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Determination of an Unknown Radiation Term in a Nonlinear Inverse 
Problem using Simulation of Markov Chains
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Abstract: The purpose of the present study is to provide a fast and accurate algorithm for identifying the
medium temperature and the unknown radiation term from an overspecified condition on the boundary in an
inverse problem of linear heat equation with nonlinear boundary condition. The design of the paper is to employ
Taylor’s series expansion for linearize nonlinear term and then finite-difference approximation to discretize the
problem domain. Owing to the application of the finite difference scheme, a large sparse system of linear
algebraic equations is obtained. An approach of Monte Carlo method is employed to solve the linear system
and estimate unknown radiation term. The Monte Carlo optimization is adopted to modify the estimated values.
Results show that a good estimation on the radiation term can be obtained within a couple of minutes CPU time
at pentium IV-2.4 GHz PC.
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radiation term

INTRODUCTION

The problem of determining unknown parameters in
parabolic differential equations has bean treated by many
authors (Cannon and Zachmann, 1982; Dehghan, 2002;
Chen et al., 2001; Ebrahimi, 2011). Usually this problems
involve the determination of a single unknown parameter
from overspecified boundary data. In some applications,
however, it is desirable to be able to determine more than
one parameter from the given boundary data (Cannon,
1984; Chen et al., 2002; Ebrahimi et al., 2008). It is well
known that the radiative heat is a function of temperature.
In certain radiative heat transfer it is of interest to devise
methods for evaluating radiations function by using only
measurements taken outside the medium. To date various
methods have been developed for the analysis of the
parabolic inverse problems involving the estimation of
boundary condition or diffusion coefficient from
measured temperature inside the material (Friedman,
1964; Cannon and Duchateau, 1980; Shidfar et al., 2006;
Ivaz and Nikazad, 2005; Dehghan and Tatari, 2008;
Farnoosh and Ebrahimi, 2010). For example in the work
of Shidfar et al. (2006) a numerical algorithm based on
finite difference method and least-squares scheme for
solving a nonlinear inverse diffusion problem is applied.
Also, Ivaz and Nikazad (2005) have studied the
uniqueness of the solution of an inverse solidification of
pure substance problem in two dimensions. It can be
found that the numerical method proposed by Dehghan
(2003), applied to a one-dimensional parabolic inverse
problem. The results show that the accuracy of this study

are very reasonable. Other numerical methods for solving
semi-linear parabolic inverse problems have been
proposed including the finite difference method presented
by Dehghan (2002) and the He's variational iteration
method investigated by Dehghan and Tatari (2008). The
literature reviews showed that Wang and Zabaras (2004)
successfully applied a Bayesian inference approach to the
inverse  heat  coonduction  problem. Recently Ebrahimi
et al. (2008), employed Monte Carlo method in
conjunction with finite difference scheme for solving a
linear parabolic inverse problem in two-dimensional case.
This paper seeks to determine an unknown radiation
function which is depend on the heat in a radiative heat
transfer equation. It is assumed that no prior information
is available on the functional form of the unknown
radiation term in the present study, thus, it is classified as
the function estimation in inverse calculation. The
unknown radiation term is approximated by the
polynomial form and the present numerical algorithm is
employed to find the solution. According to latest
information from the research works it is believed that the
solution of the present inverse problem with an unknown
radiation term at boundary condition based on numerical-
probabilistic algorithm included the Monte Carlo
optimization has been investigated for the first time in the
present study.

Description of the problem: We consider the problem of
determining function U(x,t) satisfying:

(1)U U x t Tt xx    , ,0 1 0
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(2)U x f x x( , ) ( ),0 0 1  

(3)U t g t t T( , ) ( ),0 0  

(4)U t P U t t t Tx ( , ) ( ( , )) ( ) ,1 1 0   

where T is a given positive constant.We consider problem
(1)-(4) as a direct problem. The direct problem considered
here is concerned with the determination of the medium
temperatures when the radiation term P(U), the initial
condition f(x) and the boundary conditions g(t) and  P(t)
are known continuous functions on their domains. The
direct problem (1)-(4) has a unique solution (Friedman,
1964).

