
BRIEF NOTES 

the most frequently used assumption is that of uniform flow 
at inlet, which simulates the actual condition of well-rounded 
entrance. This assumption was adopted in the present analysis 
and thus, at x = 0, the axial velocity and pressure are uniform 
with values u0 and p0, respectively. 

Following the procedure suggested in [4], the non-
dimensional momentum equation in the axial direction can be 
written as: 
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where R = r/r0, U = u/ub, e(X) = dX/dX*, X = 
x/(D„Re), D„ = 2r0a/(l + a), Re = Dhub/v, and the 
parameter, e can be formulated as: 

The nondimensional pressure gradient is given by: 
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where P = (p0 - p)/(Vi pu\). Appropriate boundary and 
symmetry conditions are: 

[7=0 at R = l,0<d<a, 

and 0=0, 0<R<1, (4a) 

dU 
and— = 0 

dd 
at 6 = a,0<R<l. (,4b) 

Due to the symmetry around the plane 6 = a, the solution 
need be carried out only over the region O < 0 < a . Details of 
the derivation of equations (l)-(4) are given in [3]. 

Solutions were obtained using a finite difference aproach. 
At any axial location, the solution domain was subdivided by 
a 33 x 33 mesh, with the subdivisions adjacent to the straight 
and curved walls further subdivided into six equal parts for 
more accurate evaluation of wall gradients. The computation 
was marched from the inlet section to the fully developed 
region using axial steps with sizes AX* = 1 x 10 ~6 near the 
inlet, increasing to AX* = 5 X 10 ~4 as fully developed 
conditions were approached. Starting from the inlet section X 
= X* = 0 where the value of U is given, the velocity 
distribution at X* = AX* was obtained by solving (1) in-
teratively at all mesh points, subject to conditions (4). The 
value of e was then obtained from (2) and the relation AX = e 
AX* was used for the evalution of AX. Finally, dP/dX was 
evaluated from (3) before marching to the next cross section. 
The solution was progressed until all axial velocities were 
within 1 percent of the corresponding fully developed value, 
and the value of X there was taken as the entrance length Le. 

TT/32, 2.03 for ex = TT/16, 1.92 for a = ir/8, and 1.86 for a = 
7r/4) seem to conform with the asymptotic value of 1.82 
obtained in [4] for smooth tubes. A sample of the velocity 
results illustrating the velocity development at the symmetry 
plane is shown in Fig. 3. The well-known characteristic of 
entrance region flow, namely that the fluid is decelerated near 
the walls and accelerated in the central core is clear from this 
figure. Again, our velocity results for a = ir/8 compared 
fairly well [3] with those in [2]. 

The most commonly used parameters for presenting the 
pressure results are the product of the friction factor and 
Reynolds number fRe, and the pressure defect K. In the 
present analysis, the friction factor was defined as: 

f=(Dh/2)(-dp/dx)/(pu2
b), 

and hence 

fRe= 
1 dP 

4 dX 
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The pressure defect is normally defined as: 

K(X)=\p0 -p+ (dp/dx)FDx]/(Vipu2
b), 

which reduces to the following nondimensional form: 

K(X)=P-4(fRe)FDX. (6) 

Results based on equations (5) and (6) are listed in Table 2. 
The values of fRe at X = Le compare to within 3 percent of 
those reported in [1]. As expected [1], the present pressure 
results for a = ir/8 are widely different from those in [2]. A 
comparison between the A'-values at X = Le and the fully 
developed AT-values reported in [1] is shown in Fig 4. It must 
be pointed out that the KFD values reported in [1] are based on 
an approximate analytical method which utilizes only the fully 
developed velocity profile. Figure 4 shows a fair agreement 
with a maximum discrepancy of about 8 percent at a = TT/32. 
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Numerical Results 
The resulting values of Le are listed in Table 1 for the four 

duct geometries considered. With simple calculations, we can 
see from these results that for the same r0, ub, and v, the 
entrance length increases as a increases. This trend is ex
pected, however, quantitative comparisons are not possible 
due to lack of similar results. Development of the stretching 
factor e along the duct is shown in Fig. 2 for different values 
of a. As shown in [3], the e values for a = w/8 compared well 
with those in [2]. The asymptotic value reached here for a = 
ir/8 is 1.92 as compared to 1.98 in [2]. It is also interesting to 
note that the present asymptotic values for e (2.22 for a = 
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BRIEF NOTES 

Multidegree-of-freedom vibrations are considered for a rigid 
cylinder embedded in an isotropic elastic medium that is 
subjected to random propagating disturbances. The 
numerical results obtained enable one to select values of 
parameters of the system which would provide desirable 
motions of the inclusion. 

1 Introduction 

The classical linear theory of wave propagation provides a 
thorough analysis of the phenomenon of wave diffraction. 
However, this theory is concerned with traveling disturbances 
that are simple deterministic processes. It is well known that 
in reality these disturbances are usually random or in
completely defined. Due to this motivation, a number of 
investigations have been recently carried out on elastic and 
viscoelastic random waves. A survey of these works was 
presented by Beltzer [1]. 

This paper is concerned with random vibrations of an 
embedded rigid cylinder that are induced by elastic waves. All 
the stochastic processes used are taken to be stationary with 
zero mean. In view of the linearity of the system the last 
restriction does not lead to any loss of generality. 

2 Basic Equations 

We consider an infinite isotropic elastic medium (defined 
by its Lame constants X and n and by its mass density p) which 
contains a rigid movable infinite cylinder with arbitrary 
radius a and mass density p0. The medium is subjected to 
general plane waves of displacement traveling in the direction 
x and which impinge on the cylinder (Fig. 1). 

