
Fast Contract Signing with Batch Oblivious

Transfer

L’ubica Staneková1,? and Martin Stanek2,??

1 Department of Mathematics, Slovak University of Technology
Radlinského 11, 813 68 Bratislava, Slovakia

ls@math.sk
2 Department of Computer Science, Comenius University

Mlynská dolina, 842 48 Bratislava, Slovakia
stanek@dcs.fmph.uniba.sk

Abstract. Oblivious transfer protocol is a basic building block of var-
ious cryptographic constructions. We propose a novel protocol – batch
oblivious transfer. It allows efficient computation of multiple instances
of oblivious transfer protocols. We apply this protocol to improve the
fast simultaneous contract signing protocol, recently proposed in [11],
which gains its speed from computation of time-consuming operations
in advance. Using batch oblivious transfer, a better efficiency can be
achieved.

1 Introduction

Oblivious transfer is a cryptographic protocol in which one party (usually called
sender) transfers one of two strings to the other party (usually called chooser).
The transfer should have the following properties: The chooser should obtain the
string of his/her choice but not the other one, and the sender should be unable
to identify the chooser’s choice. Oblivious transfer is used as a key component
in many cryptographic applications, such as electronic auctions [12], contract
signing [4, 11], and general multiparty secure computations [8]. Many of these
and similar applications make intensive use of oblivious transfer. Therefore, ef-
ficient implementation of oblivious transfer can improve the overall speed and
applicability of various protocols.

Batch variants of various cryptographic constructions are useful for decreas-
ing computational costs. A batch variant of RSA, suitable for fast signature gen-
eration or decryption, was proposed by Fiat [5]. Batch verification techniques [1]
can be used for efficient proofs of correct decryptions in threshold systems with
applications to e-voting and e-auction schemes.

Simultaneous contract signing is a two-party cryptographic protocol, in which
two mutually suspicious parties A and B wish to exchange signatures on a con-
tract. Intuitively, a fair exchange of signatures is one that avoids a situation

? supported by APVT 023302
?? supported by VEGA 1/0131/03



where A can obtain B’s signature while B cannot obtain A’s signature and
vice-versa. There are two types of contract signing protocols: the ones that use
trusted third party either on-line or off-line [6], and protocols without trusted
third party [4, 7]. Protocols without trusted third party are based on gradual
and verifiable release of information. Hence, if one participant stops the proto-
col prematurely, both participants have roughly the same computational task in
order to find the other participant’s signature.

Recently, a contract signing protocol that allows pre-computation of signif-
icant part of the most time consuming operations in advance was proposed in
[11]. The protocol makes an extensive use of oblivious transfers (its security
depends on the security of oblivious transfers) in each protocol run.

Motivation. Oblivious transfer is frequently used in cryptographic protocols.
There are many protocols in which a large number of oblivious transfers is em-
ployed in a single protocol instance. Therefore, an efficient implementation of
oblivious transfer is a natural way to improve the efficiency of such protocols.

Our Contribution. We present a batch RSA oblivious transfer protocol where
multiple independent instances of oblivious transfers can be computed efficiently.
The security of the protocol is based on RSA assumption, and we prove it in the
random oracle model.

We compare actual implementation of batch RSA oblivious transfer protocol
with standard RSA oblivious transfer [11], and oblivious transfer based on the
computational Diffie-Hellman assumption [13].

We show the usefulness and applicability of our proposal and improve the
simultaneous contract signing protocol [11]. The use of batch RSA oblivious
transfers instead of pre-computed oblivious transfers leads to more efficient pro-
tocol. Both settings were implemented and compared to illustrate exact decrease
of computational costs.

Related Work. The efficiency of computing oblivious transfer influences the
overall efficiency of many protocols. Our batch RSA oblivious transfer is a mod-
ification of the RSA oblivious transfer protocol from [11]. Other constructions
of oblivious transfer employ some kind of ElGamal encryption or computational
Diffie-Hellman assumption [13].

Similar problem of amortizing the cost of multiple oblivious transfers, based
on computational Diffie-Hellman assumption, has been considered by Naor and
Pinkas [13]. We compare our approach with their constructions in Sect. 4.

