal columns, S−1 = ST. Then

T (2)
p = LT

p+Lp+ = S�2ST

is the spectral decomposition of the matrix T
(2)
p , σ 2

i are its eigenvalues and si ≡ Sei its eigenvec-
tors, i = 1, . . . , p. Similarly to the previous case, from J1 it follows that the singular values of
Lp+ are distinct. Since by construction v1 does not have any nonzero component in the nullspace
of ATA, J2 yields that the singular values of Lp+ are positive, which proves B1. Moreover,
eT

1 si /= 0 by J3, i = 1, . . . , p. Considering Lp+S = R� and the fact that Lp+ is lower bidiagonal
with nonzero bidiagonal elements, eT

1 ri /= 0, i = 1, . . . , p. Consequently bT
1 ri = β1e

T
1 ri /= 0,

i = 1, . . . , p, which proves B3.
The minimality property B2 can be proved by contradiction, similarly to Case 1. For some P̂ ,

Q̂, P̂ −1 = P̂ T, Q̂−1 = Q̂T, let

P̂ T [
b AQ̂

] =
[
b̂1 Â11 0

0 0 Â22

]
,

where Â11 is a (q + 1) × q matrix with q < p. (The system (1.2) is incompatible and therefore we
can with no loss of generality assume that Â11 is rectangular of the given dimensions.) Substituting

A = P̂

[
Â11 0

0 Â22

]
Q̂T

into the Lanczos tridiagonalization (3.3) gives[
ÂT

11Â11 0

0 ÂT
22Â22

]
(Q̂TVp) = (Q̂TVp)T (2)

p (3.4)

with

Q̂Tv1 = Q̂TATb/‖ATb‖ =
[
ÂT

11 0

0 ÂT
22

]
P̂ Tb/‖ATb‖ =

(
ÂT

11b̂1/‖ATb‖
0

)
,

which leads to a contradiction exactly in the same way as in Case 1.

4. Concluding remarks

Core problems within orthogonally invariant linear approximation problems can be computed
via the Golub–Kahan bidiagonalization, see [1–3]. We have shown how this fact can be used,
together with the well-known relationship with the Lanczos tridiagonalization and the properties
of Jacobi matrices, for an alternative derivation of the core problem characteristics given in
[3, Theorems 2.2, 3.2, 3.3]. In our paper the Golub–Kahan bidiagonalization and the Lan-
czos tridiagonalization are used as mathematical tools for constructing proofs. The relationships
presented here may be found useful in applications of the core problem formulation.
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