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Abstract

For any 2D triangulation �, the 1-skeleton mesh of � is the wireframe mesh de6ned by the edges of �, while that for any
3D triangulation �, the 1-skeleton and the 2-skeleton meshes, respectively, correspond to the wireframe mesh formed by
the edges of � and the “surface” mesh de6ned by the triangular faces of �. A skeleton-regular partition of a triangle or a
tetrahedra, is a partition that globally applied over each element of a conforming mesh (where the intersection of adjacent
elements is a vertex or a common face, or a common edge) produce both a re6ned conforming mesh and re6ned and
conforming skeleton meshes. Such a partition divides all the edges (and all the faces) of an individual element in the same
number of edges (faces). We prove that sequences of meshes constructed by applying a skeleton-regular partition over
each element of the preceding mesh have an associated set of di<erence equations which relate the number of elements,
faces, edges and vertices of the nth and (n − 1)th meshes. By using these constitutive di<erence equations we prove
that asymptotically the average number of adjacencies over these meshes (number of triangles by node and number of
tetrahedra by vertex) is constant when n goes to in6nity. We relate these results with the non-degeneracy properties of
longest-edge based partitions in 2D and include empirical results which support the conjecture that analogous results hold
in 3D. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The kissing number of a convex body K is the maximum number of congruent copies of K that
can touch K without overlapping with each other. For instance, the kissing number of the 2D ball B2

is 6. The question about the number for the 3D ball B3 caused a dispute between Isaac Newton and
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David Gregory. Newton conjectured that the answer was 12 while Gregory thought 13 was possible. It
took 180 years before the question was answered: Hoppe proved that Newton was right [17]. Perhaps
for this reason the kissing number of a convex body K is also known as the Newton number of K .
In addition, in the 6eld of numerical methods (specially related with 6nite element methods) a

considerable e<ort has been done in the last 20 years for designing and implementing algorithms both
for the generation and the re6nement of quality meshes [9]. In this context, several mesh smoothing
and mesh improvement techniques have been developed and used [10,15]. Several topological and
geometrical regularity measures for simplices (triangles in 2D, tetrahedra in 3D) as well as for
simplicial grids (triangulations) have been also proposed in literature [11,29]. In particular, Shimada
[29] proposed the following quality measure for a triangulation �:

��=
1
n

n∑
i=1

|�i − D|; (1)

where �i represents the degree of node i (the number of nodes connected to the ith interior node),
D=6 for triangles, and D=12 for tetrahedra, and n is the total number of interior nodes in the
domain. Note, that by using the �� measure, as the elements become more equilateral, the mesh
irregularity approaches 0, but vanishes only when all the nodes have D neighbors, a rare situation.
Otherwise, it has a positive value that quanti6es how much the mesh di<ers from a perfectly regular
triangular lattice. Recently, Buss and Simpson have proved that planar mesh re6nement cannot be
both local and regular [8], and in higher dimensions it is well-known that there is not a regular
simplicial partition of the space.
In this paper, we consider skeleton-regular partitions of simplices, which are partitions that

divide each topological element of the same dimension—edges and faces—in the same number
of son-elements. For any input mesh �0 we study the asymptotic behavior of the average of the
degree of the nodes when the partition is iteratively and globally used to produce a sequence of
conforming meshes.
The paper is organized as follows. In Section 2, some de6nitions and notations are introduced. In

Sections 3 and 4, skeleton-regular partitions in two and three dimensions are, respectively, discussed.
In Section 5, the asymptotic average of the adjacencies of the topological elements are studied for
both 2- and 3D cases. Section 6 includes numerical experiments with the 8T-LE partition and a
comparison with the adjacency numbers of practical meshes used in 6nite element calculations.
Some concluding remarks are included in Section 7.

2. De�nitions and notations

Some previous de6nitions and notations are summarized here.

De�nition 2.1 (simplex). A closed subset T ⊂ Rn is called a (k)-simplex, 06 k6 n if T is the
convex linear hull of k + 1 vertices x0; x1; : : : ; xk ∈Rn

T = [x(0); x(1); : : : ; x(k)]:=




k∑
j=0

�jx(j)

∣∣∣∣∣∣
k∑
j=0

�j =1; �j ∈ [0; 1]; 06 j6 k


 : (2)
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If k = n then T is simply called simplex or triangle in Rn. In what follows (2)-simplices and
(3)-simplices are also called triangles and tetrahedra respectively.

