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ABSTRACT

SIMD extensions have been a feature of choice for proces-
sor manufacturers for a couple of decades. Designed to ex-
ploit data parallelism in applications at the instruction level,
these extensions still require a high level of expertise or the
use of potentially fragile compiler support or vendor-specific
libraries. While a large fraction of their theoretical accel-
erations can be obtained using such tools, exploiting such
hardware becomes tedious as soon as application portabil-
ity across hardware is required. In this paper, we describe
BoosT.SIMD, a C++ template library that simplifies the
exploitation of SIMD hardware within a standard C++ pro-
gramming model. BoosT.SIMD provides a portable way
to vectorize computation on Altivec, SSE or AVX while pro-
viding a generic way to extend the set of supported functions
and hardwares. We introduce a C++- standard compliant in-
terface for the users which increases expressiveness by pro-
viding a high-level abstraction to handle SIMD operations,
an extension-specific optimization pass and a set of SIMD
aware standard compliant algorithms which allow to reuse
classical C++ abstractions for SIMD computation. We as-
sess BoosT.SIMD performance and applicability by pro-
viding an implementation of BLAS and image processing
algorithms.

Keywords

SIMD, C++, Generic Programming, Template Metapro-
gramming

1. INTRODUCTION

Since the late 90’s, processor manufacturers provide
specialized processing units called multimedia exten-
sions or Single Instruction Multiple Data (SIMD) ex-
tensions. The introduction of this feature has allowed
processors to exploit the latent data parallelism avail-
able in applications by executing a given instruction si-
multaneously on multiple data stored in a single special
register. With a constantly increasing need for perfor-
mance in applications, today’s processor architectures
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offer rich SIMD instruction sets working with larger and
larger SIMD registers (table 1). For example, the AVX
extension introduced in 2011 enhances the x86 instruc-
tion set for the Intel Sandy Bridge and AMD Bulldozer
micro-architectures by providing a distinct set of 16 256-
bit registers. Similary, the forthcoming Intel MIC Ar-
chitecture will embed 512-bit SIMD registers. Usage of
SIMD processing units can also be mandatory for per-
formance on embedded systems as demonstrated by the
NEON and NEON2 ARM extensions [7] or the CELL-
BE processor by IBM [9] which SPUs were designed as
SIMD-only system.

Table 1: SIMD extensions in modern processors

Manufacturer | Extension F{eglsters Instructions
size & nbr

SSE 128 bits - 8 70

SSE2 128 bits - 8/16 214

SSE3 128 bits - 8/16 227

Intel SSSE3 128 bits - 8/16 227

SSE4.1 128 bits - 8/16 274

SSE4.2 128 bits - 8/16 281

AVX 256 bits - 8/16 292

AMD SSE4a 128 bits - 8/16 231

IBM VMX 128 - 32 114
Motorola VMX128 128 bits - 128
VSX 128 bits - 64

ARM NEON 128 bits - 16 100+

However, programming applications that take advan-
tage of the SIMD extension available on the current
target remains a complex task. Programmers that use
low-level intrinsics have to deal with a verbose program-
ming style due to the fact that SIMD instructions sets
cover a few common functionnalities, requiring to bury
the initial algorithms in architecture specific implemen-
tation details. Furthermore, these efforts have to be re-
peated for every different extension that one may want
to support, making design and maintenance of such ap-
plications very time consuming.



Different approaches have been suggested to limit these
shortcomings. On the compiler side, autovectorizers
implement code analysis and transform phases to gener-
ate vectorized code as part of the code generation pro-
cess [15, 18] or as an offline process [13]. By this method
compilers are able to detect code fragments that can be
vectorized. Autovectorizers find their limits when the
classical code is not presenting a clear vectorizable pat-
tern (complex data dependencies, non-contiguous mem-
ory accesses, aliasing or control flows). This results
in a fragile SIMD code generation where performance
and SIMD usage opportunities are uncertain. Other
compiler-based systems use code directives to guide the
vectorization process by enforcing loop vectorization.
The ICC and GCC extension #pragma simd is such a
system. To use this mechanism, developers explicitly in-
troduce directives in their code, thus having a fine grain
control on where to apply SIMDization. However, the
generated code quality will greatly depend on the used
compiler. Another approach is to use libraries like In-
tel MKL [6] or its AMD equivalent (ACML) [1]. Those
libraries offer a set of domain-specific routines (usually
linear algebra and/or signal processing) that are opti-
mized for a given architecture. This solution suffers
from a lack of flexibility as the proposed routines are
optimized for specific use-case that may not fulfill arbi-
trary code constraints.

