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Abstract—Modern heterogeneous multi-processor embedded
systems very often expose to the designer a large number
of degrees of freedom, related to the application partition-
ing/mapping and to the component- and system-level architecture
composition. The number is even larger when the designer targets
systems based on configurable Application Specific Instruction-
set Processors, due to the fine customizability of their internal
architecture. This poses the need for effective and user-friendly
design tools, capable to deal with the extremely wide system-
level design space exposed by multi-processor architecture and,
at the same time, with an extended variety of processing element
architectural configurations, to be evaluated in detail and in
reasonable times. As a possible solution, within the MADNESS
project [1], an integrated toolset has been proposed, combining
the benefits of novel fast FPGA-based prototyping techniques
with those provided by high-level simulation. In the toolset, the
resulting evaluation platform serves as an underlying layer for a
Design Space search algorithm. The paper presents the individual
tools included in the toolset and their interaction strategy. The
approach is then evaluated with a design space exploration case
study, taking as a target application a video compression kernel.
The integrated toolset has been used to produce a Pareto front
of evaluated system-level configurations.

I. INTRODUCTION

Modern embedded systems are parallel, component-based,

heterogeneous and finely tuned on the basis of the workload

that must be executed on them [2]. To improve design reuse,

Application Specific Instruction-set Processors (ASIPs) are

often employed as building blocks in such systems, as a

solution capable of satisfying the required functional and

physical constraints (e.g. throughput, latency, power or energy

consumption etc.), while providing, at the same time, high

flexibility and adaptability. Composing a multi-processor ar-

chitecture including ASIPs and mapping parallel applications

onto it is a design activity that require an extensive Design

Space Exploration process (DSE from now on), to result in

cost-effective systems. The MADNESS Project [1] aims at

defining novel methodologies for the application-driven cus-

tomizations of such highly heterogeneous embedded systems.

The issue is tackled at different levels, integrating different
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tools. As a main content of this paper we present part of

the overall MADNESS framework: a tool-set in charge of

exploring the mentioned design space, according to a search

algorithm, relying for the evaluation of the design points

under tests on the combination of reconfigurable hardware

prototyping and event-based simulation.

Event-based simulation is a widely used technique, offering

flexibility and speed, but on the other hand it needs calibration

data, as a preliminary input and periodically in the iterative

process. These data must be acquired through more accurate

evaluation methods, tipically instruction-level simulators, that

however turn out to be slow especially when compared to

FPGA approaches.

FPGA-based emulation techniques have been proposed in

the recent past as an alternative solution to the software-

based simulation approach, but some further steps are needed

before they can be effectively exploited within architectural

design space exploration. When performing architectural DSE,

a significant number of different candidate design points has to

be evaluated and compared. In this case, if no countermeasures

are taken, the advantages achievable with FPGAs, in terms

of emulation speed, are counterbalanced by the overhead

introduced by the time needed to go through the physical

synthesis and implementation flow.

The FPGA-based prototyping platform developed within

MADNESS overcomes such limitations, enabling the use of

FPGA-based prototyping for micro-architectural design space

exploration of ASIP processors. In our approach, to increase

the emulation speed-up, we exploit translation of application

binary code, compiled for a custom VLIW ASIP architecture,

into code executable on a different configuration. This allows

to prototype a whole set of ASIP solutions after one single

FPGA implementation flow, mitigating the afore-mentioned

overhead.

II. RELATED WORK

The process of system-level DSE is typically performed

exploiting support from two different kind of tools [3]: an

evaluation platform that examines the design points in the

design space, using for example analytical models or (system-

level) simulation, and an exploration engine that iteratively

searches and decides which points have to be evaluated. There

is a significant variety of approaches that aim at defining
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novel methods to perform either one or the other step in

a time-effective manner, [4], [5], [6], especially targeting

heterogeneous MPSoCs [7], [6], [8].

The majority of the approaches rely on system-level simu-

lation to do the evaluation [3]. Basing on the Y-Chart principle

we can find simulation tools that work at a high level of

abstraction like [9], [10].

Modular system-level MP-SoC DSE framework are pro-

posed in [11], [12], [8], for DSE of embedded systems. The

MultiCube project [13] has similar objectives, but it mostly tar-

gets micro-architectural exploration of multiprocessors rather

than system-level architectural exploration.

