
Dimensional Stability in Truncated Moment

Problems

F.-H. Vasilescu

Abstract

An approach to truncated moment problems is developed, via the Riesz
functional and an assumed dimensional stability of its associated Hilbert
spaces. Although equivalent to a concept of ��atness� introduced by R. Curto
and L. Fialkow, the dimensional stability discussed in this paper has a di�er-
ent geometric aspect and leads to statements parallel to those of Curto and
Fialkow, as well as to some newer ones, obtained by simpler arguments. A
stability equation, giving a local characterization of the dimensional stability,
is also presented.

1 Introduction

The study of truncated moment problems is a subject of predilection in many
works by R. E. Curto and L. A. Fialkow (see [4]�[7] and their references).
Roughly speaking, this means that giving a �nite multi-sequence of real num-
bers γ = (γα)|α|≤2m with γ0 > 0, where α's are multi-indices of a given length
n ≥ 1 and m ≥ 0 is an integer, one looks for a positive measure µ on Rn

such that γα =
∫
tαdµ for all monomials tα with |α| ≤ 2m. Associating the

sequence γ with the Hankel matrix Mγ = (γα+β)|α|,|β|≤m, which is supposed
to be nonnegative when acting on a corresponding Euclidean space, Curto
and Fialkow show that the existence of the measure µ, having a number of
atoms equal to the rank of Mγ, is characterized by the existence of a rank
preserving nonnegative extensionMγ′ of the matrixMγ, associated to a larger
�nite multi-sequence γ′ = (γα)|α|≤2m+2, which is said to be a �at extension
of Mγ (see [4], De�nition 5.1 and Theorem 7.10; see also our Remark 2.16).
The �atness introduced by Curto and Fialkow can be extended and used in
a more general framework, as done for instance in [3].
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Unlike in the works by Curto and Fialkow quoted above, where the centrel
object is the matrix Mγ, in this paper we mainly deal with the linear func-
tional, often called the Riesz functional, induced by the assignment tα 7→ γα
on the space of polynomials of total degree less or equal to 2m, which, in
addition, is supposed to be nonnegative on the cone of sums of squares of real-
valued polynomials. Our approach, based on di�erent techniques (consisting
mainly of the Cauchy-Schwarz inequality and elements of spectral theory for
commuting tuples of self-adjoint operators), leads to important shortcuts of
the proofs of several basic results in [4], [5] and [8], restated in our terms
(see for instance Theorem 2.6), as well as to some more general results (see
Theorem 2.10).

The use of the Riesz functional to solve various moment problems and re-
lated topics (as for instance the cubature formulas) appears in several works.
In this respect, we cite the papers [9], [12], [13], [15]-[17] etc.

As mentioned before, the �atness introduced by Curto and Fialkow can
be interpreted as a property of stability of the dimension of some associated
Hilbert spaces, and therefore it has another geometric description, which will
be exploited in the present work. This stability will be thoroughly analysed
in the third section, via a quadratic equation, whose resolution leads to quite
explicit solutions to truncated moment problems (see Theorem 3.3). Finally,
in the last chapter, we study some connections between the �nite moment
sequences and their atomic representing measures.

In the rest of this section, we introduce the terminology used in the paper
and recall some elementary facts, most of them well known, presented here
in a more general context than the usual one (see also [23]).

Throughout this paper, n ≥ 1 will be a �xed integer. Let S be a vector
space consisting of complex-valued Borel functions, de�ned on Rn (we restrict
ourselves to Rn but other joint domains of de�nitions may be considered).
We assume that 1 ∈ S and if f ∈ S, then f̄ ∈ S. For convenience, let us say
that S, having these properties, is a function space.

Let also S(1) be the vector space spanned by all products of the form
fg with f, g ∈ S, which is itself a function space. We have S ⊂ S(1), and
S = S(1) when S is an algebra.

Let S be a function space and let Λ : S(1) 7→ C be a linear map with the
following properties:

(1) Λ(f̄) = Λ(f) for all f ∈ S(1);
(2) Λ(|f |2) ≥ 0 for all f ∈ S.
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(3) Λ(1) = 1.

Adapting some terminology from [13] to our context, a linear map Λ with
the properties (1)-(3) is said to be a unital square positive functional, brie�y
a uspf.

When S is an algebra, conditions (2) and (3) imply condition (1). In
this case, a map Λ with the property (2) is usually said to be positive
(semi)de�nite.

Condition (3) may be replaced by Λ(1) > 1 but (looking for probability
measures representing such a functional) we always assume (3) in the stated
form, without loss of generality.

If Λ : S(1) 7→ C is a uspf, we have the Cauchy-Schwarz inequality

(1.1) |Λ(fg)|2 ≤ Λ(|f |2)Λ(|g|2), p, q ∈ S.

Putting IΛ = {f ∈ S; Λ(|f |2) = 0}, the Cauchy-Schwarz inequality shows
that IΛ is a vector subspace of S and that S 3 f 7→ Λ(|f |2)1/2 ∈ R+ is a
seminorm. Moreover, the quotient S/IΛ is an inner product space, with the
inner product given by

(1.2) 〈f + IΛ, g + IΛ〉 = Λ(fḡ).

Note that, in fact, IΛ = {f ∈ S; Λ(fg) = 0∀g ∈ S} and IΛ · S ⊂ ker(Λ).
If S is �nite dimensional, then S/IΛ is actually a Hilbert space.

Now, let T ⊂ S be a function subspace. If Λ : S(1) 7→ C is a uspf, then
Λ|T (1) is also a uspf, and setting IΛ,T = {f ∈ T ; Λ(|f |2) = 0} = IΛ ∩ T ,
there is a natural map

(1.3) JT ,S : T /IΛ,T 7→ S/IΛ, JT ,S(f + IΛ,T ) = f + IΛ, f ∈ T .

The equality

〈f + IΛ,T , f + IΛ,T 〉 = Λ(|f |2) = 〈f + IΛ, f + IΛ〉

shows that the map JT ,S is an isometry, in particular it is injective.

The dimensional stability suggested by the title of this work is related to
the equality JT ,S(Q/IΛ,T ) = S/IΛ. Formally, we have the following:
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De�nition We say that the uspf Λ : S(1) 7→ C it stable at T , where T ⊂ S
is a function subspace, if we have the equality JT ,S(T /IΛ,T ) = S/IΛ.

The equality JT ,S(T /IΛ,S) = S/IΛ is equivalent to the property T +IΛ =
S; in other words, for every f ∈ S we can �nd a g ∈ T such that f − g ∈ IΛ.
In particular, the spaces T /IΛ,T and S/IΛ have the same dimension.

This concept is an version of that of �atness, de�ned in [4], De�nition 5.1
(see also Remark 2.16).