In this paper, we present BooST.SIMD), a high-level
C++ library to program SIMD architectures. Designed

as an Embedded Domain Specific Language, BooST.SIMD

provides both expresiveness and performance by using
generic programming to handle vectorization in a porta-
ble way. The paper is organized as follows: Section 2
describes the library API, its essential functionalities
and its interaction with standard C++ idioms. Section
3 details the implementation of the code generation en-
gine and its extension systems. In Section 4, experi-
mental results obtained with a representative set of al-
gorithms are shown and commented. Lastly, Section 5
sums up our contributions.

2. BOOST.SIMD API

The main issue of SIMD programming is the lack of
proper abstractions over the usage of SIMD registers.
This abstraction should not only provide a portable way
to use hardware-specific registers but also enable the use
of common programming idioms when designing SIMD-
aware algorithms. BoosT.SIMD solves these problems
by providing two components :

e An abstraction of SIMD registers for portable
algorithm design, coupled with a large set of func-
tions covering the classical set of operators along

with a sensible amount (200+) of mathematical
functions and utility functions,

e A support for C++4 standard components
like Tterator over SIMD Range, SIMD-aware al-
locators and SIMD-aware STL algorithms.

2.1 SIMD register abstraction

The first level of abstraction introduced by BOOST.
SIMD is the pack class. For a given type T and a given
static integral value N (N being a power of 2), a pack
encapsulates the best type able to store a sequence of
N elements of type T. For arbitrary T and N, this type
is simply std: :array<T,N> but when T and N matches
the type and width of a SIMD register, the architecture-
specific type used to represent this register is used in-
stead. This semantic provides a way to use arbitrarily
large SIMD registers on any system and let the library
select the best vectorizable type to handle them. By de-
fault, if N is not provided, pack will automatically select
a value that will trigger the selection of the native SIMD
register type. Moreover, by carrying informations about
its underlying scalar type, pack enables proper instruc-
tion selection even when used on extensions (like SSE2
and above) that map all integral type to a single SIMD
type (__m128i for SSE2).

pack handles these low-level SIMD register type as
regular objects with value semantics, which includes the
ability to be constructed or copied from a single scalar
value, list of scalar values, iterator or range. In each
case, the proper register loading strategy (splat, set,
load or gather) will be issued. pack also takes care of
issues like boolean predicates support and its range and
tuple-like interface.

2.1.1 Predicates handling

Comparisons over SIMD register yield a register of
boolean results. Problems arise when one wants to use
such operations in conjunction with regular, non-SIMD
code:

e To use custom types in C++ standard contain-
ers or algorithms, comparison operators over these
types have to yield a single bool,

e Boolean SIMD values are either 0 or ~0 instead of
0and 1,

e While most SIMD extensions use the same register
type to store booleans, some like Intel MIC have a
special register bank for SIMD boolean operations.

Boo0osT.SIMD solves these discrepancies by providing
an abstraction over boolean values and a set of associ-
ated operations. The logical class encapsulates the
notion of a boolean value and can be combined with



pack. Thus, for any type T, an instance of pack< log-
ical<T> > encapsulates the proper SIMD register type
able to store boolean values resulting from the appli-
cation of a SIMD predicates over a pack<T>. More-
over, the logical class enables a compile-time detec-
tion of functions acting as predicates and allows opti-
mization of SIMD selection operations. With this sys-
tem, the comparison operators yield a single bool based
on the lexicographical order thus making pack usable
as an element of standard containers while SIMD com-
parisons are done through a set of predicate functions
like is_equal, is_greater, etc. These functions return
pack< logical<T> > and can be directly used in other
SIMD function calls.

2.1.2 Range and Tuple interface

By providing STL-compliant begin and end member
functions, pack can be iterated at runtime as a sim-
ple container of N. Similarly, since the size of pack is
known at compile-time for any given type and architec-
ture, pack can also be seen as a tuple and used as a
compile-time sequence [3].