[14] present a framework specifically targeting ASIPs, inte-

grating a design tool-chain with a virtual platform to explore

a number of axes of the MP-SoC configuration space.

However, none of the mentioned approaches, to the best

of our knowledge, experiments the integration of high-level

simulation and FPGA prototyping. In literature, the use of

emulation on reconfigurable hardware has been often limited

to the analysis and exploration of high-performance computing

systems, mainly enabling the prototyping of “static” archi-

tectural templates to speed-up the evaluation of architectural

design techniques on complex applications. The most impor-

tant contribution to the field of large hardware multi-FPGA

platforms for simulation of complex systems is brought by

the RAMP project [15].

Examples of hardware-based full-system emulators are [16]

and [17], in which the FPGA-based layer is employed to

accelerate the extraction of several metrics of the consid-

ered architecture, specified and automatically instantiated in

a modular fashion. Such papers report a speedup achievable

with the use of FPGA prototyping of three/four orders of

magnitude in emulation speed, when compared with software-

based simulators. The Daedalus framework [18] can be con-

sidered a baseline for the work presented in this paper. In

Daedalus, on-hardware evaluation is used for DSE purposes.

FPGA-based evaluation platforms are automatically created

using the ESPAM tool. However, support for prototyping of

highly heterogeneous (e.g. ASIP-based) architectures was not

completely provided, since configuration at component-level

was not allowed and no countermeasures are taken to balance

the overhead related with the synthesis and implementation

flow. Some works can be found in literature, that aim at the re-

duction of the number of necessary synthesis/implementations,

by looking at FPGA reconfiguration and programmability

capabilities. RAMP Gold, a framework developed within the

RAMP project, also provides some capabilities of changing at

runtime the cache-related parameters during the emulation. In

[19], relying on partial reconfigurability techniques, FPGAs

are used to optimize register file size in a soft-core VLIW

processor. In our previous work [20] we implemented a hard-

ware reconfigurable prototyping platform to allow fast ASIP

design space exploration. We partially modified and extended

the previous work, exploiting a full software approach in

order to avoid the penalties and overheads due to hardware

implementation.

As major contribution of our work we want to present a

toolset, developed within the MADNESS project, that provides

the needed extensions to the Daedalus framework, to seam-

lessly and time-effectively couple FPGA-based prototyping

with DSE and simulation techniques. The toolset can be

comfortably used for the optimization of MPSoC systems

based on configurable processing elements. We outline in the

paper the interfacing between the components and we assess

the achievable results with a use case.

III. REFERENCE ARCHITECTURAL TEMPLATE AND

EXPLORATION STRATEGY

In this work and in the MADNESS Project, the developed

methods are tested referring to an architectural template that

exposes most degrees of freedom that may be experienced

in modern embedded systems. The main aim is to optimize

multi-processor systems, arbitrarily interconnected by means

of custom-tuned communication structures (FIFO-, bus- or

NoC-based). IP cores that can be used as building blocks are

PEs, Memories, interconnect modules, I/O peripherals. Within

the project a library of IPs has been collected and integrated, in

order to allow the prototyping of almost completely arbitrarily

heterogeneous architectures. The DSE process presented in

this work is aimed at defining, for a generic multi-processor

architecture, the following architectural parameters:

• Number of processing elements

• Kind of processing elements

• Mapping of the application tasks on the processing ele-

ments

Other exploration directions are also envisioned and supported

within the project, such as interconnect infrastructure, level of

support for fault tolerance and adaptive behaviour, but they

are not discussed in this paper for the sake of brevity. Number

of processors can vary in a range that can be defined at the

beginning of the optimization process, as input directive to

the DSE engine. The tasks to be mapped are defined in the

application code, and are described using a task graph. The

PEs can be static architectures (e.g. GP RISCs) or customized

processor configurations. Such processors can be constructed

using an industrial flow for the implementation of VLIW

ASIPs, based on a flexible Processor Architecture Template

(see Fig. 1). According to the template, every ASIP consists

of a composition of sub-structures called processor slices,

that are complete vertical datapaths, composed of elementary

functional elements called Template Building Blocks, such as:

• register files: holding intermediary data in between pro-

cessing operations, configurable in terms of width, depth,

number of read and write ports;

• issue slots: basic unit of operation within processor;

every issue slot includes a set of function units (FUs),

that implement the operations actually executable. Every

issue slot receives an operation code from the instruction

decoding and, accordingly, accesses the register files and

activates the function units;

• logical memories: container for hardware implementing

memory functionality;
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• interconnect: automatically instantiated and configured,

implementing the required connectivity within the pro-

cessor.