An important problem in this framework is to �nd representing measures
for a uspf Λ : S(1) 7→ C on the whole space S(1) or only on a part of it. If T
is a function subspace of S(1), a representing measure of Λ|T is a probability
measure µ with support in Rn, such that Λ(f) =

∫
fdµ for all f ∈ T . When

such a measure µ exists, we say that Λ|T has an integral representation.

To present the most signi�cant examples (from our point of view) of func-
tion spaces, we freely use multi-indices from Zn

+ and the standard notation
related to them.

The symbol P will designate the algebra of all polynomials in t =
(t1, . . . , tn) ∈ Rn, with complex coe�cients. (Although the polynomials with
real coe�cients seem to be more appropriate for these problems, we prefer
polynomials with complex coe�cients because of the systematic use of some
associated complex Hilbert spaces.)

For every integer m ≥ 1, let Pm be the subspace of P consisting of all
polynomials p with deg(p) ≤ m, where deg(p) is the total degree of p. Note

that P(1)
m = P2m and P(1) = P , the latter being an algebra.

Giving a �nite multi-sequence of real numbers γ = (γα)|α|≤2m, γ0 = 1, we
associate it with a map Λγ : P2m 7→ C given by Λγ(t

α) = γα, extended to
P2m by linearity. The map Λγ is called the Riesz functional associated to γ.

We clearly have Λγ(1) = 1 and Λγ(p̄) = Λγ(p) for all p ∈ P2m. If,
moreover, Λγ(|p|2) ≥ 0 for all p ∈ Pm, then Λγ is a uspf. In this case, we say
that γ itself is square positive.

Conversely, if Λ : P2m 7→ C is a uspf, setting γα = Λ(tα), |α| ≤ 2m, we
have Λ = Λγ, as above. The multi-sequence γ is said to be the multi-sequence
associated to the uspf Λ.

To �nd an integral representation for the map Λγ means to solve a trun-
cated moment problem (see [4]�[8] for other details).

To solve the full (or the multidimensional Hamburger) moment problem
means to �nd an integral representation for the map Λγ : P 7→ C, similarly
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de�ned for a multi-sequence γ = (γα)α≥0, γ0 = 1 (see [2] for other details).
Various results concerning the integral representations for truncated and full
moment problems will be given throughout this text.

The author would like to express his gratitude to Raul Curto (Iowa City),
Lawrence Fialkow (New Paltz) and Mihai Putinar (Santa Barbara) for useful
comments on a �rst draft of this work.

2 Dimensional Stability and Consequences

In this section, we present an extension theorem for some unital square pos-
itive functionals Λ : P2m 7→ C to unital square positive functionals on whole
algebra P , and exhibit some of its consequences.

Remark 2.1 Let Λ : P2m 7→ C be a uspf, and let 0 ≤ k ≤ m. As in the
Introduction (see (1.2) and (1.3)), if we put Ik = IΛ,Pk

= {p ∈ Pk; Λ(|p|2) =
0} = {p ∈ Pk; Λ(pq) = 0 ∀q ∈ Pk}, then

(2.1) Hk = Pk/Ik,

is a �nite dimensional Hilbert space, with the scalar product given by

(2.2) 〈p+ Ik, q + Ik〉 = Λ(pq̄), p, q ∈ Pk.

Recall also that the map Pk 3 p 7→ Λ(|p|2)1/2 is a semi-norm.
Now, if l ≤ m is another integer with k ≤ l, since Ik ⊂ Il, we have a

natural map Jk,l : Hk 7→ Hl given by Jk,l(p+ Ik) = p+ Il, p ∈ Pn,k, which is
an isometry because ‖p + Ik‖2 = Λ(|p|2) = ‖p + Il‖2, whenever p ∈ Pk. In
particular, Jk,k is the identity on Hk.

For a given uspf Λ : P2m 7→ C , each of the spaces Hk = Pk/Ik, 0 ≤ k ≤
m, will be referred to as a Hilbert space built via the uspf Λ, while every map
Jk,l : Hk 7→ Hl, 0 ≤ k ≤ l ≤ m, is designated as an associated isometry.

Similar constructions and a similar terminology will be used for a uspf
Λ∞ : P 7→ C

As mentioned in the Introduction, equalities of the form Jk,l(Hk) =
Hl (k < l) play an important role in this paper. We note that Jk,l(Hk) = Hl

if and only if Pl = Pk + Il. In this case, Jk,l is a unitary transformation.
When l = k + 1, we write sometimes Jk instead of Jk,k+1.
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De�nition 2.2 Let Λ : P2m 7→ C (m ≥ 1) be a uspf, let (Hl)0≤l≤m be the
Hilbert spaces built via Λ, and let Jl : Hl 7→ Hl+1 (0 ≤ l ≤ m − 1) be the
associated isometries. If for some k ∈ {0, . . . ,m−1} one has Jk(Hk) = Hk+1,
we say that Λ is dimensionally stable (or simply stable) at k.

The uspf Λ∞ : P 7→ C is said to be dimensionally stable if there exist
integers m, k, with m > k ≥ 0, such that Λ∞|P2m is stable at k. The number
sd(Λ∞) = dimHk will be called the stable dimension of Λ∞.

We shall see later (see Corollary 2.8) that the stable dimension is unam-
biguously de�ned.

Lemma 2.3 Let Λ : P2m 7→ C (m ≥ 1) be a uspf. If Λ is stable at m−1, then
(
∑m

j=1 tjIm) ∩ Pm ⊂ Im. In particular, tjIm−1 ⊂ Im for all j = 1, . . . ,m.

Proof. Let p =
∑m

j=1 tjpj ∈ Pm with pj ∈ Im for all j = 1, . . . ,m, and let
q ∈ Pm−1. Then

|Λ(pq)| ≤
m∑
j=1

|Λ(tjpjq)| ≤
m∑
j=1

Λ(|pj|2)1/2Λ(t2j |q|2)1/2 = 0

by the Cauchy-Schwarz inequality.
Now, let q ∈ Pm−1 be such that p̄ − q ∈ Im, via the hypothesis on Λ.

Then
Λ(pp̄) = Λ(pq) + Λ(p(p̄− q)) = 0,

by the previous computation and the inclusion Im · Pm ⊂ ker(Λ). Therefore
p ∈ Im.

The last assertion is obvious.

Remark 2.4 Let Λ : P2m 7→ C (m ≥ 1) be a uspf, stable at m− 1. Lemma
2.3 allows us to de�ne correctly the map Mj : Hm−1 7→ Hm by the equality
Mj(p + Im−1) = tjp + Im for all j = 1, . . . ,m. Setting J = Jm−1 (see
Remark 2.2), we may consider on the Hilbert space Hm the linear operators
Aj = MjJ

−1 for all j = 1, . . . ,m. With this notation, we have the following.