Another ability of pack is to act as an Array of Struc-
tures/Structure of Arrays adaptor. For any given type
T adapted as a compile-time sequence, accessing the ‘"
element of a pack will give access to a complete instance
of T —acting as an Array of Structures— while iterating
over the pack content as a compile-time sequence will
yield a tuple of pack and thus making pack acts as a
Structure of Arrays.

2.1.3  Supported functions

The pack class is completed by a hundred high-level
functions:

e C++4 operators: including support for fused op-
erations whenever possible,

e Constant generators: dealing with efficient con-
stant SIMD value generation,

e Arithmetic functions: including abs, sqrt, av-
erage and various others,

e IEEE 754 functions: enabling bit-level manipu-
lation of floating point values, including exponent
and mantissa extraction,

e Reduction functions: for intra-register opera-
tions like sum or product of a register elements.

A fundamental aspect of SIMD programming relies
on the effective use of fused operations like multiply-
add on VMX extensions or sum of absolute differences
on SSE extensions. Unlike simple wrappers around
SIMD operations [8], pack relies on FEzpression Tem-
plates [2] to capture the Abstract Syntax Tree (AST)

of large pack-based expressions and performs compile-
time optimization on this AST. These optimizations in-
clude the detection of fused operation and replacement
or reordering of reductions versus elementwise opera-
tions. This compile-time optimization pass ensures that
every architecture-specific optimization opportunity is
captured and replaced by the superior version of the
code. Moreover, the AST-based evaluation process is
able to merge multiple function calls into a single in-
lined one, contrary to solutions like MKL where each
function can only be applied on the whole data range
at a time. This increases data locality and ensure high
performance for any combination of function.

2.1.4 Sample usage

Listing 1 showcases the basic usage of pack and vari-
ous elements of its interface on an architecture with 128
bits wide SIMD register. Note how pack can either be
used as a whole SIMD register or as a classical Con-
tainer of scalar values (including subscript operator),
making the integration of SIMD operations straightfor-
ward.

#include <boost/simd/pack.hpp>
using namespace boost ::simd;

int main()

{
float s, tx[] = {1,2,3,4};

// Build pack from memory and values
pack<float> x(tx,tx+4);
pack<float> a(1.37), b(1,-2,3,—-4), r;

// Operator and function calls
r += min(a*x+b,b);

// Array interface
r[0] = 1.f + r[0];

// Range interface: using std::accumulate
s = accumulate(r.begin(), r.end(), 0.f);
return O0;

Listing 1: Working with pack

2.2 C++ Standard integration

Writing small functions acting over a few pack has
been covered in the previous section and we saw how
the API of BoosT.SIMD make such functions easy to
write by abstracting away the architecture-specific code
fragments. Realistic applications usually require such
functions to be applied over a large set of data. To
support such a use case in a simple way, BoosT.SIMD
provides a set of classes to integrate SIMD computa-
tion inside C++ code relying on the C++ Standard
Template Library (STL) components, thus reusing its
generic aspect to the fullest.




Based on Generic Programming as defined by [17],
the STL is based on the separation between data, stored
in various Containers, and the way one can traverse
these data, thanks to Iterators and algorithms. In-
stead of providing SIMD aware containers, BoosT.SIMD
reuses existing STL Concepts to adapt STL-based code
to SIMD computations. The goal of this integration is
to find standard ways to express classical SIMD pro-
gramming idioms, thus raising expresiveness and still
benefiting from the expertise put into these idioms. More
specifically, BoosT.SIMD provides SIMD-aware alloca-
tors, iterators for regular SIMD computations — includ-
ing interleaved data or sliding window iterators — and
hardware-optimized algorithms.

2.2.1 Aligned allocator

The hardware implementation of SIMD processing
units introduces constraints related to memory han-
dling. Performance is guaranteed by accessing to the
memory through dedicated load and store intrinsics
that perform register-length aligned memory accesses.
This constraint requires a special memory allocation
strategy via OS and compiler-specific function calls.

BoosT.SIMD provides two STL compliant alloca-
tors dealing with this kind of alignment. The first one,
simd::allocator, wraps these OS and compiler func-
tions in a simple STL-compliant allocator. When an
existing allocator defines a specific memory allocation
strategy, the user can adapt it to handle alignment by
wrapping it in simd: :allocator_adaptor.