Fig. 1. Reference VLIW ASIP template

We enable a design space exploration covering the main

degrees of freedom exposed by the Processor Architecture

Template (the only assertion we impose is that a control slice

handling the program counter and status register update must

be instantiated in the processor together with an arbitrary

number of processing slices). Design points are processor con-

figurations that instantiate an arbitrary number of processing

slices and different parameterizations of the building blocks

included in them. The design space under consideration is thus

determined by the following degrees of freedom:

• NIS(c): the number of slices in configuration c;
• FU set(x, c): the set of function units in issue slot x, in

configuration c;
• RF size(x, c): the size (depth) of the register file asso-

ciated with issue slot x, in configuration c;
• n mem(c): number of memories in configuration c.

IV. GENERAL TOOLSET DESCRIPTION

The toolset that we are presenting in this paper integrates

three main components: a search engine, a simulation tool and

a FPGA-based prototyping platform. The interaction between

the tools is depicted in Figure 2.

The main input to the toolset is the application code,

along with the specifications of the constraints that must be

considered during the optimization process. Moreover all the

tools can receive some input directives related to the settings

of their operation mode. The search of the optimal design

point is an iterative process that is driven by the Design

space search engine (search engine hereafter). This tool, that

will be described more in detail in section V, embeds novel

techniques for effectively pruning the design space by means

of heuristic search algorithms and techniques for avoiding

the use of relatively time-consuming simulations during DSE.

When the search engine requires the evaluation of a (set of)

design point(s), it produces a system-level description of those

design points (Design point system-level description in the

figure). At the output of the search engine, such description is

expressed using a very abstract format to specify the design
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Fig. 2. General toolset overview

point to be evaluated and, adequately translated by a utility

(Design point description generation in the figure), can be

elaborated by the lower level of the toolchain. At this level,

the FPGA-based prototyping platform and the simulator co-

operate in different ways during the evaluation process.

More in detail, two use cases are typically possible:

• preliminary calibration;

At the starting point, the FPGA-based prototyper is

exploited for calibrating the simulation model. The ex-

ecution of the application tasks is emulated on a baseline

single-ASIP hardware prototype, to perform a detailed

component-level (processor-level) DSE. According to

such emulation, the tasks are conveniently characterized

in terms of their computation latency over different pro-

cessor configurations. Once this detailed characterization

has taken place, the resulting numbers are passed as input

to the simulation model, as a characterization table, so

that it can start serving as an evaluation platform for the

search engine.

• periodic tuning and detailed analysis;

When needed, during the iterative process, the search

engine is able to directly ask the prototyping for a (set of)

customized multi-ASIP design point(s) under evaluation

(dashed line in Figure 2). The prototyper is exploited,

in this case, for system-level DSE, obtaining a detailed

characterization that may be provided as a feedback to the

search engine and to refine the tuning of the simulator.

At the end, a Pareto front is provided to the user, to

be considered when choosing the optimal application-specific

architecture.

V. DESIGN SPACE EXPLORATION: SEARCH ENGINE

To optimally explore the design space for optimum design

points, a search engine that utilizes heuristic search techniques,

such as multi-objective Genetic Algorithms (GAs), has been
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developed. Such GAs prune the design space by only per-

forming a finite number of design-point evaluations during the

search, evaluating a population of design points (solutions)

over several iterations, called generations. With the help of

genetic operators, a GA progresses iteratively generating new

populations towards the best possible solutions. In the search

engine, the design space is explored in an iterative fashion

using the NSGA II evolutionary algorithm. This module

constructs a chromosome, a string of values representing the

architectural- and mapping-related, which, for the sake of the

exploration that is considered in this paper, may be defined as

follows:

[p1, p2, · · · pj · · · pN , k1, k2, · · · kj · · · kN ]

where the position j refers to a specific application process, the

value pj indicates respectively the ID of the processing unit

in the system onto which the application process is mapped,

and the kj indicates the architectural configuration chosen for

the processor (obviously if pi = pj (task i and j are mapped

on the same processor), then ki = kj ). As mentioned, such

string is analyzed by the Design point description generation

utility to produce two different design description formats:

the input for the prototyping platform (expressed using an

industrial proprietary format) and the input for the simulation

tool. Both formats will be described more in detail in the

following sections.