Proposition 2.5 The linear maps Aj, j = 1, . . . ,m, are self-adjoint opera-
tors, and A = (A1, . . . , An) is a commuting tuple on Hm.
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Proof. Let pk ∈ Pm and qk ∈ Pm−1 be such that pk − qk ∈ Im (k = 1, 2).
Then

〈A∗j(p1 + Im, p2 + Im〉 = 〈p1 + Im, tjq2 + Im〉 = Λ(p1tjq2)

= Λ(q1tjp2) = 〈Aj(p1 + Im), p2 + Im〉,

because Aj(pk + Im) = tjqk + Im (k = 1, 2; j = 1, . . . ,m), as one can easily
see. Hence A1, . . . , An are self-adjoint.

We prove now that A1, . . . , An mutually commute. It su�ces to show
that MjJ

−1Mk = MkJ
−1Mj for all j, k = 1, . . . , n. To show this, �x a

polynomial p ∈ Pm−1. Thus Mj(p + Im−1) = tjp + Im. We can choose
qj ∈ Pm−1 such that tjp − qj ∈ Im. Therefore, J−1(tjp + Im) = qj + Im−1,
and Mk(qj + Im−1) = tkqj + Im.

Similarly, Mk(p+Im−1) = tkp+Im, and we can choose a qk ∈ Pm−1 such
that tkp− qk ∈ Im, and Mj(qk + Im−1) = tjqk + Im.

Let us show that tkqj − tjqk ∈ Im. We note that tjtkp− tjqk ∈ tjIm and
tktjp− tkqj ∈ tkIm. Consequently,

tkqj − tjqk ∈ (tkIm + tjIm) ∩ Pm ⊂ Im,

via Lemma 2.4. This shows that A1, . . . , An mutually commute.
The next result is a substitute for Theorem 7.8 and Corollary 7.9 from

[4].

Theorem 2.6 Let Λ : P2m 7→ C (m ≥ 1) be a uspf, stable at m − 1. Then
there exists a unique extension Λ∞ : P 7→ C of Λ, which is a uspf.

Proof. We keep the notation from Remark 2.4 and Proposition 2.5. Let
us de�ne the map Λ∞ : P 7→ C by the equality

(2.3) Λ∞(p) = 〈p(A)(1 + Im), 1 + Im〉, p ∈ P .

Using elementary properties of the (polynomial) functional calculus for tuples
of self-adjoint operators (see for instance [22]), it follows easily that Λ∞ is a
uspf on P .

Next we remark that if α, β are multi-indices with α 6= 0 and |α+β| ≤ m,
then Aα(tβ + Im) = tα+β + Im, obtained from formula (2.4) (whose proof is
given in Remark 2.9).
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Taking an arbitrary polynomial p ∈ P2m, and considering a (�nite) rep-
resentation of p of the form p =

∑
j,k≥0 cjkt

αj tβk , with |αj|, |βk| ≤ m, we
have:

Λ∞(p) =
∑
j,k≥0

cjk〈AαjAβk(1 + Im), 1 + Im〉 =

∑
j,k≥0

cjk〈tαj + Im, tβk + Im〉 =
∑
j,k≥0

cjkΛ(tαj tβk) = Λ(p),

showing that Λ∞ is an extension of Λ.
In the last part of the proof, we show the uniqueness of the uspf Λ∞.
Let Λ′,Λ′′ : P 7→ C be extensions of Λ, which are uspf. Let H′k =

Pk/I ′k, H′′k = Pk/I ′′k be the Hilbert spaces built via Λ′,Λ′′, respectively.
Fixing an integer l ≥ 1, we prove by recurrence that for every multi-

index α with |α| ≤ 2m + 2l there exists a polynomial pα ∈ Pm−1, such that
tα − pα ∈ I ′|α| ∩ I ′′|α|.

The assertion is obvious for |α| = m. Assume the property true for all
multi-indices of length m + k − 1 and let us prove it for multi-indices of
length m + k, where 1 ≤ k ≤ m + 2l. If |α| = m + k, then there exists a
j ∈ {1, . . . , n} and a multi-index β with |β| = m+ k− 1 such that tα = tjt

β.
By the induction hypothesis, we can �nd a polynomial pβ ∈ Pm−1 such that
tβ − pβ ∈ I ′m+k−1 ∩I ′′m+k−1. Therefore, t

α− tjpβ ∈ I ′m+k ∩I ′′m+k, by applying
the Cauchy-Schwarz inequality succesively to Λ′ and Λ′′. Further, tjpβ ∈ Pm
and so we can �nd a polynomial pj,β ∈ Pm−1 such that tjpβ − pj,β ∈ Im, via
the equality Jm−1(Hm−1) = Hm. Consequently,

tα − pα = tα − tjpβ + tjpβ − pj,β ∈ I ′m+k ∩ I ′′m+k + Im = I ′m+k ∩ I ′′m+k,

where pα = pj,β.
Extending the property from above to arbitrary polynomials, we deduce

that for every polynomial p ∈ P2m+2l we can �nd a polynomial q ∈ Pm−1

such that p− q ∈ I ′2m+2l ∩ I ′′2m+2l. Moreover,

Λ′(p) = 〈p+ I ′2m+2l, 1 + I ′2m+2l〉 = 〈q + Im−1, 1 + Im−1〉 =

Λ(q) = 〈p+ I ′′2m+2l, 1 + I ′′2m+2l〉 = Λ′′(p),

showing that Λ′|P2m+2l = Λ′′|P2m+2l.
As the integer l ≥ 1 is arbitrary, we have, in fact, that Λ′ = Λ′′.
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Let Λ : P2m 7→ C (m ≥ 1) be a uspf, stable at m − 1. The unique
extension Λ∞ : P 7→ C of Λ which is a uspf (existing by Theorem 2.6) will
be designated as the sp-extension of Λ.

Proposition 2.7 Let Λ : P2m 7→ C (m ≥ 1) be a uspf, stable at m− 1, and
let Λ∞ : P 7→ C be the sp-extension of Λ. Then Λ∞ is stable at any l ≥ m−1.

Proof. Let (Hl)l≥0 be the Hilbert spaces built via Λ∞, and let Jl : Hl 7→
Hl+1 (l ≥ 0) be the associated isometries. We prove, by induction, that
Jl(Hl) = Hl+1 for all l ≥ m− 1.

The assertion is obvious for l = m − 1. Assume the assertion true for
some l ≥ m− 1 and let us get it for l + 1.

Fix a monomial tα ∈ Pl+2 with |α| = l + 2. Then there exists a j ∈
{1, . . . , n} and a multi-index β with |β| = l+1 such that tα = tjt

β. Moreover,
we can �nd a polynomial pβ ∈ Pl such that Λ∞(|tβ−pβ|2) = 0, via the equality
Pl + Il+1 = Pl+1. Therefore

Λ∞(|tα − tjpβ|2)2 ≤ Λ∞(|tβ − pβ|2)Λ∞(t4j |tβ − pβ|2) = 0

by the Cauchy-Schwarz inequality, showing that Pl+1 + Il+2 = Pl+2.