For the inverse problem, the radiation term p(U), is
regarded as being unknown. In addition, an overspecified
condition is also considered available. To estimate the
unknown coefficient P(U), the additional information of
measurements on the boundary x = x1, 0 < x1< 1, is
required. Let the temperature measurements taken at x1=1
over the time period (0,T) be denoted by:

(5)U t t t t f( , ) ( ),1 0  

It is evident that for an unknown function P(U), the
problem (1)-(4) is under-determined and we are forced to
impose additional information (5) to provide a unique
solution pair (U, P(U)) to the inverse problem (1)-(5). We
note that the measured temperature U(1,t) = N(t) should
contain measurement errors. Therefore the inverse
problem can be stated as follows:

 By utilizing the above-mentioned measured
temperature data, estimate the unknown function
P(U) over the entire space and time domain. Certain
types of physical problems can be modeled by (1)-
(5). The Eq. (1) may be used to describe the flow of
heat in a rod. Hence, we might think of this problem
as the problem of determining the unknown radiation
term in a rod.

METHODOLOGY

The application of the present numerical method to
find the solution of problem (1)-(5) can be described as
follows:

Linearizing the nonlinear term :For linearized nonlinear
term in Eq. (4) we used Taylor’s series expansion. Let
Q(>1,…,>s) infinite differentiable nonlinear function of
>1,…,>s ,  then  its  Taylor’s series  expansion  is given as

(6)     



   


 ( ,..., ) ( ,... ) ( ,... ) ( )1 1 1 1s s
s

s   

where the overbar denotes the previously iterated
solution. The function P(U) in Eq. (4) can be linearized by
(6), as follows:

(7)P U P U
U

P U U U U UU U( ) ( ) ( ( )) ( ) (( ) )    




0 2

Finite difference scheme: We use fully implicit finite
difference scheme for discretizing Eq. (1). Therefore, the
Eq. (1) is approximated at the mesh point (p,q)  by the
difference equation:

(8)

F u

u u u

p q
u u

v

p q p q p q

p q p q
,

, , ,

( ) , ,








  



  

1

1 1 11 1
2

2
0



and as a result, from Eq. (1) to (4) we obtain:

(9)        ru r u ru up q p q p q p q1 1 1 1 11 2, , , ,( )

(10)u f p qp, ( ),0 0 

(11)u g qv pq0 0, ( ), 

(12)
u u

P u
P

u
u u u u qv p n

n q n q
n n n q n

 







      

1 1

2
, ,

,( ) ( ) ( ) ( ),







where x = p:, t = qv, n: =1, p = 1(1)n, q = 0(1)M and

. Problem (9)-(12) may be written in the followingr
v

h


2

matrix form:

A1 = B, (13)

where,

A

r r

r r r

r r r

r r r
P

u
uN



 
  

  

  



























1 2 0 0

1 2 0

0 1 2

0 0 2 1 2 2

. . ... .

( )



and

  t
q q n q n qu u u u     1 1 2 1 1 1 1, , . . . , , .

Also,

 B u ru u u ut
q q q n q n q   1 0 1 2 1, , , , ,. . . 

in which

    2 2 2r P u r u
P

u
u r qv vn n n 




( ) ( ) ( )
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Theorem 1: The finite difference scheme (8) is
unconditionally stable, (Ebrahimi et al., 2008).

Theorem 2: The finite difference scheme (8) is consistent
with  the parabolic partial differential Eq. (1), (Ebrahimi
et al., 2008).

From Theorems 1 and 2 and Lax s' equivalence
theorem it obviously follows that u converges to U as :
tends to zero.

Solution of linear systems: To solve the linear system
(13), we consider the following iterative method:

(14)
u u

Aii

b A u A u

i q
k

i q
k

i j
i

ij j q
k

j i
n

ij j q
k

,
( )

,
( )

,
( )

,
( )

( )

{ }

 





   


  

   

1 1
1

1
1

1 1 1
1

1 


where i = 1,…,n  and ( , (0,1]. Which is called the Jacobi
overrelaxation iterative method with relaxation parameter
( , (0,1]. Equation (14) may be written in the following
matrix form:

(15) ( ) ( ) , , ,....k kL f k  1 1 2

where,

  ( )
,

( )
,

( ). . . . .k
q
k

n q
k

t
u u  1 1 1

is the k-th iterative solution of (15), L = I – DA, f = Db
and!

,D diag
A An n










 

11

,...,
,

is a diagonal matrix. In fact, we convert the system (13)
into an equivalent system of the following form:

(16)  L f

Therefor, the sequence of approximate solution vectors
of system (16) is generated by applying recursive Eq.
(15). From (15) we obtain:

 ( ) ( ),... , , ,....k k kf Lf L f L k     1 0 1 2

If 1(0) = 0, then:

 ( ) ( ... ) , , ,....k k
m
k mI L L f L f k     

1

0
1 1 2

In the next section we compute the iterations 1(k) = 0
using Monte Carlo method where k  is a finite number. 