De�nition 2.2 (conforming triangulation). Let � be any bounded domain in R2, or R3 with no-empty
interior and polygonal boundary @�, and consider a partition of � into a set of triangles �=
{t1; t2; t3; : : : ; tn}. Then we say that � is a conforming triangulation if the following properties hold:
1. �=

⋃
ti,

2. interior(ti) �= ∅; ∀ti ∈ �,
3. interior(ti) ∩ interior(tj)= ∅, if i �= j,
4. ∀ti; tj ∈ � with ti ∩ tj �= ∅, then ti ∩ tj is an entire face or a common edge, or a common vertex.

De�nition 2.3 (k-face). Let T = [x(0); x(1); : : : ; x(n)] be an (n)-simplex in Rn. A k-simplex S =
[y(0); y(1); : : : ; y(k)] is called a (k)-subsimplex or a (k)-face of T if there are indices 06 i0¡i1
¡ · · · ik6 n such that y(j) = x(ij) for 06 j6 k.

Obviously, the (0)- and (1)-face of T are just its vertices and edges, respectively.

De�nition 2.4 (skeleton). Let � be any nD (n=2 or 3) conforming triangular mesh. The k-skeleton
of � is the union of its k-faces. The (n− 1)-skeleton is also called the skeleton [6].
Note that the skeleton of a tetrahedral mesh in 3D is a “surface mesh” de6ned by the faces of

the elements (tetrahedra) of the volume mesh; while in 2D the skeleton of a mesh is a wireframe
mesh de6ned by the set of the edges of the triangles. Note that by extension the n-skeleton of a
triangulation � is the triangulation itself. Thus the skeleton can be understood as a new triangulation:
if � is a 3D conforming triangulation in R3; skeleton(�) is a surface triangulation embedded in R3.
Furthermore, if � is conforming, then skeleton(�) is also conforming.

De�nition 2.5 (skeleton-regular partition). For any triangle or tetrahedron t, a partition of t will be
called skeleton-regular if the following properties hold:

1. All the topological elements of the same dimension, that is all the elements of the k-skeleton
(06 k6 n) are subdivided in the same number of son-elements.

2. The application of the partition to each individual element in any conforming mesh produces
a conforming triangulation.

In order to illustrate this concept, consider Fig. 1 where a single triangle t0 has been divided
into 9 triangles by using a 2D skeleton-regular partition which consists on adding one interior node
and two nodes over each edge of t0, and then joining the interior node with every boundary vertex
and node. Note that in this case each edge was divided in 3 equal parts and the triangle itself is
partitioned into 9 triangles. More examples in 2- and 3D are considered in next sections.

Remark 2.1. Note that the iterative application of any skeleton-regular partition over any conforming
triangulation produces a sequence of 6ner and nested conforming triangulations.
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Fig. 1. Example of 2D skeleton-regular partition.

3. Skeleton-regular partitions in 2D

In this section we review some triangle partitions in 2D, and for those which are skeleton-regular
partitions we study their associated recurrence equations (the constitutive equations of the globally
re6ned meshes).
In order to introduce the 4-triangles longest-edge partition the following (non-skeleton-regular)

partition is needed [22]:

De�nition 3.1 (edge bisection and longest-edge bisection). The longest-edge bisection of a triangle
is the bisection of t by the midpoint of the longest-edge and its opposite vertex (see Fig. 2(a)). If
the chosen midpoint is not the longest-edge midpoint then it is said that a simple bisection has been
performed (see Fig. 2(b)).

De�nition 3.2 (the 4-triangles longest-edge (4T-LE) partition). The triangle is bisected by its
longest edge, followed by the edge bisection of the resulting triangles by the remaining original
edge of t (see Fig. 3(a)).

De�nition 3.3 (the 4-triangles similar partition). The triangle is divided into four similar triangles
by connecting the edge midpoints by means of line segments parallel to the edges of t (Fig. 3(b)).

De�nition 3.4 (the 4-triangles shortest-edge partition). This partition divides the triangle into four
triangles in such a way that a 6rst shortest-edge bisection of the initial triangle is performed, followed
by simple bisection of the resulting triangles by the remaining edges of t (Fig. 3(c)).