Our security proofs for batch RSA oblivious transfers make use of random
oracles. The application of random oracles in the security analysis of crypto-
graphic protocols was introduced by Bellare and Rogaway [2]. Security proofs
in a random oracle model substitute a hash function with ideal, truly random
function. This approach has been applied to many practical systems, where the
ideal function must be instantiated (usually as a cryptographically strong hash
function). Recently, an interesting discussion about plausibility of security proofs
in the random oracle model appeared in [10].



The paper is structured as follows. Section 2 presents our main result, the
batch RSA oblivious transfer, and its implementation. The protocol for contract
signing is described in Sect. 3. We analyse an actual implementation of batch
RSA oblivious transfer and the savings of computational costs resulting from its
application in Sect. 4.

2 Batch Oblivious Transfer

Oblivious Transfer (OT) protocol, more specifically OT 2

1
protocol, allows two

parties (sender and chooser) to solve the following problem. The sender has two
strings m0 and m1 and transfers one of them to the chooser in accordance with
the following conditions:

– the chooser selects a particular mb which he wishes to obtain (b ∈ {0, 1});
– the chooser does learn nothing about m1−b;
– the sender does not know which mb was transferred.

We modify and extend construction of RSA-based OT 2

1
protocol from [11].

Most oblivious transfer protocols employ some kind of ElGamal encryption. This
results in increased computational overhead as the chooser must perform at
least one modular exponentiation. Using RSA-based oblivious transfer allows to
reduce the chooser’s complexity, since the public exponent can be made small.
Moreover, RSA decryption with distinct private exponents can be implemented
efficiently, leading to Batch RSA [5]. We use this idea for further improvement
of computational complexity of RSA-based oblivious transfer.

We employ the following notation through the rest of the section. Let n = p·q
be an RSA public modulus (i.e. a product of two distinct primes p and q) and let
e, d denote public and private exponents, respectively. Let Zn = {0, 1, . . . , n −
1} and let Z∗n be the set of all numbers from Zn relatively prime to n. All
computations in protocol descriptions are defined over Zn, the only exception is
bitwise xor operation ⊕. We will omit stating explicitly that our operations in
the paper are mod n whenever it is clear from the context. The hash function
H is modelled as a truly random function (random oracle, see [2]) in the security
analysis. For simplicity we write H(a1, . . . , al) for the hash function applied to
the concatenation of l-tuple (a1, . . . , al). Random, uniform selection of x from
the set A is denoted by x ∈R A.

We assume the sender (S in protocol description) generates the instance of
RSA system and the chooser (C) already has a valid public key of the sender (i.e.
a pair (n, e)). Moreover, we assume that the length of H output is not shorter
than strings m0 and m1. Recall, b ∈ {0, 1} denotes the index of string, which
the chooser wants to obtain.

2.1 RSA Oblivious Transfer

The RSA oblivious transfer protocol [11] is a modification of the protocol [9].
Since the protocol is executed multiple times a sufficiently long random string
R (chosen by sender) is used to distinguish the instances of the protocol.



1. S→ C : C ∈R Z∗n
2. C→ S : x′ = xeCb, where x ∈R Zn.
3. S→ C : R, E0, E1,

where ciphertexts E0, E1 of strings m0, m1 are computed as follows:

E0 = H(R, x′d, 0)⊕m0; E1 = H(R, (x′C−1)d, 1)⊕m1.

4. The chooser decrypts mb from Eb: mb = Eb ⊕H(R, x, b).

Since the value x′ is uniformly distributed in Zn, the chooser’s security is
protected in an information-theoretic sense – the sender cannot determine b,
even with infinite computational power. The sender’s security can be proved
in the random oracle model under RSA assumption. The protocol allows pre-
computation of value (C−1)d, thus allowing efficient implementation of protocols,
where multiple instances of oblivious transfer are required.

Remark 1. Roughly the same efficiency can be obtained (without any pre-compu-
tation) by generating Cd randomly first and computing C by exponentiation to
the short public exponent. This possibility was neglected by the authors of this
protocol. Batch oblivious transfer is even more efficient, as we will see later.

2.2 Batch RSA Oblivious Transfer

The main observation regarding efficiency of RSA oblivious transfer is the fact
that multiple parallel executions can use distinct private exponents. This allows
to reduce computational complexity of sender using techniques of Batch RSA.