To further optimize the DSE process, the search engine

also allows for hybrid DSE in which fast but slightly less

accurate analytical performance estimations are interleaved

with more accurate but slower Sesame system-level sim-

ulations to evaluate design points during DSE. Evidently,

the aim is to interleave the analytical evaluations with the

simulative evaluations in a way such that most evaluations are

performed analytically. As a consequence, such an approach

could significantly improve the efficiency of the DSE process,

allowing for searching a much larger design space. The hybrid

DSE part of the Search module is, however, beyond the scope

of this paper. The interested reader is referred to [21] for more

details.

VI. SYSTEM-LEVEL SIMULATION

For simulative evaluation of design points during the DSE,

we deploy the Sesame MPSoC simulation framework [22].

Sesame is a modeling and simulation environment for the

efficient design space exploration of heterogeneous embed-

ded systems. According to the Y- chart design approach,

it recognizes separate application and architecture models

within a system simulation. An application model describes

the functional behavior of a (set of) concurrent application(s).

An architecture model defines architecture resources and cap-

tures their performance characteristics. Subsequently, using a

mapping model, an application model is explicitly mapped

onto an architecture model (i.e., the mapping specifies which

application tasks and communications are performed by which

architectural resources in an MPSoC), after which the applica-

tion and architecture models are co-simulated to qualitatively

study the performance consequences of the chosen mapping.

For application modeling, Sesame uses the Kahn Process Net-

work (KPN) model of computation in which parallel processes

implemented in a high-level language communicate with each

other via unbounded FIFO channels. Hence, the KPN model

unveils the inherent task-level parallelism available in the

application and makes the communication explicit. Further-

more, the code of each Kahn process is instrumented with

annotations describing the application’s computational actions,

which allows to capture the computational behavior of an

application. The reading from and writing to FIFO channels

represent the communication behavior of a process within the

application model. When the Kahn model is executed, each

process records its computational and communication actions,

generating a trace of application events, an abstract represen-

tation of the application behavior, necessary for driving the

architecture model. Application events are generally coarse

grained. Typical examples are:

• read(channel id, pixel block) that represents a communi-

cation event, in this case a data read from a FIFO channel

• execute(DCT) that represents an atomic computation

event, in this case the execution of a DCT kernel.

The architecture model simulates the performance conse-

quences of such computation and communication events gen-

erated by the application model. It is parameterized with

an event table (the previously mentioned calibration table),

that contains latency values that are associated to a given

event. A table entry could include, for example, the num-

ber of cycles needed by a given processor architecture to

complete a DCT function, that is the computation latency

associated with the event execute(DCT). Other kind of events,

such as the previously mentioned communication actions or

remote memory access can be modeled, associating a latency

to a different architectural component, but are not strictly

related with the scope of this paper that mainly discusses

about processor characterization. To realize trace-driven co-

simulation of application and architecture models, Sesame

has an intermediate mapping layer that controls the mapping

of Kahn processes (i.e., their event traces) onto architecture

model components by dispatching application events to the

correct architecture model component.

This description (Design point .yml description in Figure 2)

is specified in YML (Y-chart Modeling Language), an XML-

based format that consists of three parts: a high-level archi-

tectural description of the design point, an application graph

description and a description of the mapping of application

processes and communication channels onto the architecture

resources. This information is automatically generated (by the

Design point description generation). Moreover, it receives the

calibration table by the FPGA-based prototyping environment.

VII. FPGA-BASED PROTOTYPING PLATFORM

The FPGA-based prototyping platform, as mentioned, is

used to provide detailed characterization numbers when

needed by the optimization process. The evaluation can be

done at component-level on a single ASIP (during preliminary
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characterization) or on a complete system-level configuration.

The inputs to the prototyping phase are:

• the partitioned application code (coded in plain C)

• a set of ASIP architectural specifications, describing

the processor configurations to be evaluated, expressing

number and kind of template building blocks and their

connectivity, according to the reference architectural tem-

plate previously described;

• a system-level specification, describing the system ar-

chitecture in terms of number and kind of processing

elements and defining their connectivity. When perform-

ing the preliminary calibration step, the system-level

specification is a default single-ASIP system that includes

a host processor in charge of uploading the binaries in

the ASIP memories. When performing a system-level

evaluation, the multi-ASIP specification is automatically

created by the Design point description generation tool

shown in Figure 2.