2.2.2 SIMD Iterator

Modern C++ programming style based on Generic
Programming usually leads to an intensive use of vari-
ous STL components like Iterators. BoosT.SIMD pro-
vides iterator adaptors that turn regular random ac-
cess iterators into iterators suitable for SIMD process-
ing. These adaptors act as free functions taking regular
iterators as parameters and return iterators that out-
put pack whenever dereferenced. These iterators are
then usable directly in usual STL algorithms such as
transform or fold (Listing 2).

vector<int ,allocator<int> > v(128), r(128);
transform ( simd::begin(v.begin())

, simd::end(v.end())

, simd::begin(r.begin())

, [](pack<int>& p){ return —p; }
)

)

Listing 2: SIMD Iterator with STL algorithm

Code written this way keeps a conventional struc-
ture and facilitate an usage of template functors for
both scalar and SIMD cases also helps maximizing code
reuse.

Previous examples of integration within standard al-
gorithm are still limited. Applying transform or fold
algorithm on SIMD aware data requires the size of the
data to be an exact multiple of the SIMD register width
and, in the case of fold, to potentially perform addi-
tional operations at the end of its call. To alleviate this
limitation, BoosT.SIMD provides its own overload for
both transform and fold that take care of potential
trailing data and performs proper completion of fold.

2.2.3  Sliding Window Iterator

Some application domains like image or signal pro-
cessing require specific memory access patterns in which
the neighborhood of a given value is used in the com-
putation. Digital filtering and convolutions are exam-
ples of such algorithms. The efficient techniques for vec-
torizing such operations is to perform so called shifted
loads i.e. loads from unaligned memory addresses, so
that each value of the neighborhood can be available as
a SIMD vector. To limit the number of such loads, a
technique called the register rotation technique [14] is
often used. This technique allows filter-like algorithms
to perform only one load per iteration, swapping neigh-
borhood values as the algorithm goes forward. This
idiomatic way of implementing such algorithms usually
increases performance by a large factor and is a strong
candidate for encapsulation.

In BoosT.SIMD, shifted_iterator is an iterator
adaptor encapsulating such an abstraction. This itera-
tor is constructed from an iterator and a compile-time
width N. When dereferenced, it returns a static array
of N packs containing the initial data and its shifted
neighbors (Fig. 1). When incremented, the tuple value
are internally swapped and the new vector of value is
loaded, thus implementing register rotation. With such
an iterator, one can simply write an average filter using
std: :transform.

struct average

{
template<class T> typename T::value_type
operator () (T const& t) const

typename T::value_type d(1./3);
return (t[0]4+t[1]+t[2])*d;

b

vector<float> in, out;
transform ( shifted_iterator <3>(in.begin())
shifted_iterator <3>(in.end())

(
: begin (out.begin ())
, average ()

)

)

Listing 3: Average filtering




Data in main memory Shifted Iterator output for N=3
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Figure 1: Shifted iterator

2.2.4 Interleaved Iterator

Another recurrent use case is the processing of inter-
leaved data which requires proper restructuration into
deinterleaved values before processing, either for algo-
rithmic or performance concerns. Some of these cases
can be solved by interpreting the loaded data in a SIMD
vector as a complete structure instance. Nevertheless,
cases like heterogeneous structures where each member
has a different type or structures with a number of mem-
bers which is not a divisor of the SIMD register width
make this process unyieldy. Under most current archi-
tectures, such deinterleaving requires a series of scalar
loads into the vector or data-layout-specific shuffling.
Gathering operations as proposed in AVX2 and MIC
will provide better performance for these kinds of op-
erations and clearly indicates that this idiom is to be
considered as a valid candidate for abstraction.

As for the sliding window case, BOoST.SIMD en-
capsulates this idom in an iterator adaptor — inter-
leaved_iterator. This iterator is constructed from an
iterator and a type T which has been adapted as a tuple
through the BoosT.FusioN [3] adaptor. When derefer-
enced, it returns a tuple of pack containing a full vector
of data for each of the members of T (Fig. 2).