Corollary 2.8 Let Λ : P2m 7→ C (m ≥ 1) be a uspf, and let k ∈ {0, . . . ,
m− 1}. If Λ is stable at k, then Λ is stable at any l ∈ {k, . . . ,m− 1}.

Let Λ∞ : P 7→ C be a uspf, stable at k ≥ 0. Then Λ∞ is stable at any
l ≥ k.

Proof. It su�ces to apply the previous proposition to the uspf Λk+1 =
Λ|P2k+2, using the uniqueness of its sp-extension.

The second part follows easily from the �rst one.

Remark 2.9 Let Λ : P2m 7→ C (m ≥ 1) be a uspf, stable at m − 1, and let
Λ∞ : P 7→ C be the sp-extension of Λ. Let also (Hl)l≥0 be the Hilbert spaces
built via Λ∞, and let Jl,j : Hl 7→ Hj (j ≥ l) be the associated isometries (with
Jl,l+1 = Jl) . As Λ∞ is stable at any l ≥ m−1, by Corollary 2.8, we may con-
struct the n-tuple of commuting self-adjoint operators Al = (Al,1, . . . , Al,n)
on the space Hl, for all l ≥ m, as in Proposition 2.5. De�ning, as in Remark
2.4, Ml−1,j : Hl−1 7→ Hl by the equality Ml−1,j(p + Il−1) = tjp + Il, we
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have Al,j = Ml−1,jJ
−1
l−1 for all j = 1, . . . , n and l ≥ m. It is also clear that

JlMl−1,j = Ml,jJl−1 for all j = 1, . . . , n and l ≥ m. Therefore

Ml,kMl−1,j(p+ Il−1) = tktjp+ Il+1

for all k, j = 1, . . . , n, l ≥ m, and p ∈ Pl−1. Using these remarks, we infer
that

Al,kAl,j(p+ Il) = Ml−1,kJ
−1
l−1Ml−1,jJ

−1
l−1(p+ Il) =

J−1
l J−1

l+1Ml+1,kMl,j(p+ Il) = J−1
l,l+2(tktjp+ Il+2),

for all k, j = 1, . . . , n, l ≥ m, and p ∈ Pl.
A recurrence argument leads to the formula

(2.4) Aαl (p+ Il) = J−1
l,l+k(t

αp+ Il+k),

for all l ≥ m, p ∈ Pl and |α| ≤ k.

Theorem 2.10 Let m ≥ 1 be an integer, and let Λ : P2m 7→ C be a uspf. If
Λ is stable at m − 1, then, endowed with an equivalent norm, the space Hm

has the structure of a unital commutative C∗-algebra.

Proof. Let Λ∞ : P 7→ C be the sp-extension of Λ given by Theorem 2.6.
In particular, considering the Hilbert spaces Hk for all k ≥ m bilt via Λ∞,
the associated isometries Jk,l : Hk 7→ Hl are unitary operators for all integres
k, l with m ≤ k ≤ l.

We identify the space Hm with a commutative sub-C∗-algebra A of the
C∗-algebra B(Hm) of all linear (automatically bounded) operators on Hm.
We use the notation from Proposition 2.5.

First of all we de�ne a map π : Hm 7→ B(Hm) by the equation p̂ 7→ p(A),
where p̂ = p + Im, p ∈ Pm. To check the correctness of this de�nition, we
note that

p(A)(q + Im) = J−1
m,m+k(pq + Im+k),

for all integers k ≥ 1 and polynomials p ∈ Pk, q ∈ Pm, which is a direct
consequence of Remark 2.9. If p ∈ Im, then pq ∈ I2m for all q ∈ Pm, and so
p(A) = 0.

The map π is injective since p(A) = 0 for some p ∈ Pm implies p(A)(1 +
Im) = p+ Im = 0, and hence p ∈ Im.
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Now, let p ∈ P be arbitrary, so p ∈ Pk for some integer k ≥ 0. If
k ≥ m+ 1, we can �nd a polynomial r ∈ Pm such that p− r ∈ Ik. Thus

p(A)(q + Im) = J−1
m,k(pq + Ik) = J−1

m,k(rq + Ik) = r(A)(q + Im)

for all q ∈ Pm. This shows that the map π : Hm 7→ {p(A); p ∈ P} is
surjective.

Let A = {p(A); p ∈ P}, which is a commutative sub-C∗-algebra A of
B(Hm). The previous discussion shows that the map π : Hm 7→ A is a linear
isomorphism. Identifying the algebra A with the space Hm, we obtain the
desired structure of the latter.

The next result is a substitute for Corollary 7.11 from [4]

Theorem 2.11 Let m ≥ 1 be an integer, and let Λ : P2m 7→ C be a uspf.
If Λ is stable at m − 1, then there exists a d-atomic measure µ on Rn,

where d = dimHm, such that

Λ(p) =

∫
p(t)dµ(t), p ∈ P2m.

Proof. We use the n-tuple A = (A1, . . . , An) consisting of commuting
self-adjoint operators, generating the commutative unital C∗-subalgebra A
(in the C∗-algebra L(Hm)), considered in the previous theorem. The C∗-
algebra A must have precisely d characters, say φ1, . . . , φd. Therefore, the
joint spectrum (for the necessary information concerning the multi-parameter
spectral theory, we refer to [22]) of the n-tuple A = (A1, . . . , An) equals the
set

ΣA = {(φk(A1), . . . , φk(An)) ∈ Rn; k = 1, . . . , d}.
We use now an idea which goes back to [10]. Let E be the joint spectral

measure of A, which is concentrated on its joint spectrum ΣA. If µ(∗) =
〈E(∗)(1 + Im), 1 + Im〉, which is clearly a positive atomic measure with
support in ΣA, we have:

Λ(pq̄) = 〈p+ Im, q + Im〉 = 〈p(A)(1 + Im), q(A)(1 + Im)〉 =

〈(pq̄)(A)(1 + Im), 1 + Im〉1 + Im〉 =

∫
ΣA

p(t)q(t)dµ(t),

for all polynomials p, q ∈ Pm, leading to the stated formula, via the equality
P(1)
m = P2m.

11



Finally, the support of the measure µ is precisely the set ΣA. Indeed,
denoting by χξ the characteristic function on ΣA of an arbitrary point ξ ∈ ΣA,
the element χξ(A), built via the functional calculus of A, is a nontrivial
idempotent of A (in fact, a self-adjoint projection on Hm), satisfying

〈χξ(A)(1 + Im), 1 + Im〉 =

∫
ΣA

χξ(t)µ(t) = µ({ξ}).

Assuming µ({ξ}) = 0, we derive that χξ(A)(p+Im) = p(A)χξ(A)(1+Im) = 0
for all p ∈ Pm, and so χξ(A) = 0, which is a contradiction.

The next result is an assertion in the spirit of Corollary 2.6 of [6].