We assume that L oblivious transfers should be performed. Let mi,0, mi,1 (for
0 ≤ i < L) be input strings for i-th oblivious transfer. Similarly, b0, . . . , bL−1 are
indices of those strings, which the chooser wants to obtain. The sender selects L

distinct small public RSA exponents e0, . . . , eL−1, each one relatively prime to
(p− 1)(q − 1), and computes corresponding private exponents d0, . . . , dL−1. For
efficient implementation the public exponents must be relatively prime to each
other and ei = O(log n), for i = 0, . . . , L− 1.

The protocol executes L separate instances of oblivious transfer:

1. S→ C : C0, C1, . . . , CL−1 ∈R Z∗n
2. C→ S : x′

0
, x′

1
, . . . , x′L−1

,

where x′i = xei

i Cbi

i and xi ∈R Zn, for i = 0, . . . , L− 1.
3. S→ C : {Ri, Ei,0, Ei,1}0≤i<L,

where ciphertexts Ei,0, Ei,1 of strings mi,0, mi,1 are computed as follows:

Ei,0 = H(Ri, (x
′
i)

di , i, 0)⊕mi,0;

Ei,1 = H(Ri, (x
′
iC
−1

i )di , i, 1)⊕mi,1.

4. The chooser decrypts mi,b0 , . . . ,mi,bL−1
from Ei,b0 , . . . , Ei,bL−1

:

mi,bi
= Ei,bi

⊕H(Ri, xi, i, bi), for i = 0, . . . , L− 1.



One can easily check the correctness of the decryption:

Ei,bi
⊕H(Ri, xi, i, bi) = H(Ri, (x

′
iC
−bi

i )di , i, bi)⊕mi,bi
⊕H(Ri, xi, i, bi)

= H(Ri, (x
ei

i Cbi

i C−bi

i )di , i, bi)⊕mi,bi
⊕H(Ri, xi, i, bi)

= mi,bi

Security. The chooser’s objective is to hide values b0, . . . , bL−1 from the sender.
The values x′i are uniformly distributed in Zn. Thus, the sender cannot compute
bi, even with unrestricted computational power – for each transmitted L-tuple
x′

0
, . . . , x′L−1

and every possible selection of values b0, . . . , bL−1 there exist suit-
able choices x0, . . . , xL−1 ∈ Zn (easily computed by the sender himself):

x0 = (x′i · C
−bi

i )di , . . . , xL−1 = (x′L−1
· C

−bL−1

L−1
)dL−1 .

Hence, all combinations of values b0, . . . , bL−1 are equiprobable and the sender
cannot identify the correct one. The chooser’s security is protected uncondition-
ally.

The sender’s objective is to hide one string from every pair mi,0, mi,1 (not
knowing which one exactly). We prove this security property of the protocol
in random oracle model, where the hash function H is modelled as a random
function.

We compare the protocol with the ideal implementation (model). The ideal
model uses a trusted third party that receives all mi,0 and mi,1 from the sender
and b0, . . . , bL−1 from the chooser. After obtaining all inputs, the trusted third
party sends the chooser mi,bi

, for 0 ≤ i < L. The ideal model hides the values
mi,1−bi

perfectly – no adversary substituting the chooser can learn anything
about hidden values. The actual protocol should be comparable with the ideal
model in the following sense (for extensive study of various definitions of protocol
security in the ideal model see [3]):

For every distribution on the inputs {mi,0,mi,1}0≤i<L and any prob-
abilistic polynomial adversary A substituting the chooser in the actual
protocol there exists a probabilistic polynomial simulator SA in the ideal
model such that outputs of A and SA are computationally indistinguish-
able.

Since the ideal model is secure and outputs of A and SA are indistinguish-
able, one can conclude that A does not learn more than allowed by security
requirements.

The simulator SA simulates both the sender and adversary A. Therefore,
the verb “send” refers to writing data to input or reading data from output of
simulated adversary.

1. SA selects random C0, C1, . . . , CL−1 ∈R Z∗n and sends them to A. It starts
to simulate A on this input.



2. A sends values x′
0
, x′

1
, . . . , x′L−1

∈ Zn to SA. These values can be computed
by adversary A in any way (adversary does not need to follow the protocol).