Data in main memory

] | L L

Interleaved lterators outputs

Figure 2: Interleaved iterator

Incrementing such an iterator leads to the proper cal-
culation of the next data to gather by using a gather-
like operation (real or emulated) or by using a user-
defined shuffle based deinterleaving function called un-
wrap which presence is automatically detected by the
system. This allows for the common case of homoge-
neous structures deinterleaving to be potentially opti-
mized. Listing 4 demonstrates the use of such an itera-
tor to normalize a set of weigthed 2D points.

struct point { float x,y; int w; };
struct normalize

template<class T>
T operator () (T const& t) const

)

typedef result_of::at_c<T,2>::type typ
T that( at_c<0>(t)/to_float (at_c<2>(t)

at_c<1>(t)/to_float (at_c <2>(t)
One<type >()

)
)

)
)
)

return that;

}

b
vector<point> in(128), out(128);
vector<point >::iterator b = in.begin();
vector<point >::iterator e = in.end();

interleaved_iterator <point >(b)
interleaved_iterator <point >(e)
begin (out.begin ())

normalize ()

transform

i

(
)

Listing 4: Heterogeneous data processing

3. IMPLEMENTATION

BoosT.SIMD’s implementation relies on two elements:
the use of BooST.PROTO [12] to capture and transform
expressions at compile time and a generalized tag dis-
patching system that allows for fine to coarse grain func-
tion specialization taking both types and architectures
into account.

3.1 AST Manipulation with Boost.ProTo

As stated earlier, SIMD instruction sets usually pro-
vide DSP-like fused operations which are able to deliver
complex computation in a single cycle. Operations like
fused multiply-add and sum of absolute differences are
available on an increasing sub-range of SIMD exten-
sions set. The main issue with these is that writing
portable and efficient code that will use these fused op-
erations whenever available is difficult. It implies han-
dling a large number of variation points in the code
and people unaware of their existence will obtain poor
performance. To limit the amount of per-architecture
expertise required by the developer of SIMD applica-
tions, BOOST.SIMD is designed as an Embedded Do-
main Specific Language [16]. Expressions Templates [2]
have been a tool of choice for such designs but writ-
ing complex EDSLs by hand lead to a hard to main-
tain code base. To reduce those difficulties, Niebler
proposed a compiler construction toolkit for embedded
languages called PrROTO [12]. It allows developers to
specify grammar and semantic actions for EDSLs and




provides a semi-automatic generation of all the template
structures needed to make it work. Compared to hand-
written Expressions Templates-based EDSLs, designing
a new embedded language with PROTO is done at a
higher level of abstraction. In a way, PROTO supercedes
the normal compiler workflow so that domain-specific
code transformations can take place as soon as possible.
Thanks to PROTO, and contrary to other EDSL-based
solutions[5], BoosT.SIMD does not directly evaluate
its compile-time AST after its capture. Instead, it re-
lies on a multi-pass system:

e AST Optimization: in this pass, the AST is re-
cursively optimized by transforming any potential
sequence of functions or operators into their equiv-
alent fused instructions,

e Code Scheduling: once optimized, the AST is
split depending on the nature of each of its nodes.
The main schedule operation takes care of reorder-
ing reduction operations so they can be evaluated
in a proper temporary. This temporary is then
stored into the modified AST as a simple termi-
nal. This pass also splits the AST whenever a
scalar emulation is required,

e Code Generation: once scheduled, the remain-
ing parts of the AST are recursively evaluated to
their hardware specific function calls, eventually
by taking care of any remaining scalar emulation.

FEach expression involving BOosT.SIMD types is then
captured at compile-time as a single entity which is then
transformed into the optimized sequence of SIMD in-
structions to call.

3.2 Function Dispatching

To be able to extend BoosT.SIMD, we need a way to
add an arbitrary function overload on any function de-
pending on the argument types, the actual SIMD exten-
sions and the properties of the function itself. Classical
generic overloading techniques in C++ include:

e SFINAE! combined with Traits [11] use the abil-
ity of C++ compiler to prune incorrect function
overloads due to error in dependent type resolu-
tion. Compilation times of SFINAE-based over-
loading are often poor as every potential overload
has to be instantiated before selection.

e Tag Dispatching uses class hierarchies, called
tags, to represent type properties. To resolve an
overload, the tag of a specific argument is extracted
and used as an argument in a trampoline func-
tion. Unlike SFINAE-based solutions, it uses C++

LSubstitution Failure Is Not An Error

overloading directly and has the advantage of pro-
viding best match selection in cases of multiple
matches.

o Concepts [4] rely on higher level semantic de-
scription of type properties. Language support
is required to resolve overloads based on the con-
formance of types to a given Concept. Currently
Concept-based overloading is still an experimental
language feature under consideration for inclusion
in a future C++ standard.