Fig. 2. (a) Longest-edge bisection of t; (b) simple bisection of t.
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Fig. 3. Skeleton-regular partitions in 2D: (a) 4 triangles longest-edge partition of t0; (b) 4 triangles similar partition;
(c) 4 triangles shortest edge partition; (d) baricentric partition.

Proposition 3.1. Let �0 be any initial conforming triangulation with N0 vertices, E0 edges and
T0 triangles. Then; after n applications of either the 4 triangles longest-edge partition or the 4
triangles similar partition; or the 4 triangles shortest edge partition to each triangle of �0 and its
descendants; producing a globally re9ned and conforming triangulation �n, the number of nodes;
edges and triangles in �n (respectively; Nn; En and Tn) are related with the number of elements in
the preceding triangulation �n−1 by means of the following constitutive equations:

Nn=Nn−1 + En−1;

En=2En−1 + 3Tn−1;

Tn=4Tn−1: (3)

Longest-edge partitions have been studied by Rivara and co-workers (see, for instance [22–28]).
Longest-edge based partitions and algorithms in 2D have the following important non-degeneracy
property:

Theorem 3.1. The iterative use of either the longest-edge partition or the 4-triangles longest-edge
partition over any triangle t and its descendants only produces triangles whose smallest interior
angles are always greater than or equal to �=2; where � is the smallest interior angle of the initial
triangle. Furthermore; this result also extends for the triangulation re9nement algorithms based
on these partitions.

Moreover, when the 4T-LE partition is iteratively applied over any initial obtuse triangle, the
following improved results hold [24]:
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Theorem 3.2. Let t0 be any obtuse triangle of smallest angle �0 and largest angle �0. Then:
(1) The 4-triangles longest-edge partition of t0 produces one similarly distinct triangle t1 (of small-

est angle �1 and largest angle �1) such that �1¿ �0 and �16 �0 − �1 (see Fig. 3(a)).
(2) The 4-triangles longest-edge partition of any obtuse triangle t0 and its descendants produces

a 9nite sequence of N improved similarly distinct triangles ti of largest angle �i; and smallest
angle �i such that
(a) ti is obtuse for i=1; 2; : : : ; N − 1; and tN is non-obtuse;
(b) �j¿ �j−1 for j=1; 2; : : : ; N ,
(c) �j6 �j−1 − �j−16 �0 − j�0 for j=1; 2; : : : ; N;
(d) the partition of tN at most produces a new obtuse triangle tN+1; and at this point no new

similarly distinct triangles are generated.

Proof. The proof of part (2) of this theorem is based on the repetitive use of the inequality
of part (1), while the inequality �j6 �0 − j�0 implies that after a 6nite number of steps the new
triangle becomes non-obtuse.

Remark 3.1.

1. Note that the iterative longest-edge bisection of an equilateral triangle t and its descendants
produces four similarly distinct triangles, while the 4-triangles longest-edge partition of t and its
descendants produces two similarly distinct triangles.

2. Calling TQE the set of quasi-equilateral triangles, namely those triangles that behave as the equilat-
eral triangle with respect to the longest-edge bisection, it is easy to see that for any triangle t0 in
TQE , the 4-triangles longest-edge partition of t0 and its descendants, produces only two similarly
distinct triangles (an obtuse one, and a non-obtuse one both in TQE) with smallest angle greater
than or equal to �0=2. Note that this also implies that the triangles of TQE are not small-angled
triangles (not far from the equilateral triangle).

By using the concepts involved in the preceding remarks, the following improvement property
(see Ref. [24]) holds:

Proposition 3.2. Let us consider the (global) iterative 4-triangles longest-edge partition of t0 as
follows: de9ne T0 = {t0} the triangulation of level 0; then the iteration k de9nes the conforming
triangulation Tk at level k; obtained by partition of every triangle in the triangulation of level k−1;
for k =1; 2; : : : . Then the percentage of triangles in TQE ∩ Tk (and the area of t0 covered by these
triangles) increases as k does.

The 4T-similar partition produces four triangles similar to its father (see Fig. 3(b)) and has been
used in 6nite element applications [5,1].