3. SA selects random strings {Ri, Ei,0, Ei,1}0≤i<L as “sender’s answer” and
sends them in response.

4. SA continues the simulation of A and monitors all its queries to H. All
queries have the form of a quadruple (R, x, i, b). We say that the quadruple
(R, x, i, b) is valid if Ri = R and x′iC

−b
i = xei . All queries not containing a

valid quadruple are answered at random. If A asks for H(R, x, i, b), where
the argument is a valid quadruple, then SA asks a trusted third party in the
ideal model for mi,b. The simulator sets H(R, x, i, b) = Ei,b ⊕mi,b to allow
A to decrypt Ei,b correctly. Whatever A outputs, so does SA.

The distribution of simulated communication with the adversary A is identi-
cal to the distribution of real communication between the sender and A. The only
exception is the case when A asks for any valid pair of quadruples H(R, x, i, 0)
and H(R, x∗, i, 1), for i ∈ {0, . . . , L− 1}. In this case, the validity of the quadru-
ples implies x′i = xei and x′iC

−1

i = (x∗)ei . It easily follows that x · (x∗)−1 is the
decryption of Ci:

(x · (x∗)−1)ei = xei · (x∗)−ei = x′i · (x
′
i)
−1Ci = Ci.

The values Ci are chosen randomly by the simulator SA. Hence, the adversary
cannot construct a pair of valid quadruples, assuming the RSA assumption holds.
Therefore the output of SA cannot be distinguished from the output of A in the
real communication with the sender.

Remark 2. Random strings Ri are used in the protocol to ensure distinct inputs
of H in different invocations of the protocol.

Remark 3. Less direct construction would use triples (Ri, (x
′
iC
−bi

i )di , bi) instead

of quadruples (Ri, (x
′
iC
−bi

i )di , i, bi). The simulator would determine the correct
value of index i by testing validity of all potential triples.

Implementation. The most time-consuming part of the protocol is step 3,
where the sender computes 2L RSA decryptions. The use of distinct pairs of
encryption/decryption exponents enables to apply batch RSA decryption [5].
The sender needs to compute following decryptions in step 3:

(x′i)
di , (x′iC

−1

i )di , for i = 0, . . . , L− 1.

Certainly, only one decryption has to be computed for every i, namely (x′i)
di .

This follows from an observation that (x′iC
−1

i )di = (x′i)
di(Cdi

i )−1, and Ci can

be generated from randomly chosen Cdi

i by encrypting it: (Cdi

i )ei (thus having
decryption “for free”). Assuming small size of public (encryption) exponents,
the computation can be implemented in such a way that L decryptions (x′i)

di

require time asymptotically proportional to one decryption, see [5]. Notice, that
small public exponents yield efficient implementation of the chooser’s part of the
protocol as well.



3 LS Protocol

The protocol for contract signing from [11] (we call it LS protocol) is based on
construction by Even, Goldreich and Lempel [4]. The main difference between
these protocols is a criterion when the contract is considered binding (the original
protocol uses threshold acceptance).

Protocols for simultaneous contract signing usually consist of two interlaced
protocols. Both participants are in symmetric positions – each of them wants to
transfer its own signature in exchange for the other participant’s signature. Our
description includes both exchanges.

Let us denote by SigA(m) a digital signature of a message m created by the
participant A. The protocol is independent of chosen digital signature algorithm.
Let k be a security parameter, e.g. k = 128. For the purposes of contract signing
a C-signature (or CSig) of a message m is defined as a triple:

CSigA(m) = (SigA(m,R), SigA(R, i, 0), SigA(R, i, 1)),

for arbitrary i ∈ {1, . . . , k} and a random binary string R ∈ {0, 1}k long enough
to avoid collisions among instances of the protocol. A C-signature is (considered)
valid if and only if all its parts are formed correctly and have valid signatures.

3.1 The Protocol

Alice and Bob simultaneously transfer C-signatures of contract M . A symmetric
encryption (e.g. one-time pad) of message m with a key K is denoted by {m}K .
We denote by A ↔ B : OT 2

1
(m0,m1) the instance of an oblivious transfer

protocol with A playing the role of the sender (possessing two strings m0, m1),
and B playing the role of the chooser (and selecting the string which he wishes to
obtain randomly). Alice chooses random RA ∈ {0, 1}

k and random symmetric
keys KA,i,b, for i ∈ {1, . . . , k} and b ∈ {0, 1}. Similarly, Bob chooses random
RB ∈ {0, 1}k and random symmetric keys KB,i,b, for i ∈ {1, . . . , k} and b ∈
{0, 1}. Let k′ be the length of symmetric key and i-th bit of key K is denoted by
Ki, i.e. KA,i,b = K1

A,i,b K2

A,i,b . . . Kk′

A,i,b, and KB,i,b = K1

B,i,b K2

B,i,b . . . Kk′

B,i,b.
Both participants check the correctness of received data/signatures immedi-

ately (as soon as they can be verified). In case of failure, the participant aborts
the protocol.