Both the ASIP- and the system-level specifications (both

indicated as Design point configuration description in Figure

2) are expressed in a proprietary industrial format. This enables

to exploit the tools in the industrial flow ([23]) that is taken

as reference within the project, aimed at the design and

the programming of ASIP architectures compliant with the

previously described general template. The tool suite includes

HDL generators and a retargeting compiler, and envisions a

typical ASIP design flow. A configuration description is passed

to the RTL constructor, that analyzes it and provides as output

the VHDL description of the whole architecture. This HDL

code is used as input for the FPGA implementation phase,

that can be performed with standard commercial tools. The

target application code is compiled by means of an adequate

compiler, retargeting itself according to the instruction set and

the architectural features of the processor under prototyping.

After compilation, the program can be executed on the ASIP

implemented on FPGA. In order to enable fast on-FPGA

evaluation of multiple design points, such flow has been

extended within the project as shown in Figure 3.

The prototyping speed-up technique developed within

MADNESS focuses on the identification of what we call a

worst case configuration (WCC), i.e. a processor configuration

that is over-dimensioned with the hardware resources neces-

sary to emulate all the configurations included in the prede-

fined set of candidates. Once the WCC has been implemented

on FPGA, to evaluate different design points, we run on top

of it the binaries obtained compiling the target application

for each candidate configuration and adapted by means of

a custom-defined manipulation algorithm. The manipulation

is aimed at activating only the needed subset of the WCC

circuitry, to mime the prototyping of the considered design

point after a stand-alone implementation and programming

flow. During the execution, we obtain, by means of dedicated

counters automatically instantiated inside the HDL code before

synthesis, performance and switching activity metrics. To

evaluate every candidate architecture we take into account only

Fig. 3. Prototyper block diagram

the meaningful counters inside the WCC, assuring the obtained

results to be perfectly equivalent to those obtainable from its

“single-configuration” prototyping.

A. Support for fast prototyping

In order to exploit the support for fast prototyping, all the

design points under test must be provided before the beginning

of the iterative process. As a first step, we define the WCC by

updating its structure at each iteration according to the design

point under analysis. At iteration N (i.e. parsing the N − th
candidate configuration under test c)

• The number of issue slots inside c is identified and

compared with previous iterations. A maximum search

is performed, then, if needed, the WCC is modified to

instantiate NIS(WCC) issue slots, where

NIS(WCC) = max{NIS(i)} for i = 1, ..., N ;

• For every issue slot x inside c, the size of the associated

register file is identified and compared with previous

iterations. A maximum search is performed, then, if

needed, the register file related to the issue slot x inside

the WCC is resized to have RF s(x,WCC) locations,

where

RF s(x,WCC) = max{RF s(x, i)} for i = 1, ..., N ;

• For every issue slot x inside c, the set of FUs is identified
and compared with previous iterations. The issue slot x
inside the WCC is modified, if needed, to instantiate a

set of FUs being the minimum superset of FUs used in

previous configurations:

FU set(x,WCC) =

FU set(x, c) ∪ FU set(x, i) for i = 1, ..., N ;

Since we know the architectural parameters for each can-

didate design point, we can partition the instruction bits in

ranges corresponding to control directives to the datapath,

like operation codes (selecting specific function units and

specific operations inside issue slots), index values for register

files read/write operations, and configuration patterns for the
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connectivity matrices in charge of driving the propagation of

the computing data through the datapath. For each range,

its width and position are dependent on the architectural

configuration that must execute the instruction. For each field,

also a disabling configuration is defined, allowing to determine

a no-operation for the related datapath part. The general idea is

then to manipulate each single instruction field of a candidate

configuration, in order to fit it (modified in position, size and

value) in the WCC instruction format.

First, the tool parses and analyzes each architectural descrip-

tion, comparing it to the WCC definition, in order to identify:

position and size of the field inside the candidate instruction

word, position and size of the field in the WCC, and an “offset”

indication to be considered during adaptation.

Then, a one-to-one constraint is determined between each

processing slice (and related instruction fields) in the candidate

architecture and a processing slice in the WCC that is in charge

of miming it. The information inside the “offset” structure

indicates how to handle and eventually modify the value in the

related candidate instruction, considering hardware structures

instantiated in the WCC but not in the prototyping of the

considered design point. For each instruction in the candidate

architecture binary file, a WCC instruction word is then

populated according to what we know about the architecture.