De�nition 3.5 (the 2D Baricentric partition). The baricentric partition of t is de6ned as follows:

1. Add a new node P at the baricentric point of t, and new nodes at the midpoints of the edges
of t.
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2. Join the baricentric point P with every vertex and node over the boundary of t (see
Fig. 3(c)).

Proposition 3.3. For the baricentric partition; the number of nodes; edges and triangles of a re9ned
mesh (respectively; Nn; En and Tn) are related with the number of elements of the precedent mesh
�n−1 by means of the following constitutive equations:

Nn=Nn−1 + En−1 + Tn−1;

En=2En−1 + 6Tn−1;

Tn=6Tn−1: (4)

In general any skeleton-regular simplex partition in 2D has an associated set of di<erence consti-
tutive equations:

Nn=Nn−1 + aEn−1 + bTn−1;

En= cEn−1 + dTn−1;

Tn= eTn−1; (5)

where the parameters a; b; c; d; e are determined by the speci6c partition and, respectively, correspond
to the number of nodes per edge, the number of internal nodes per triangle, the number of son-edges
per edge, the number of internal edges per triangle, and the number of son-triangles per triangle.
We shall prove that in 2D the asymptotic average adjacencies are independent of these parameters,
and hence all the 2D skeleton-regular partitions show the same asymptotic behavior for the average
adjacencies.

Remark 3.2.
(1) Both the 4T-similar partition and the baricentric partition do not discriminate between the edges

of the triangle. On the contrary the 4T-LE partition distinguishes the longest-edge of the triangle,
an important property to design local mesh re6nement algorithms [22,23,25].

(2) Note that two di<erent geometric partitions can have the same set of associated di<erence
equations.

4. Skeleton-regular partitions in 3D

In 3D several algorithms have been developed in the last years for re6ning (and coarsening)
tetrahedral meshes. Algorithms based on pure longest-edge bisection (a non-skeleton-regular partition)
of tetrahedra have been developed by Rivara and Levin [26], and by Muthukrishnan et al. [16]. The
following 8-tetrahedra longest-edge partition was introduced and discussed by Plaza and co-authors
[19–21,27].
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Fig. 4. Re6nement patterns for the 8T-LE partition.

De�nition 4.1 (the 8-tetrahedra longest-edge (8T-LE) partition). For any input tetrahedron t, the
8T-LE partition of t produces eight tetrahedra by performing the 4T-LE partition of the faces
of t, and by subdividing the interior of the tetrahedron t consistently with the re6ned 2-skeleton
(see Fig. 4).

This partition was used by Plaza and Carey [19,20] for designing the (3D skeleton-based-re6nement)
3D-SBR algorithm.
The 8T-LE partition can be achieved by performing a sequence of bisections by the midpoints of

the edges of the original tetrahedron as follows [27]:

Theorem 4.1. For any tetrahedron t of unique longest-edge; the 8T-LE partition of t is obtained
as follows:

1. Longest edge bisection of t producing tetrahedra t1; t2.
2. Bisection of ti; for i=1; 2; by the longest edge of the common face of ti with the original

tetrahedron t; producing tetrahedra tij; for j=1; 2.
3. Bisection of each tij by the midpoint of the unique edge equal to an edge of the original

tetrahedron.

Even when there is still no mathematical proof on the creation of a 6nite number of congru-
ence classes when the 8T-LE partition is applied recursively over an initial triangulation, experi-
mental evidence has been reported in Ref. [27], supporting the conjecture that the partition has a
self-improvement property in the case of bad shaped triangulations, as it happens in 2D [25].
Other tetrahedra partitions have been proposed by BOansch [2], Kossaczk-y [13], or Liu and Joe

[15]. Although these partitions are not longest-edge based partitions, all of them have associated
constitutive di<erence equations identical to those of the 8T-LE partition, since all divide equal
dimension elements in the same number of son-elements. They divide the edges into two edges, the
triangular faces into four triangles, and the tetrahedra into eight son-tetrahedra.
The constitutive equations for the 8T-LE partition are the following:

Nn=Nn−1 + En−1 + Tn−1;

En=2En−1 + 3Fn−1 + Tn−1;

Fn=4Fn−1 + 8Tn−1;

Tn=8Tn−1; (6)
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Fig. 5. First step of 3D Freudenthal–Bey partition.