Theorem 2.12 Let Λ∞ : P 7→ C be a uspf.
If Λ∞ is dimensionally stable, then Λ∞ has a unique representing measure,

which is d-atomic, where d = sd(Λ∞).
Conversely, if Λ∞ has a d-atomic representing measure, then Λ∞ is di-

mensionally stable and d = sd(Λ∞).

Proof. Letm ≥ 1 be an integer with the property that Λ∞|P2m is stable at
m − 1. Therefore, Jm−1(Hm−1) = Hm, and there exists a d-atomic measure
µ on Rn such that Λ(p) =

∫
p(t)dµ(t), p ∈ P2m, by Theorem 2.11, where

d = sd(Λ∞). Setting Λ′∞(p) =
∫
p(t)dµ(t) for all p ∈ P , we get a sp-

extension of Λm = Λ∞|P2m. As Λ∞ is also a sp-extension of Λm, we must
have Λ′∞ = Λ∞, by Theorem 2.6, and so Λ∞ has a representing measure.

The uniqueness of µ follows from Theorem 3.4 in [24]. For the sake
of completeness, we sketch the argument from [24] (see also [18] or [22]
for the background). Let ν be another representing measure for Λ∞, and
let Bjf(t) = tjf(t), f ∈ {g ∈ L2(ν); tjg ∈ L2(ν)}, j = 1, . . . , n. Then
Bj are (not necessarily bounded) commuting self-adjoint operators. Since∫
|p|2dµ =

∫
|p|2dν for all polynomials p ∈ P , the space Hm may be re-

garded as a closed subspace of L2(ν), and Bj extends Aj for all j, where Aj
is de�ned as in Theorem 2.11. Therefore, if EB is the spectral measure of
B = (B1, ..., Bn), then the spectral measure E of A = (A1, . . . , An) equals
EB|Hm, and therefore

ν(∗) = 〈EB(∗)1, 1〉 = 〈E(∗)(1 + Im), 1 + Im〉 = µ(∗).

Conversely, assume that Λ∞ has a d-atomic representing measure. If
d = 1, then there exists a point ξ ∈ Rn such that Λ∞(p) = p(ξ) for all p ∈ P .

12



Then, for all k ≥ 1, Ik = {p ∈ Pk; p(ξ) = 0}, the space Hk is isomorphic to
C, and so Λ∞ is dimensionally stable with sd(Λ∞) = 1.

Assume now that d ≥ 2. Let Ξ = {ξ(1), . . . , ξ(d)} ⊂ Rn be distinct points
and let µ be an atomic measure concentrated on Ξ, such that Λ∞(p) =

∫
pdµ

for all p ∈ P .
Consider the polynomials

(2.5) χk(t) =

∏
j 6=k ‖t− ξ(j)‖2∏

j 6=k ‖ξ(k) − ξ(j)‖2
, t ∈ Rn, k = 1, . . . , d

(see also [4], (7.7)). Clearly, χk ∈ P2d−2, k = 1, . . . , d, and χk(ξ
(l)) = δkl

(the Kronecker symbol) for all k, l = 1, . . . , d. In fact, the set (χk)1≤k≤d is an
orthonormal basis of L2(µ).

Since each polynomial p ∈ Pl can be written on the set Ξ as p(t) =∑d
j=1 p(ξ

(j))χj(t), and so

∫
|p(t)−

d∑
j=1

p(ξ(j))χj(t)|2dµ(t) = 0,

it follows that, for every l ≥ 2d− 2, we have Il = {p ∈ Pl; p|Ξ = 0}, and so
(χk + Il)1≤k≤d is an orthonormal basis of Hl. Therefore, all spaces Hl, l ≥
2d− 2, have the same dimension equal to dim L2(µ) = d. In particular, Λ∞
is dimensionally stable and sd(Λ∞) = d.

Corollary 2.13 The uspf Λ : P2m 7→ C (m ≥ 1) has a uniquely determined
d-atomic representing measure, where d = dimHm, if and only if Λ is stable
at m− 1.

Corollary 2.13 a direct consequence of Theorem 2.12, via Theorem 2.6.

The next result is a subsitute of Theorem 7.10 from [4]

Corollary 2.14 The uspf Λ : P2m 7→ C (m ≥ 0) has a d-atomic representing
measure, where d = dimHm, if and only if Λ has a sp-extension Λ′ : P2m+2 7→
C, which is stable at m.

Proof. If Λ has a sp-extension Λ′ which is stable at m, the assertion
follows from Corollary 2.13.
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Conversely, if Λ has a d-atomic representing measure µ, we de�ne Λ∞(p) =∫
pdµ, p ∈ P . Then Λ∞ is dimensionally stable and d = sd(Λ∞), by Theorem

2.12. As dim L2(µ) = d = dim Hm, we must have that Λ′ = Λ∞|P2m+2 is a
sp-extension of Λ, stable at m.

With our terminology, a consequence for the full moment problem of the
previous results is the following (see also Proposition 5.9 from [5]).

Corollary 2.15 If γ = (γα)α∈Zn
+

(γ0 = 1) is a positive de�nite multi-sequence,
then γ has a representing measure if and only if there are a sequence (mj)j≥1

of integers with mj ≥ j for all j, and a sequence of uspf Λj : P2mj+2 7→ C
that are stable at mj, such that Λj|Pj is the Riesz functional associated to
the �nite multi-sequence (γα)|α|≤j for all j ≥ 1.

Proof. Assume that γ is a moment sequence and let Λ∞ be the asso-
ciated uspf (see the Introduction). According to Tchakalo�'s theorem (see
[1]; see also [21], [14] etc.), for each integer j ≥ 1 we can �nd an atomic
measure µj on Rn such that Λ∞(p) =

∫
p(t)dµj(t) for all p ∈ Pj. Let

Ξj = {ξ(j,1), . . . , ξ(j,dj)} ⊂ Rn be the support of µj. We �x integers mj

with mj ≥ max{j, 2dj − 2}, and de�ne the uspf

Λj(p) =

∫
Ξmj

p(t)dµj(t), p ∈ P2mj+2.

As noticed in the proof of Theorem 2.12 , the uspf Λj is stable at mj. More-
over, Λj|Pj is actually the Riesz functional associated to (γα)|α|≤j for all
j ≥ 1.

Conversely, assuming that there are a sequence (mj)j≥1 of integers with
mj ≥ j for all j, and a sequence of uspf Λj : P2mj+2 7→ C that are stable
at mj, such that Λj|Pj is the Riesz functional associated to (γα)|α|≤j for
all j ≥ 1, we derive the existence of a representing measure for the �nite
multi-sequence (γα)|α|≤j for all j ≥ 1, by Theorem 2.11. The existence of a
representing measure for the sequence γ is then a consequence of the main
result from [20] (see also [25]).