All these techniques also lack a proper way to intro-
duce the architecural information in the dispatching sys-
tem. BoOOsT.SIMD proposes to extend Tag Dispatch-
ing by using the full set of argument tags for overload
selection coupled with a tag representing the current
architecture. These tags are computed as follows:

e For each SIMD family, a hierarchy of classes is
defined to represent the relationship between each
extension variant. For example a SSE3 tag inherits
from the SSE2 tag as SSE3 is more refined than
SSE2.

e For each argument type, a type called a hierar-
chy is automatically computed. This hierarchy
contains information about: the type of register
used to store the value (SIMD or scalar), the in-
trinsic properties of the type (floating point, in-
teger, size in bytes) and the actual type itself.
These hierarchies are also ordered from the most
fine grained description (for example, scalar_<
int8_<char> >) to the largest one (for example,
scalar_< arithmetic_<char> >).

Each function overload is then discriminated by the
type list built from the hierarchy of the current archi-
tecture and the hierarchies of every argument of the
function. This unique set of hierarchies is then used to
select a function object to perform the function call.

4. BENCHMARKS

This section displays benchmarks of BoosT.SIMD
in several situations. Every benchmark has been tested
using the SSE4.2, AVX and Altivec instruction sets to
demonstrate the portability of the code. The bench-
marks include: an implementation of the AXPY kernel
and three image processing algorithms featuring the
various types of SIMD iterator abstractions. Unless
stated otherwise, the tests have been run using g++
4.6. The SSE2, AVX and Altivec benchmarks have
been done on the Nehalem, Sandy Bridge and PowerPC
G5 microarchitectures respectively. Table 2 summarizes
the frequencies and extensions of the processors. The
benchmarks results are reported in GFlop/s and cycles
per point (¢pp) depending on the algorithm.



Table 2: Processor details
Architecture Nehalem | Sandy Bridge | PowerPC G5
Max. Frequency 3.6 GHz 3.8 GHz 1.6 GHz
SIMD Extension SSE4.2 AVX Altivec

4.1 AXPY Kernel

The AXPY kernel computes a vector-scalar product
and adds the result to another vector. With the x86 pro-
cessor family, the throughput of the SIMD extension is
two floating-point operations per cycle. The SIMD com-
putation of the AXPY kernel fits the hardware specifi-
cations and its execution should result to the peak per-
formance of the target. To reach the maximum number
of floating-point operations, the source code needs to
be tuned with very fine grained architecture optimiza-
tions like loop unrolling according to the instructions
latency or the number of registers to use. The MKL Li-
brary proposes an optimized routine of this algorithm
for the x86 processor family. Autovectorizers in com-
pilers are also able to capture this type of kernel and
generate optimized code for the targeted architecture.
Table 3 shows how BooST.SIMD performs against the
autovectorizers. For the particular case of altivec, the
SIMD extension does not support the double precision
floating-point type.

Table 3: Boost.SIMD vs Autovectorizers for the AXPY
kernel in GFlop/s

Type | Size | Version | SSE4.2 | AVX | Altivec
gce 3.56 16.8 0.9
float 29 icc 13.21 | 17.77 -
B.SIMD | 4.70 7.94 1.07
gce 3.73 9.9 0.8
214 icc 10.51 | 14.64 -
B.SIMD 3.49 6.21 0.89
gce 3.59 8.9 0.6
219 icc 8.80 11.52 -
B.SIMD 3.98 5.70 0.35
gee 3.37 6.6 -
double | 29 icc 7.49 11.31 -
B.SIMD 1.95 3.48 -
gce 2.94 4.8 -
214 icc 5.56 8.10 -
B.SIMD 1.80 3.00 -
gce 2.85 4.3 -
219 icc 4.51 6.07 -
B.SIMD 1.63 2.45 -