Monte carlo method to solve linear system: The
application of the present Monte Carlo method to find a
solution of linear system (16) is as follows:

Consider the Markov chain 

(17)X x x x xk     0 1 2 ... ...

with state space {1, 2, … N} and transition matrix P = pi,j,

i = j =1,…N. Let P x i p P x j x i Pi N N ij( ) , ( )0 1 2     

where pi and pij are the initial distribution and the
transition probabilities of the Markov chain, respectively.
The weight function Wm , for Markov chain (17) with N
states, is defined by using the recursion formula:

W W W
l

P
mm m

x

x

m m

m m

0 11 1 21

1

  




, , , ,....,

,

Now the following random variable is defined:

 k
x

x
m x

m

k

H
H

p
W c

m
[ ]  



0

0
0

which is associated with the sample path:

x x x xk0 1 2   ...

where k  is a given integer number and Ht = (h1,…,hN) is
a given vector. We also consider the problem of finding
the inner product:

H h u h u
q N N q

, ...
, ,

    1 1 1 1

where 1t = (u 1,q+1,…,u N,q+1) is the numerical solution of
the problem (1)-(5).

Theorem 3: The mathematical expectation value of the
random variableis  equal to the inner product<H,k H[ ]

1(k)>,i.e., 

E ('k[H]) = < H, 1(k)>

For proof of the Theorem 3 we refer to (Rubinstein,
1981).
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Table 1: Results for up,q example 1, with P = 1,… ,5
q Error (p = 1) Error (p = 2) Error (p = 3) Error (p = 4) Error (p = 5)
1 2.12/105 120/105 4.19/105 1.92/105 4.14/105

10 5.40/105 7.02/105 3.28/105 2.19/105 5.62/105

100 4.11/105 4.43/105 4.41/106 0.02/105 3.41/105

500 2.05/105 7.03/106 7.25/105 7.06/105 7.37/105

1000 9.08/105 6.74/105 4.05/105 7.12/105 6.41/105

Table 2: Results for up,q example 1, with P = 1,… ,5
q Error (p = 6) Error (p = 7) Error (p = 8) Error (p = 9) Error (p = 10)
1 2.45/105 4.10/105 3.24/105 1.08/105 2.24/106

10 1.90/105 3.08/105 5.18/105 3.04/105 0.52/105

100 0.91/105 4.18/105 5.19/105 4.29/105 0.09/105

500 5.42/105 6.17/105 8.50/105 6.16/106 2.13/106

1000 7.16/105 7.23/105 0.90/105 4.25/105 3.11/106

Table 3: Results for up,q example 2, with P = 1,… ,5
q Error (p = 1) Error (p = 2) Error (p = 3) Error (p = 4) Error (p = 5)
1 1.27/105 5.29/105 4.19/105 2.12/105 1.27/106

10 3.25/105 2.97/105 3.28/105 1.07/105 5.62/105

100 4.11/105 1.85/105 4.17/105 4.82/105 9.11/106

100 4.25/105 5.23/105 8.10/105 5.96/105 1.94/105

1000 6.06/105 8.94/106 5.16/105 6.12/105 2.14/105

Table 4: Results for up,q example 2, with P = 1,… ,5
q Error (p = 6) Error (p = 7) Error (p = 8) Error (p = 9) Error (p = 10)
1 1.87/105 1.10/105 3.19/105 114/105 1.03/106

10 4.40/105 5.93/105 3.94/105 0.07/104 5.62/106

100 5.71/105 6.22/105 6.17/105 3.72/105 0.01/106

100 4.05/105 6.03/105 9.10/105 1.06/106 1.22105

1000 2.66/105 6.94/105 8.14/105 0.01/104 2.93/106

To estimate:

    H h u h uk
q
k

n n q
k, ...( )

,
( )

,
( ) 1 1 1 1

we simulate N random paths:

x x x x s Ns s
k

s
0 1 2 1 1( ) ( ) ( ),... ( )    

each with the length of k , and evaluate the sample mean:

   k s
N

k
s

k
kH

N
H E H H[ ] [ ] ( [ ]) ,

( ) ( )    
1

1

In fact, from Theorem 3 we conclude that   isk H[ ]

an unbiased estimator of the inner product < H, 1(k)>. It is
readily seen that by setting:

H t

j

 ( ,..., , , ,..., )0 0 1 0 0 

we obtain:

   H u j nk
j q
k, , ,...,( )
,

( ) 1 1

Hence 'k[H]  is an unbiased estimator of the u j q
k
,

( )
1

Monte carlo optimization technique: In this work the
polynomial form is proposed for the unknown function
P(U) before performing the inverse calculation. Therefore
P(U) approximated as:

p U c c U c Uapp ( ) ...   0 1 


where {c0,c1,…,c4}are constants which remain to be
determined simultaneously. The unknown coefficients
{c0,c1,…,c4} can be determined in such a way that the
following functional is minimized: 

J c c c U x t c c c t dtcal
t
T( , ,..., ) ( , ; , ,..., ) ( )0 1 10 0 1

2
    

here, are the calculated temperatures on the plan atU p q
cal

,

the grid locations (xp,yq). These quantities are determined
from the solution of the direct problem given previously
by using an approximated Papp (U) for the exact P(U). The
estimated values of cj , j = 0,1,… ,4 are determined until
the value of J(c0,c1, …, c4) is minimum. The
computational procedure for estimating unknown
coefficients aj  and bi  are described as follows:

Consider the following deterministic optimization
problem:
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(18)min ( ) ( )* *

A D R
J C J C J

  
 

 1

where J(C) is real-valued bounded function defined on
R4+1  and  C = (c0,c1,…c4). It is assumed that J achieves its
maximum value at a unique point C*. The function J(C)
may have many local maximum in R4+1 but only one
global maximum.

Random search algorithm: For solving problem (18) we
consider the following random search algorithm:

C Generate 4+1-dimensional random variables Z1, Z2,…
from and 4+1-dimensional normal distribution with
zero mean and covariance matrix C that is Z ~ N
(0,C) where Z = (Z1,  Z2,…)

C Select an initial point. C R1
1 

C Compute J(C1)
C Set i = 1 

C If , go to step 8C Z D Ri i    1

C Set Ci = Ci+1

C Go to step 10
C Compute  J(Ci+Zi)
C If J(Ci+Zi) # J(Ci+Zi) # J(Ci)- g then  (where g > 0)

set Ci+1=Ai+Zi. 
else

  set Ci = Ci+1

C If the stopping criterion is met, stop; otherwise,
set i = i+1 

C Go to step 5

NUMERICAL RESULTS AND DISCUSSION

Example 1: In this example let us consider the following
inverse problem:

Ut = Uxx, 0 < x < 1, t > 0 (19)
U(x ,0) = cos(x) ,0 < x< 1 (20)
U(0,t) =exp (-t), 0 < t < T (21)
Ux(1,t) – P(U(1,t)) =&1&(cos(1) 
+ Sin(1))exp(&t), 0< t <T (22)

with the over specified condition:

U(1,t) =cos (1)exp (-t), 0 < t< T (23)

The exact solution of this problem is U(x,t) =cos (x)exp(-
t) and P(U)=1+U.

To solve the problem (19)-(23) by the present
numerical method, the unknown function P(U) defined as
the following form P(U) = c0+c1U and the computational
procedure for estimating unknown coefficients cj are
repeated until J(c0, c1) # g where g = 0.0001.

The comparison of the surface temperature
distributions between the exact results U(x = p:, t = qv)
and the present numerical results u p,q are shown in Tables
1 and 2. The present numerical  algorithm is  applied for
: = 1/10 and v = 1/100. The initial guess of {c0, c1}
is{0.2,0.2} and  is 0.5. The estimated values of c0 andu p

c1 are c0 = 0.997850 and c1 =1.

Example 2: In this example let us consider the following
inverse problem:

Ut = Uxx, 0< x < 1,>0 (24)
U(x,0) = sin (x) , 0 < x < 1 (25)
U (0,t) = 0, 0 < t < T (26)
Ux (1,t) – P (U(1,t)) =
[-1 +exp(-t)cos(1)-exp(-2t)sin2(1) -]., 0 < t < T (27)

with the overspecified condition:

U(1t) = sin (1) exp(-t), 0< t< T. (28)

The exact solution of this problem is U(x,t) = sin (x) exp
(-t) and P(U) 1+U2.

To solve the problem (24)-(28) by the present
numerical method, the unknown function P(U)  defined as
the following form P(U) = c0 + c1U

2 and the computational
procedure for estimating unknown coefficients ci are
repeated until J(c0,c1) # g, where g = 0.0001.The
comparison of the surface temperature distributions
between the exact results U(x = p:, t =qv) and the present
numerical results up,q are shown in Tables 3 and 4. The
present numerical algorithm is applied for, : = 2/100 and

. The initial guess of{c0,c1}is{0.3,0.3} and  is  1

10000
up

0.4 . The estimated values of c0  and c1 are c0 = 1.005197
and c1 = 0.999410.
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