An example is depicted in Figure 4.

Fig. 4. Example manipulation of instruction word. First field (ext) is left-
extended to obtain the same length of corresponding field on the WCC. The
second (dis) represents a disabling configuration and it gets adapted for the
target worst case configuration. Third field (ext and mod) is left-extended
and modified, to enable the execution of the binary despite the presence of
additional hardware on the WCC.

At this point, all the obtained translated binaries can be

loaded on FPGA on-board memory and executed on the ASIP

prototyping platform only by invoking a custom C function in

the application flow, in charge of selecting the correct binary

code for the desired emulated configuration and uploading it to

ASIP program memory. At the end of each on-ASIP execution,

metrics are automatically extracted from the platform, ac-

cessing memory-mapped counters, obviously excluding those

related to hardware elements that are instantiated within the

WCC but are not involved in the prototyping of a specific

configuration under test.

VIII. INTERFACING THE TOOLS THROUGH CO-SIMULATION

In order to enable the calibration data to be comfortably ac-

cessed by the DSE environment, we implemented a dedicated

support for extracting the emulation results from the FPGA,

exploiting Xilinx SysGen toolbox for Matlab.

The toolbox enables to define shared memories that can be

accessed either by the hardware modules implemented on the

FPGA, or by a Simulink instance running on a host worksta-

tion. In this way, it is sufficient to connect the performance

counters inside the processors and the other modules in the

system to such memories, to have a user-friendly interface

to the evaluation platform. The HDL generator was enhanced

in order to automatically set-up the needed connections and

wirings to support the counter values fetching.

Simulink objects and Matlab funtions can, at the other end,

read from the shared memory activity values and counts to

make them available for plotting or in the workspace. Being

the DSE environment also implemented using Matlab, this

results in an efficient method implementing the exchange of

data between the tools (i.e. to implement the transfer of the

previously described calibration table). In Figure 5 we show

a screenshot of the framework user interface.

Fig. 5. Screenshot of the Matlab GUI after a prototyping of a 4-tasks
application kernel executed on 4 ASIP configurations. On the top-left (in
the workspace) the calibration table of latency numbers to be passed in input
to the simulation tool. On the right the Simulink model used to access the
shared memories implementing the interface with the FPGA prototype. At
the bottom detailed emulation data plotted as histograms. Below the latency
values, the FPGA seen as a black box by the Matlab/Simulink environment.

IX. USE CASE

In this section we present a typical use case of the pre-

viously described integrated toolset, where the FPGA-based

prototyping platform is used for preliminary calibration of

the simulation model. The target application is a motion-

JPEG (M-JPEG in the following) video compression kernel.

The use-case that we are presenting is a DSE process that

optimizes the mapping of the application parallel tasks on a

selected set of ASIP configurations. During the calibration,

we explored the component-level design space exposed by the

ASIP template, evaluating 18 different ASIP configurations

under the workload related with the execution of the parallel

tasks inside the M-JPEG task-graph. The explored design

points were identified considering different permutations of

the following parameter values:

• NIS(c): 2 or 3 or 4 or 5;
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• FU set(x, c): two different sets of FUs were considered,

basically differing only for the inclusion of a multiply-

and-accumulate FU (MAC), that is the most power/area

hungry inside the library;

• RF size(x, c): 8 or 32 entries, each 32-bits wide;

A filtering kernel was compiled for every candidate con-

figuration and the resulting binaries were executed on the

WCC prototype, after being adequately manipulated. During

the preliminary calibration phase, as previously explained,

a system with a host processor and one over-dimensioned

ASIP core was designed. The host processor is in charge of

reading the adapted binary from its local memory and upload

it to ASIP program memory. After the binary file has been

uploaded, host processor triggers the ASIP core for its start

and wait until the end of its execution, to fetch from ASIP

local memory the results of the execution and eventually to

check them for the presence of any errors.

The adopted hardware FPGA-based platform features a Xilinx

Virtex5 XC5VLX330 device, counting over 2M equivalent

gates.

Fig. 6. Pareto plot representing the latency values included in the calibration
table annotated with the area value corresponding to the related ASIP
configurations. Different symbols are used to represent values associated to
different tasks in the M-JPEG kernel

The synthesis/implementation flow, performed on an Intel

Quad-Core machine with commercial tools, required less

than half an hour to complete. Binary translation was also

performed on the same machine, but the related overhead in

terms of emulation time is negligible (less than a second).