The sizes of the used vectors are chosen according to
the cache sizes of their respective targets so that they
all fit in cache. The gcc and icc versions show the
autovectorizers work on the AXPY kernel written in C
code. First, the memory hierarchy directly impacts the
performance of the kernel when the vectors go out of a
cache level. The GNU and Intel compilers are able to

vectorize and unroll the loop due to the static informa-
tion available in the C code. The AXPY computation
can be catched at the tree SSA (Static Single Assign-
ment) level and gives the opportunity for optimizations
to the compilers. Measurements show that the perfor-
mance of BoosT.SIMD is slightly behind that of the
two compilers. This is because of the lack of unrolling
and fine low-level code tuning, necessary to reach the
peak performance of the target. The MKL library goes
up to 15 GFlop/s in single precision (7.1 in double preci-
sion) and outperforms the previous results. The AXPY
kernel of MKL is provided as a user function with high
architecture optimizations for the Intel processors and
introduces an architecture dependency in user code.

Table 4: Boost.SIMD vs handwritten SIMD code for
the AXPY kernel in GFlop/s

Type | Size Version SSE4.2
Ref. SIMD 4.03
float | 2° | Boost.SIMD | 4.70

Ref. SIMD 3.40
214 [ Boost.SIMD 3.49
Ref. SIMD 3.41
219 [ Boost.SIMD 3.98

Table 4 shows how BoosT.SIMD performs against
handwritten SIMD code without loop unrolling. The re-
sults of the generated code are equivalent to the SSE4.2
code and assess that BoosT.SIMD delivers the expected
speedup. Loop optimizations and fine load/store schedul-
ing strategies can be added on top of BoosT.SIMD to
increase performance. The previous results show that
BoosT.SIMD provides a portable way to access the la-
tent speed-up of the architectures. However, as not be-
ing a special-purpose library like MKL, its performance
on this very demanding test is satisfactory yet still far
from the peak performance. Other optimizations like
loop unrolling and jamming are necessary to compete
with the library solutions.

4.2 Sigma-Delta Motion Detection

The Sigma-Delta algorithm [10] is a motion detection
algorithm used in image processing to discriminate mov-
ing objects from the background. Contrary to simple
thresholded background substraction algorithms, Sigma-
Delta uses a per-pixel variance estimation to filter out
outliers due to lighting conditions or contrast varia-
tion inside the image. The whole algorithm can be
expressed by a series of additions, substractions and
various boolean selections. As pointed by Lacassagne
in [10], the Sigma-Delta algorithm is mainly limited
by memory bandwidth and so no optimizations beside
SIMDization is efficient as only point-to-point opera-
tions are issued. Table 5 details how BoosT.SIMD
performs against scalar and handwritten versions of the
algorithm; the benchmarks are realized with greyscale



images. To handle this format, the type unsigned char
is used so each vector of the SSE2 or Altivec extension
can carry sixteen elements. On the AVX side, the in-
struction set is not providing a support for the corre-
sponding type.

Table 5: Results for Sigma-Delta algorithm in cpp

Extension SSE4.2 Altivec
Size 256° | 5122 256 | 5122

| Scalar C++(1) || 9.237 | 9.296 || 14.312 | 27.074 |

Scalar C icc 2.619 2.842 - -

Scalar C gcc 8.073 7.966 - -
Ref. SIMD(2) 1.394 1.281 1.380 4.141
Boost.SIMD(3) 1.106 1.125 1.511 5.488

Speedup(1/3) 8.363 8.263 9.469 4.933
Overhead(2/3) || -26% | -13.9% 8.7% | 24.5%

The execution time overhead introduced by the use of
BoosT.SIMD stays below 8.7%. On SSE2, the library
outperforms the SSE2 handwritten version while on Al-
tivec, a slow-down appears with images of 512 x 512
elements. Such a scenario can be explained by the
amount of images used by the algorithm and their sizes.
Three vectors of type unsigned char need to be ac-
cessed during the computation which is the critical sec-
tion of the Sigma-Delta algorithm. The highest cache
level of the PowerPC 970FX provide 512 KBytes of
memory which is not enough to fit the three images
in cache. Cache misses becomes preponderant and the
Load/Store unit of the Altivec extension keeps wait-
ing for data from the main memory. This problem
goes away on the Nehalem microarchitecture with an
additional level of cache memory. The icc autovec-
torizer generates SSE4.2 code with the C version of
Sigma-Delta while gcc fails. The C++ version keeps
its fully scalar properties even with the autovectoriz-
ers enabled due to the lack of static information intro-
duced by the Generic Programming Style of the C++
language. BoOoOST.SIMD keeps the high level abstrac-
tion provided by the use of STL code and is able to
reach the performance of the vectorized reference code.
In addition, the portability of the BoosT.SIMD code
gives access to the previous speedups without rewriting
the code.