The random motion of the cylinder under this impact is 
characterized by three degrees of freedom: displacements 
u(t) and v(t) in the directions x and.y, respectively, and by a 
rotation <f>(t) about the direction z. The displacement u(t) is 
due to the P-component of the incident field only, whereas the 
SK-component causes both the displacements v(t) and </>(/). 

Let us denote the P or SK-component of the incident field 
of displacement as Wj (j = p, s), the spectrum of an incident 
wave as Q,(co), and the spectra of the inclusion motions as 
Qic(u), k = u, v, <f>. Taking into account the separability 
mentioned between P and SV-waves of excitation and the 
components of the inclusion motion, one can write the 
following equations governing the steady-state response 
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where Gi(co), 0' = P, s; k = u, v, <j>) is the cylinder 
displacement k due to normalized harmonic ./-disturbance. 

Making use of the results for the harmonic response of a 
rigid cylinder [2], we have the following expressions for 
Gi(«) 
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Fig. 2 Mean-square inclusion displacement in the x-direction versus 
density ratio v 

- (1 +V)aa H0(aa) H^a) +aj3 a2H0 (aa) H0(@a) (5) 

and 

a = u/cp; P = w/cs; ri = p/p0 (6) 

(!) In the foregoing Hm(z) = Hm^(z) stands for the Hankel 
function of the first kind of the wth order and cp and cs are 
the velocities of dilatational and shear waves in the matrix. 

Now we can determine the variances of nth derivatives of 
each of the stochastic processes of interest, i.e., of u(t), v(t), 
and 0(f) 

i oo 

o)2nQk(o))do>, (k=u,v,<j>;n = 0,l,2 . . .) (7) 
— 00 

3 Response to White Noise Disturbances 

The spectra of the incident field is taken to be 

Qj («)= Go = const; I to I <<x>J=p,s (8) 
Making use of asymptotic expansions for \Gi

k(d>) I it can 
be shown that the improper integrals, given by equation 7, 
exist only for n = 0, i.e., for the variance of the 
displacements. The multivalued character of the Hankel 
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Fig. 3 Mean-square inclusion displacement in the y-direction versus 
density ratio 1; 
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Fig. 4 Mean-square inclusion rotation versus density ratio i; 

functions necessitates a numerical evaluation of these in
tegrals. 

The results computed are presented in Figs. 2-4. As ex
pected, these figures show that the motion of a "heavy" 
inclusion (7; < 1) is always less random because of its greater 
inertia. The effect of the Poisson ratio, v, on the variance of 
the inclusion motion is shown. For 77 = 1 the results are in
dependent of v for all components of the response. For other 
values of rj, Var[«] and Var[y] are explicitly affected by this 
parameter whereas the influence on Var[<£] is slight. It is of 
interest to note that greater damping of the motion of a 
"light" inclusion (7; > 1) in the ^-direction occurs for a 
rubberlike material with v — 0.5 as the matrix. On the other 
hand, for damping of the vibrations in the x-direction values 
as v approaches zero are essentially more suitable (Figs. 2 and 
3). 

4 Conclusion 

The results, presented in Figs. 2-4, cover the majority of 
practically interesting cases. They can be used in the analysis 
of composite materials to provide minimum (or maximum) 
damping or better protection of a rigid embedded cylinder. If 
the inclusion serves as a sensor for monitoring the incoming 
waves the results obtained can be employed to reduce the 
distortion due to a random noise. 
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On the Flow of a Viscoelastic Liquid Past an 
Infinite Porous Plate due to Fluctuation in 
the Main Flow 

D. N. Mukhopadhyay1 andT. K. Chaudhury1 

Introduction 

Stuart [1] and Messiha [2] investigated the oscillating flow 
of viscous liquid over an infinite flat plate with constant 
suction and variable suction, respectively, at the plate and 
discussed many interesting features of the flow. Soundalgekar 
and Puri [3] extended Messiha's problem to the case of non-
Newtonian liquid with Walter's liquid B' [4] as the model. 
However the equations of motion considered by the authors 
[3] in the approximation of short relaxation time are identical 
with those of second-order liquid for the same problem and 
can be solved only by successive approximation. We extend 
Messiha's problem to the class of viscoelastic liquid known as 
stress-relaxing liquid of Oldroyd [5] and, as observed in our 
earlier work [6], we get a more general solution giving the 
solution [3] as a first approximation for small elastic 
parameter. Our solution shows some interesting effects of the 
stress-relaxing property of the liquid on the response of the 
boundary layer to the fluctuation in the main flow. 

Formulation and Solution of the Problem 

The constitutive equation for a viscoelastic liquid of 
Oldroyd [5] has the form 

Pij=-p6ij + Tij, 

-~ + vK TUiK - viiK TKj - vJiK TiK) = 2T70 e,y, (1) 

where Py and e,y are, respectively, stress tensor and rate-of-
strain tensor, v, are velocity components, \ , is the relaxation 
time, and r;0 is the viscosity coefficient. Taking the A:'-axis 
along the plate in the direction of flow and the .y'-axis per
pendicular to the plate directed into the liquid, the flow field 
is given by u' = u' (y', t'), v' = i>o (1 + eAe'"'1'), u' = 0 
with the free stream velocity U' (f) (cf., Messiha [2]), where 
Vo is a nonzero constant mean suction velocity and A and e are 
small positive constants such that eA < 1. The differential 
equation for u' will be obtained by elimination of stress 
component Tx>y' between (1) and the momentum equation. 
This elimination is effected by taking the particular solution 
Ty'yi = 0, which means vanishing normal stress Ty'y' at the 
line of entry (or exit) of the liquid through pores of the 
boundary. 

Assuming external forces to be absent and introducing 
nondimensional quantities defined by y = y'v^/v, t = Vo2t/ 
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