Remark 2.16 Let m ≥ 0 be an integer. The �nite dimensional space Pm
may be given a Hilbert space structure with the scalar product de�ned by

(p|q) =
∑
|α|≤m

cαd̄α,
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where p =
∑
|α|≤m cαt

α, q =
∑
|α|≤m dαt

α. In other words, the family of

monomials (tα)|α|≤m is an orthonormal basis of Pm.
Let Λ : P2m 7→ C be a uspf, and let {Hk = Pk/Ik, 0 ≤ k ≤ m} be the

Hilbert spaces built via Λ. The sesquilinear form (p, q) 7→ Λ(pq̄) implies the
existence of a positive operator Ak on Pk such that (Akp|q) = Λ(pq̄) for all
p, q ∈ Pk, where 0 ≤ k ≤ m. Note that p ∈ Ik if and only if Akp = 0. This
implies that dimHk equals the rank of Ak. The concept of �atness for the
�nite multi-sequence associated to Λ (see [4], De�nition 5.1) means precisely
that Λ is stable at m − 1, and it is equivalent to the fact that the rank of
Am−1 is equal to the rank of Am. The latter property is directly used to
`extend' Am (`extension' in the sense of [19]) to a rank preserving uniquely
determined matrix Am+1 (associated to a uspf Λ′ : P2m+2 7→ C which extends
Λ)), which is the main tool of Curto and Fialkow (see [4], Theorem 7.8.).

Although implying statements parallel to those of Curto and Fialkow, our
approach, completely di�erent from that of Curto and Fialkow, leads more
quickly to the essential results of this theory.

3 The Stability Equation

As we have seen in the previous section, if Λ : P2m 7→ C is a uspf, (Hk)0≤k≤m
are the Hilbert spaces bilt via Λ and Jk,l(Hk) = Hl (0 ≤ k < l ≤ m) are the
associared isometries (see Remark 2.1), equalities of the form Jk,l(Hk) = Hl

are of particular interest for us. In fact, the equality Jk(Hk) = Hk+1 (that
is, Λ is stable at k) implies all equalities Jk,l(Hk) = Hl (0 ≤ k < l ≤ m),
as shown by Corollary 2.8. This is a dimensional stability which will be
analysed in this section.

Remark 3.1 Let Λ : P2m 7→ C be a uspf with m ≥ 1 and let k be an integer
such that 0 ≤ k < m. It is easily checked that the uspf Λ is stable at k if
and only if for each multi-index δ with |δ| = k + 1 the equation∑

|ξ|,|η|≤k

γξ+ηcξcη − 2
∑
|ξ|≤k

γξ+δcξ + γ2δ = 0

has a solution (cξ)|ξ|≤k consisting of real numbers, where γ = (γξ)|ξ|≤2m is the
�nite multi�sequence associated to Λ.

To study the existence of solutions for such an equation, it is convenient
to use an abstract framework.
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Let N ≥ 1 be an arbitrary integer, let A = (ajk)
N
j,k=1 be a matrix with real

entries, that is positive on CN (endowed with the standard scalar product
denoted by (∗|∗), and associated norm ‖ ∗ ‖), let b = (b1, . . . , bN) ∈ RN ,
and let c ∈ R. We look for necessary and su�cient conditions insuring the
existence of a solution x = (x1, . . . , xN) ∈ RN of the equation

(3.1) (Ax|x)− 2(b|x) + c = 0.

This is a quadratic equation which will be solved in detail in the following.
The range and the kernel of A, regarded as an operator on CN , will be denoted
by R(A), N(A), respectively.

Proposition 3.2 We have the following alternative:
1) If b /∈ R(A), equation (3.1) always has solutions.
2) If b ∈ R(A), equation (3.1) has solutions if and only if for some (and

therefore for all) d ∈ A−1({b}) we have c ≤ (d|b).
In particular, if N(A) = {0}, then A is invertible and the equation (3.1)

has solutions if and only if c ≤ (A−1b|b).

Proof. Let C : CN → CN be the conjugation z = (z1, . . . , zN) 7→ z̄ =
(z̄1, . . . , z̄N). The space RN will be identi�ed with the space {z ∈ CN ; z = z̄}.
Moreover, A(RN) ⊂ RN , because the entries of A are real.

1) Assume �rst that b /∈ R(A). Then we must have N(A) 6= {0}, because
otherwise R(A) would be the whole space. Let P0 be the orthogonal projec-
tion of CN onto N(A), and let P1 be the orthogonal projection of CN onto
the space N(A)⊥, which is precisely R(A).

Assuming that x ∈ RN is a solution of the equation (3.1), we set x(j) =
Pjx, j = 0, 1. Put also b(j) = Pjb, j = 0, 1. Then from (3.1) we derive the
equality

(3.2) (A1x
(1)|x(1))− 2(b(1)|x(1))− 2(b(0)|x(0)) + c = 0,

where A1 = A|R(A), which is positive and invertible.
As we clearly have AC = CA, implying CN(A) = N(A) and CR(A) =

R(A), we must have Cx(1) = x(1) and Cb(1) = b(1). Therefore, (b(1)|x(1)) =
(x(1)|b(1)) and equation (3.2) can be written as

(3.3) ‖B1x
(1) −B−1

1 b(1)‖2 = ‖B−1
1 b(1)‖2 + 2(b(0)|x(0))− c,
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where B1 = A
1/2
1 , with B−1

1 b(1) ∈ R(A) ∩ RN . Indeed, if C1 = C|R(A), the
equality A1C1 = C1A1 implies the equality B1C1 = C1B1, and so B−1

1 b(1) ∈
R(A) ∩ RN .

A necessary condition to have a solution x(1) of (3.3) is that

(3.4) (b(0)|x(0)) ≥ 1

2
(c− ‖B−1

1 b(1)‖2).

This condition is also su�cient and valid for such a choice of b. Indeed,
because b /∈ R(A), then b(0) 6= 0 and we can �x a vector x(0) ∈ N(A) ∩
RN , x(0) 6= 0, such that 2(b(0)|x(0)) ≥ c−‖B−1

1 b(1)‖2, which is possible because
N(A) 6= {0}. Putting

r2 = 2(b(0)|x(0))− c+ ‖B−1
1 b(1)‖2,

we choose a vector y(1) ∈ R(A) ∩ RN such that ‖y(1) − B−1
1 b(1)‖2 = r2. If

x(1) = B−1
1 y(1), then x = x(0) + x(1) is a solution of (3.1).

2) If b ∈ R(A), then b(0) = 0 and b = b(1). Setting d1 = B−1
1 b(1), condition

(3.4) becomes c ≤ (d1|b) = (d|b), where d is an arbitrary solution of the
equation b = Ad, which is a necessary and su�cient condition to determine
a solution of (3.1).