1. (exchange of the first parts of CSig)
A→ B: RA, SigA(M,RA),
B → A: RB , SigB(M,RB).

2. (exchange of encrypted parts of CSig)
A→ B: {SigA(RA, i, b)}KA,i,b

, for i = 1, . . . , k and b = 0, 1,
B → A: {SigB(RB , i, b)}KB,i,b

, for i = 1, . . . , k and b = 0, 1.
3. (opening one half of encryptions)

A↔ B: OT 2

1
(KA,i,0,KA,i,1), for i = 1, . . . , k,

B ↔ A: OT 2

1
(KB,i,0,KB,i,1), for i = 1, . . . , k.



4. (gradual exchange of symmetric keys) For w = 1, . . . , k′:
A→ B: Kw

A,1,0,K
w
A,1,1, . . . ,K

w
A,k,0,K

w
A,k,1,

B → A: Kw
B,1,0,K

w
B,1,1, . . . ,K

w
B,k,0,K

w
B,k,1.

Transfers are interlaced, so both parties send the pieces in the iteration
w+1 only when they already received (and verified) the pieces from previous
iteration (i.e. w). Alice and Bob check after each iteration that the half of
received pieces is equal to the corresponding pieces of the keys obtained via
oblivious transfers. They continue the protocol only if the check is successful.

The most computationally demanding task of the protocol is the step 3, where
2k oblivious transfers have to be performed. This leaves the room for efficient
implementation of the protocol – by employing efficient oblivious transfers, such
as our batch oblivious transfer presented in Sect. 2.2.

4 Implementation and Comparison

This section presents actual comparison of oblivious transfer protocols and their
impact on efficiency of LS contract signing protocol. All test were implemented
in Java and were performed on Pentium II 400 MHz processor.

The Chinese remainder theorem (CRT) is routinely applied to decrease com-
putational cost of RSA decryption. Both RSA-based implementations of oblivi-
ous transfer protocols employed CRT. Employing CRT in batch RSA oblivious
transfer requires two binary trees for computations mod p and mod q. Results
(decryptions) are combined using CRT just like in “standard” RSA.

4.1 Comparing Oblivious Transfer Implementations

We compare implementation of RSA oblivious transfer (Sect. 2.1), batch RSA
oblivious transfer (Sect. 2.2), and OT 2

1
protocol proposed by Naor and Pinkas

in [13] based on the computational Diffie-Hellman assumption (we denote this
protocol NaPi). NaPi computes in subgroup of order r of Zs, where s is prime
and r | s − 1. For the purpose of our test we choose 160 bit long r. The hash
function is instantiated as SHA-1 in the protocols.

The first graph on Fig. 1 shows combined time spent by the sender and the
chooser when performing 128 oblivious transfers simultaneously while increasing
the length of the RSA modulus n (for RSA-based protocols) or the length of
prime s (for NaPi protocol). The second graph presents combined computational
time while increasing the number of oblivious transfers computed in parallel. The
length of RSA modulus, and the length of prime s is fixed to 1024 bits in this
case.

We compare only on-line computations, off-line (pre-computed) parts of pro-
tocols are not considered. On-line computation of NaPi protocol requires two
modular exponentiations in a subgroup of order r. Since the length of expo-
nents is 160 bits, the protocol is faster than standard RSA oblivious transfer.
However, when multiple oblivious transfers should be performed, batch RSA



oblivious transfer is even more efficient. Moreover, NaPi protocol requires addi-
tional off-line computation (three exponentiations), while batch RSA oblivious
transfer does not employ off-line computation.