4.3 RGB2YUYV Color space conversion

The RGB and YUV models are both color spaces
with three components that encode images or videos.
Opposed to RGB, the YUV color space takes into ac-
count the human perception of the colors. The Y com-
ponent encodes the luminance information (brightness)
and the U and V components have the chrominance
information (color). The YUV model makes artifacts
that can happened during transmission or compression

less noticeable for the human eye. The conversion from
the RGB color space is done as follow:

e Weighted values of R, G and B are summed to
obtain Y,

e Scaled differences are computed between Y and
the B and R values to produce U and V compo-
nents.

The RGB2YUV algorithm fits the data parallelism
requirement for SIMD computation. The comparison
shown in Table 6 aims to measure the performance of
BoosT.SIMD against scalar C+4 code and SIMD ref-
erence code. The implementation of the transformation
is realized in single precision floating-point.

Table 6: Results for RGB2YUYV algorithm in cpp
Size Version SSE4.2 AVX Altivec

Scalar C++ 30.53 23.01 39.07

1282 Ref. SIMD 5.30 3.99 13.18
Boost.SIMD 4.32 3.51 12.89
Speedup 7.07 6.55 3.03
Overhead -22.7% | -13.7% | -2.2%

Scalar C++ | 29.23 | 2146 | 4251

2562 Ref. SIMD 6.48 2.80 29.05
Boost.SIMD 6.51 2.45 29.01
Speedup 4.49 8.76 1.47

Overhead 0.04% | -14.3% 0.1%
Scalar C++ 28.91 22.03 44.93

5122 | Ref. SIMD 6.54 3.01 30.05
Boost.SIMD 6.53 3.83 30.42
Speedup 4.42 5.75 1.48
Overhead -0.1% 21.4% 1.2%

The speedups obtained with SEE4.2 are superior to
the expected x4 on such an extension and no overhead
is added by BoosT.SIMD. With AVX, the theoriti-
cal speedup is reached for an image of 256 x 256 ele-
ments. A slowdown appears with other sizes due to the
memory hierarchy bottleneck. This effect directly im-
pacts the performance on the PowerPC architecture for
sizes larger than 128 x 128 elements. Like introduced in
the Sigma-Delta benchmark, the lack of a level 3 cache
causes the SIMD unit to wait constantly for data from
the main memory. For a size of 64 x 64 on the PowerPC,
BoosT.SIMD performs at 4.65 cpp against 36.32 cpp
for the scalar version giving a speedup of 7.81 which
confirms the memory limitation of the PowerPC archi-
tecture. The latent data parallelism in the RGB2YUV
algorithm is fully exploited by BoosT.SIMD and the
benchmarks corroborate the ability of the library to gen-
erate effecient SIMD code.



5. CONCLUSION

SIMD instruction sets are a technology present in an
ever growing number of architectures. Despite the per-
formance boost that such extensions usually provide,
SIMD has been usually underused. However, as new
SIMD-enabled hardware gets designed with increasingly
large SIMD vector sizes, losing the x4 to x16 speed-ups
they may provide in HPC applications is starting to be
glaring. In this paper, we presented BoosT.SIMD, a
C++ software library which aims at simplifying the
design of SIMD-aware applications while providing a
portable high-level API, integrated with the C++ Stan-
dard Template Library. Thanks to a meta-programmed
optimization opportunity detection and code genera-
tion, BOOST.SIMD has been shown to be on par with
hand written SIMD code while also providing sufficent
expressiveness to implement non-trivial applications.In
opposition to compilers dependent optimizations and
manufacturers libraries, BoosT.SIMD solves the prob-
lem of portable SIMD code generation.

Future works include providing support for classical
numeric types like complex numbers or various pixel en-
codings, using the AST exploration system to estimate
the proper unrolling and blocking factor for any given
expression, and expanding the library to SIMD-enabled
embedded systems like the ARM Cortex processor fam-

ily.
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