Let Λ : P2m 7→ C (m ≥ 1) be a uspf and let γ = (γα)|α|≤2m the multi-
sequence associated to Λ. Then Am−1 = (γξ+η)|ξ|,|η|≤m−1 is a positive matrix
with real entries, acting as an operator on CN , where N is the cardinal of the
set {ξ ∈ Zn

+; |ξ| ≤ m − 1}. In fact, by identifying the space Pm−1 with CN ,
Am−1 is the operator with the property (Am−1p|q) = Λ(pq̄) for all p, q ∈ Pm−1

(see Remark 2.16).
For each multi-index δ with |δ| = m, we put bδ = (γξ+δ)|ξ|≤m−1 ∈ RN and

cδ = γ2δ. With this notation, equation (3.1) becomes

(3.5) (Am−1x|x)− 2(bδ|x) + cδ = 0,

which may be called the stability equation of the uspf Λ.

Theorem 3.3 Let γ = (γα)|α|≤2m (γ0 = 1,m ≥ 1) be a square positive �nite
multi-sequence and let Am−1 = (γξ+η)|ξ|,|η|≤m−1, acting on CN , where N is the
cardinal of the set {ξ ∈ Zn

+; |ξ| ≤ m−1}. For each multi-index δ with |δ| = m,
set bδ = (γξ+δ)|ξ|≤m−1 ∈ RN and cδ = γ2δ. The multi-sequence γ has a unique
r-atomic representing measure if and anly if, whenever bδ ∈ R(Am−1), we
have cδ = (dδ|bδ) for some (and therefore for all) dδ ∈ A−1

m−1({bδ}), where r
is the rank of the matrix Am−1.
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Proof. Let Λ : P2m 7→ C (m ≥ 1) be the uspf associated to γ. Assuming
the equality cδ = (dδ|bδ) for some dδ ∈ A−1

m−1({bδ}) whenever bδ ∈ R(Am−1)
and |δ| = m, we infer that Λ is stable at m − 1, via Proposition 3.2 and
Remark 3.1.

Conversely, if the multi-sequence γ has a unique r-atomic representing
measure, in virtue of Corollary 2.13, the uspf Λ should be stable at m − 1.
Then the matrix Am is a �at extension of the matrix Am−1 (see Remark
2.16). Writting Pm = Pm−1 ⊕ Rm, there exists a linear map W : Rm 7→
Pm−1 such that Am|Rm = Am−1W + W ∗Am−1W (see for instance [4] for
details). Particularly, for a �xed index δ with |δ| = m, as the monomial
tδ ∈ Rm, we have Amt

δ = Am−1Wtδ ⊕W ∗Am−1Wtδ. Therefore, (Amt
δ|tδ) =

(Am−1Wtδ|Wtδ). But Am−1Wtδ = PmAmt
δ =

∑
|ξ|≤m−1 γξ+δt

ξ = bδ, where

Pm is the orthogonal projection of Pm onto Pm−1, and the vector bδ ∈ RN is
identi�ed with the corresponding polynomial from Pm−1. Putting dδ = Wtδ,
the equation cδ = (dδ|bδ) is ful�lled.

Corollary 3.4 Assume the matrix Am−1 invertible. There exists a d-atomic
representing measure on Rn for the uspf Λ : P2m 7→ C if and only if for each
δ with |δ| = m we have cδ = (A−1

m−1bδ|bδ), where d = dimPm−1.

Remark 3.5 Related to the previous result, a natural question arises (see
Conjecture 6.6 from [4]): Given a usps Λm−1 : P2m−2 7→ C such that Am−1

is invertible, is it true that Λm−1 has an extension Λ : P2m 7→ C which is
stable at m? For n = m = 2, it is shown in [4], Section 6.1 (in the context
of complex moment problems), that such extensions do exist. Note that, in
general, a necessary condition is that

dimHm−1 = dimPm−1 = dimPm − dimIm.

As we have dimPm =
(
n+m
n

)
(see for instance [13]), the necessary condition

mentioned above is equivalent to

dimIm =

(
n− 1 +m

n− 1

)
.

Corollary 3.4 o�ers, in particular, a numerical test to decide whether a
uspf Λ : P2m 7→ C, which extends Λm−1, is stable at m− 1.
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4 Representing Measures for Unital

Square Positive Functionals

It is well known, and already discussed in the second section of this work,
that the representing measures for truncated moment problems may always
be supposed to be atomic, via Tchakalo�'s theorem. In this section, we
present some properties of square positive functionals having representing
measure with prescribed atoms.

For every integer m ≥ 0 we set

(4.1) S2m = {
∑
j∈J

|pj|2; pj ∈ Pm, card J <∞},

which is a positive cone in P2m.
If Ξ = {ξ(1), . . . , ξ(d)} is a �nite set of distinct points in Rn, we put

(4.2) J2m,Ξ = {p ∈ P2m, p|Ξ = 0}.

We start with a Riesz-Haviland type result (see [11]) for truncated mo-
ment problems. A more general result appears in [7], Proposition 3.6 (see
also [21]), which addresses to arbitrary compact sets. For further use, we
state the result, and give a di�erent proof, in the context of �nite sets.

Theorem 4.1 Let Λ : P2m 7→ C (m ≥ 1) be a uspf, and let Ξ be a �nite set
of distinct points in Rn. The uspf Λ has a representing measure with support
in Ξ if and only if Λ(p) ≥ 0 whenever p|Ξ ≥ 0.

Proof. The condition is clearly necessary.
To prove the su�ciency, we �x an integer k ≥ max{m, 2d − 2}, where d

is the cardinal of Ξ. To continue the proof, we need the following.

Remark 4.2 Let C(Ξ) be the space of all complex-valued (continuous) func-
tions of Ξ, endowed with its natural norm ‖f‖Ξ = max1≤j≤d|f(ξ(j)|, f ∈
C(Ξ). Then the kernel of the restriction P2k 3 p 7→ p|Ξ ∈ C(Ξ) is precisely
J2k,Ξ (given by (4.2)). Therefore, there exists an injective maps, say JΞ,
de�ned on P2k/J2k,Ξ, with values in C(Ξ), induced by the restriction. The
choice of k insure the surjectivity of this map JΞ. Indeed, using the (squares
of) polynomials (2.5), and de�ning the linear map

`Ξ(p) =
d∑
j=1

p(ξ(j))χ2
j , p ∈ P2k,
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we clearly have p − `Ξ(p) ∈ J2k,Ξ. Taking an arbitrary f ∈ C(Ξ), the

polynomial pf =
∑d

j=1 f(ξ(j))χ2
j has the property JΞ(pf ) = f . In fact, JΞ :

P2k 7→ C(Ξ) is an isomorphism.

We return to the proof of Theorem 4.1. We show �rst that p|Ξ ≥ 0 if
and only if p ∈ P2m ∩ (S2k + J2k,Ξ). Indeed, if p ∈ P2m ∩ (S2k + J2k,Ξ),
the property p|Ξ ≥ 0 is obvious. Reciprocally, if p|Ξ ≥ 0, the polynomial
`Ξ(p) =

∑d
j=1 p(ξ

(j))χ2
j (see Remark 4.2) belongs to S2k and p−`Ξ(p) ∈ J2k,Ξ.