According to this numbers, the presented approach allows

a time saving that increases with the number of candidate

topologies under prototyping, easily outperforming software-

based simulation. The results of the preliminary component-

level DSE are plotted in Figure 6. All the presented data are

obtained after traversing only one synthesis/implementation

flow. Area numbers are evaluated according to the ASIP

configuration features and to area models provided by the

industrial partners in the MADNESS project. Similar models

are also available for energy, but the possibility of evaluating

power consumption, even if enabled at both simulation- and

prototyping-level, is not discussed in this paper. As may be no-

ticed, all the tasks show to have similar behavior with respect

to the fitting to the different candidate ASIP architectures.

Design points that, for all the tasks, experience an execution

time much longer than the others (right end of the graph)

are those that do not feature any MAC, that, evidently, is

intensively exploited for the kind workload in the M-JPEG

kernel. Besides estimating computation latency for the tasks

in the target application, the prototyping phase can be used

to identify computation bottlenecks and congestion hot-spots

inside the architecture. As an example, we show in Figure 7

a graph reporting number of accesses to every function unit

and register file in a candidate ASIP configuration, during the

execution of the M-JPEG kernel.

As may be noticed, in the presented example, the WCC is

used to evaluate a design point featuring only 3 issue slots,

thus the activity counters related to issue slots 3 and 4 are never

stimulated and must not been considered when evaluating the

design point.

Fig. 7. Detailed calibration results at functional block level

After the calibration step, the system-level DSE process can

be initiated. The DSE engine can start evaluating different

design points using the simulation model. The simulation

model is able to tune itself by reading, directly from the Matlab

workspace, the data inside the previously mentioned charac-

terization table. As an example of the achievable results, we

show in Figure 8 the Pareto graph obtained after an exploration

process that involved an iterative evaluation of 100 generations

with each population composed of 50 solutions each.

This implies 500 evaluations performed by the toolset. The

whole DSE experiment, after calibration, required 35 minutes

on a the previously mentioned Intel Quad-Core computer.

As may be noticed in the Pareto graph, after the DSE

process, a set of design points has been identified, showing

different performance (execution time) vs cost (area) trade off.

The fastest and more area-hungry Pareto point (top-left of the

graph) features one host processor (executing the VideoIn task)

and three ASIP processors. The three selected configurations

are different, featuring respectively 4 ISs (3 equipped with

MAC, executing the DCT task), 4 ISs (2 equipped with MAC,

executing both Vle and Q) and 3 ISs (1 with MAC executing

Vout). However a solution providing the same execution time

but requiring less hardware is also identified, mapping DCT

and Vout on the same processors, but using two different
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Fig. 8. GUI of the DSE framework, plotting the results obtained for the
M-JPEG use case

smaller processors for Vle and Q (respectively featuring 1 IS

without MAC and 2 ISs with one MAC) The slowest and

cheapest solution (the Pareto point at the bottom-right corner

of the plot) is a single-ASIP featuring only one instance of the

cheapest processor (1 processing issue slot without MAC), that

is in charge of executing all the tasks in the target application

kernel. Besides providing the plot in the figure, the process

collects the simulation results for all the evaluated design

points and the related HDL system-level description, in order

to enable the protoyping of a multi-ASIP design point on the

FPGA platform.

X. CONCLUSIONS

In this work, an approach to the application-driven con-

figuration and programming of multi-ASIP systems, based

on a combination of trace-based high-level simulation and

FPGA-based emulation, is presented and evaluated. The main

point of strength of the proposed approach relies on the

complementarity of the two methods. While simulation, once

duly calibrated, is capable of exploring vast design spaces in

reasonable times, FPGAs, if the overhead related with on-

hardware implementation is adequately reduced, are a conve-

nient method for rapidly evaluating sets of design points with

component-level detail and complete accuracy. The presented

use case validates the usefulness of the framework as an

effective support to quantitative design space exploration or

simply as an environment for rapid prototyping of complex

ASIP-based platforms. Future developments of this work will

go towards providing, by extending and improving the fun-

damental mechanisms presented in this article, support for

adaptiveness and fault tolerance in ASIP single- and multi-

core platforms.
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