0

10

20

30

40

50

60

70

512 768 1024 1280 1536

tim
e 

(s
ec

)

modulus/prime length (bits)

RSA OT
NaPi OT

Batch RSA OT

0

10

20

30

2 4 8 16 32 64 128 256

tim
e 

(s
ec

)

oblivious transfers

RSA OT
NaPi OT

Batch RSA OT

Fig. 1. Comparison of RSA, batch RSA, and NaPi oblivious transfers

Remark 4. Naor and Pinkas proposed additional constructions of oblivious trans-
fer protocols in [13]. They proposed efficient OT N

1
protocol and used it to im-

plement many OT 2

1
protocols using bandwidth/computation tradeoff. However,

such construction relies on a fast communication line between the sender and the
chooser. Another OT 2

1
protocol proposed by the authors has the advantage of

not requiring random oracles for its security proof (and can be viewed as superior
to our construction in this sense). On the other hand, its on-line computational
complexity is substantially higher.

4.2 Comparing Implementations of LS Protocol

The most time consuming steps of LS protocol are step 2 and step 3. Com-
putational costs of steps 1 and 4 are negligible. Our implementations use RSA
modulus of 1024 bits and 128 oblivious transfers (the length of symmetric keys
are 128 bits).

Notice the signatures of the second and third parts of C-signatures, i.e.
SigA(RA, i, b) and SigB(RB , i, b), do not depend on actual contract M . Thus,
they can be pre-computed off-line. Table 1 compares computational time of LS
protocol when step 2 is computed on-line (no pre-computation) or off-line (pre-
computed signatures). Using batch RSA oblivious transfer improves computa-
tional costs in both cases.

Further substantial improvements can be achieved by partitioning keys KA,i,b,
KB,i,b into larger blocks of length t, e.g. 2 or 3, thus reducing overall number of
oblivious transfers by factor t.



Table 1. Computational time of LS protocol (sec)

on-line off-line

RSA OT 57.14 19.61
Batch RSA OT 44.25 6.74

References

1. Bellare, M., Garay, J., Rabin, T.: Fast batch verification for modular exponenti-
ation and digital signatures, In Advances in Cryptology – EuroCrypt ’98, LNCS
1403, 236–250, Springer-Verlag, 1998.

2. Bellare, M., Rogaway, P.: Random Oracles are Practical: a Paradigm for Designing
Efficient Protocols, In 1st ACM Conference on Computer and Communication
Security, 62–73, ACM Press, 1993.

3. Canetti, R.: Security and Composition of Multiparty Cryptographic Protocols,
Journal of Cryptology, Vol. 13, No. 1, 143–202, 2000.

4. Even, S., Goldreich, O., Lempel, A.: A Randomized Protocol for Signing Con-
tracts, In Advances in Cryptology: Proceedings of Crypto ’82, 205–210, Plenum
Publishing, 1982.

5. Fiat, A.: Batch RSA, In Advances in Cryptology: Proceedings of Crypto ’89, 175–
185, LNCS 435, Springer, 1990.

6. Garay, J., Jakobsson, M., MacKenzie, P.: Abuse-Free Optimistic Contract Sign-
ing, In Advances in Cryptology: Proceedings of Crypto ’99, LNCS 1666, 449–466,
Springer-Verlag, 1999.

7. Garay, J., Pomerance, C.: Timed Fair Exchange of Standard Signatures, In Finan-
cial Cryptography ’03, LNCS 2742, 190–207, Springer-Verlag, 2003.

8. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game – a com-
pleteness theorem for protocols with honest majority, In 19th ACM Symposium
on the Theory of Computing, 218-229, ACM Press, 1987.

9. Juels, A., Szydlo, M.: A Two-Server Sealed-Bid Auction Protocol, In Financial
Cryptography ’02, LNCS 2537, Springer-Verlag, 2002.

10. Koblitz, N., Menezes, A.: Another Look at “Provable Security”, Cryptology ePrint
Archive, Report 2004/152, http://eprint.iacr.org/, 2004.

11. Liskova, L., Stanek, M.: Efficient Simultaneous Contract Signing, In 19th Interna-
tional Conference on Information Security (SEC 2004), 18th IFIP Word Computer
Congress, Kluwer Academic Publishers, pp. 441-455, 2004.

12. Naor, M., Pinkas, B., Sumner, R.: Privacy preserving auctions and mechanism
design, In 1st ACM Conference on Electronic Commerce, 129–139, ACM Press,
1999.

13. Naor, M., Pinkas, B.: Efficient oblivious transfer protocols, In 12th Annual ACM-
SIAM Symposium on Discrete Algorithms, 448–457, 2001.