Consequently, the hypothesis implies that for all p ∈ P2m ∩ (S2k +J2k,Ξ),
we have Λ(p) ≥ 0.

For every integer l ≥ 0, the symbol RS will stands for the subspace of
Pl, consisting of all real parts of functions from the subspace S ⊂ Pl .

Let the R-linear functional Φ : RP2m 7→ R be given by Φ(p) = 2−1(Λ(p)+
Λ(p)) for all p ∈ RP2m. We want to extend the functional Φ to a functional
Ψ : RP2k 7→ R, with Ψ|D2k ≥ 0, where D2k = S2k +RJ 2k,Ξ.

We show now that RP2k = D2k +RP2m. Indeed, if p ∈ RP2k is a given
polynomial, then the polynomial q = p + ‖p‖Ξ is positive, when restricted
to Ξ. Therefore, as above, `Ξ(q) ∈ S2k, q − `Ξ(q) ∈ RJ 2k,Ξ, showing that
p ∈ D2k +RP2m.

As we clearly have RP2m ∩ (S2k + RJ 2k,Ξ) ⊂ P2m ∩ (S2k + J2k,Ξ), and
so Φ(p) ≥ 0 if p ∈ RP2m ∩ (S2k + RP2k,Ξ), we may apply Corollary 1.2.7
from [2], which asserts the existence of an extension Ψ of Φ such that Ψ
is nonnegative on S2k + RJ 2k,Ξ. As RJ 2k,Ξ is a nonnull vector space, the
restriction of Ψ to RJ 2k,Ξ should be zero.

Let now Λ1(p) = Ψ(p1) + iΨ(p2) for all p = p1 + ip2 ∈ P2k, with p1, p2 ∈
RP2k. Then Λ1 is an extension of Λ to P2k, whose restriction to S2k is
nonnegative and the restriction to J2k,Ξ is zero.

According to Remark 4.2, the map JΞ : P2k/J2k,Ξ 7→ C(Ξ) is an isomor-
phism. Moreover, as Λ1|J2k,Ξ = 0, there exists a unique functional Λ2 on
C(Ξ) such that Λ1 = Λ2 ◦ JΞ. The functional Λ2 is also positive. Indeed, as
before, if h ∈ C(Ξ) is a positive function, as ph =

∑d
j=1 h(ξ(j))χ2

j ∈ S2k and
JΞ(ph) = h, we have Λ2(h) = Λ1(ph) ≥ 0.

Taking into account the structure of a positive linear functional on C(Ξ),
we infer the existence of nonnegative real numbers α1, . . . , αd such that
Λ2(f) =

∑d
j=1 αjf(ξ(j)), f ∈ C(Ξ). Consequently, Λ(p) = Λ2(JΞ(p)) =∑d

j=1 αjp(ξ
(j)), p ∈ P2m.

The next result is an approach to the existence of representing measures
for truncated moment problems in the spirit of [25].
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Corollary 4.3 Let Λ : P2m 7→ C be a uspf. Let also Ξ = {ξ(1), . . . , ξ(d)} be
a subset of Rn. The uspf Λ has a representing measure with support in Ξ if
and only if

(4.3) sup{|Λ(p)|; p ∈ P2m, ‖p‖Ξ ≤ 1} = 1.

Proof. Assume �rst that Λ(p) =
∑d

j=1 αjp(ξ
(j)), p ∈ P2m for some non-

negative scalars α1, . . . , αd. Putting Θ(f) =
∑d

j=1 αjf(ξ(j)), f ∈ C(Ξ), we
have the equality Θ(p|Ξ) = Λ(p) for all p ∈ P2m. Therefore,

sup{|Λ(p)|; p ∈ P2m, ‖p‖Ξ ≤ 1} =

sup{|Θ(f)|; f ∈ C(Ξ), ‖f‖Ξ ≤ 1} = ‖Θ‖ = 1,

because Θ is positive on C(Ξ) and Λ(1) = Θ(1) = 1.
Conversely, assume that (4.3) holds. This implies that Λ|J2m,Ξ = 0.

Hence Λ induces a functional ΛΞ on P2m/J2m,Ξ, which is identi�ed with a
subspace of C(Ξ). Moreover, we clearly have ΛΞ(1+J2m,Ξ) = 1 and ‖ΛΞ‖ = 1.
The Hahn-Banach theorem implies the existence of an extension Θ of ΛΞ to
C(Ξ), with the properties Θ(1) = 1 and ‖Θ‖ = 1, insuring the positivity of
Θ. The existence of a representing measure for Λ follows as in the last part
of the previous theorem.

Remark With Λ and Ξ as in Corollary 4.3, the uspf Λ has a representing
measure with support in Ξ if and only if there exists a polynomial pΞ ∈ RP2m

such that ‖pΞ‖Ξ = 1 and 1 = Λ(pΞ) ≥ Λ(p) for all p ∈ RP2m with ‖p‖Ξ ≤ 1.
The proof is based on the fact that the upper bound in (4.3) may be

computed only on RP2m, and it is attained.

Let Λ : P2m 7→ C be a uspf. Following [5], we de�ne the algebraic variety
of Λ by VΛ = ∩p∈ImZ(p), where Z(p) is the set of zeros of p, and Im has the
meaning from (2.1).

An important assertion related to the extremal truncated moment prob-
lem (see [8], Lemma 2.5) can be also obtained in our context.

Corollary 4.4 Let Λ : P2m 7→ C be a uspf, and let Ξ = {ξ(1), . . . , ξ(d)} be a
�nite subset of VΛ. Assume that there are complex numbers α1, . . . , αd such
that Λ(p) =

∑d
j=1 αjp(ξ

(j)) for every p ∈ P2m. If dim Hm = d, then αj > 0
for all j = 1, . . . , d.
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Proof. Note the equality Jm,Ξ = Im (for notation, see (2.1) and (4.2)).
Indeed, the inclusion Im ⊂ Jm,Ξ follows from the de�nition of VΛ, while the
inclusion Jm,Ξ ⊂ Im follows from the representation of Λ. This implies that
the restriction Hm = Pm/Im 3 p + Im 7→ p|Ξ ∈ C(Ξ) is well de�ned and
injective. It is also surjective because of the equality dim Hm = d.

Let χj ∈ C(Ξ) be the function equal to 1 in ξ(j) and equal to 0 in ξ(k)

if k 6= j, j, k = 1 . . . , d. Then we can �nd polynomials pj ∈ Pm such that
pj|Ξ = χj for all j = 1 . . . , d. Consequently, Λ(p̄kpk) = αk ≥ 0 for all
k = 1 . . . , d. If αk = 0 for some k, then pk ∈ Im, which is impossible.
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