Fig. 6. The three possibilities for dividing the interior octahedron into four tetrahedra.

where Nn; En; Fn, and Tn are, respectively, the number of nodes, edges, faces and tetrahedra in the
mesh �n obtained after n iterative applications of the partition to any initial mesh �0.

De�nition 4.2 (the 3D Freudenthal-Bey partition). For any tetrahedron t, the 3D Freudenthal–Bey
partition of t is obtained by 6rstly cutting o< the four corners of t by the midpoints of the edges
(Fig. 5) and then by dividing the remaining octahedron according with three patterns associated with
the three possible interior diagonals (Fig. 6) [7].

The constitutive equations for the Freudenthal–Bey partition are also Eqs. (6).

De�nition 4.3 (the 3D baricentric partition). For any tetrahedron t the baricentric partition of t is
de6ned as follows:

1. Add a new node P at the baricentric point of t, add new nodes at the baricentric points of the
faces of t, and put new nodes at the midpoint of the edges of t.

2. Perform over each face of t the baricentric triangular partition of the face as shown in Fig. 1(c).
3. Join the baricentric point P with every vertex and node introduced in point (1) (see Fig. 7).

The constitutive equations of the 3D baricentric partition are as follows:

Nn=Nn−1 + En−1 + Fn−1 + Tn−1;

En=2En−1 + 6Fn−1 + 14Tn−1;

Fn=6Fn−1 + 36Tn−1;

Tn=24Tn−1: (7)
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Fig. 7. 3D baricentric partition.

Table 1
Adjacency relations

2D 3D

Vertices=edge 2 2
Vertices=triangle 3 3
Edges=triangle 3 3
Triangles=edge 2 Not 6xed
Vertices=tetrahedron — 4
Edges=tetrahedron — 6
Faces=tetrahedron — 4
Tetrahedra=triangle — 2
Edges=vertex Not 6xed Not 6xed
Triangles=vertex Not 6xed Not 6xed
Tetrahedra=edge — Not 6xed
Tetrahedra=vertex — Not 6xed

5. Adjacency relations in the mesh

Table 1 shows the most important adjacency relations between the topological components of any
tetrahedral mesh, and the interior elements in meshes of triangles and tetrahedra.
In other words, the numbers of k-faces of j-simplices, where k6 j6 n are related by the following

equation:

#(k-faces=j-simplex)=
(
j + 1
k + 1

)
for n=2; 3

while that the number of n-simplices by (n− 1)-faces are summarized by
#n-simplices=(n− 1)-face= 2:

In what follows we shall study the set of remaining non-trivial relations, that is these values in
average as well as their asymptotic values when the number of iterative partitions goes to in6nity.

Lemma 5.1. For any 2D conforming triangulation having Nn nodes; En edges; and Tn triangles;
the average number of triangles by node and edges by node are given as follows:

Av#(triangles per node)=
3Tn
Nn

;
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Av#(edges per node)=
2En
Nn

:

Proof. Let us consider 6rst the average of triangles per node. Since we are calculating an average
per node, the denominator has to be Nn. The numerator in exchange is

n∑
i=1

nT (i); (8)

where nT (i) represents the number of triangles sharing node i. However, since this sum is equal to
the sum of the number of nodes per triangle, it follows that

n∑
i=1

nT (i)= 3Tn: (9)

For the average number of edges per node the reasoning is the same.

Lemma 5.2. Let �0 be any conforming 2D triangulation; and �n be the triangulation obtained
after n applications of any skeleton-regular partition over each element of the preceding meshes
�k for k =0; 1; 2; : : : ; n− 1. Let Nn; En; and Tn be the number of nodes; edges and triangles of �n;
respectively. Then; the non-trivial adjacency relations in average hold

lim
n→∞Av#(triangles per node)= lim

n→∞Av#(edges per node):

Proof. It follows from Lemma 5.1 and the fact that the average number of triangles per edge is
#(triangles per edge)= 2= limn→∞ 3Tn=En, so 3Tn ∼ 2En, and the proof is completed.

Lemma 5.3. Let �n a 3D triangulation with Nn nodes; En edges; Fn faces; and Tn tetrahedra. Then;
the non-trivial adjacency relations are

Av#(tetrahedra per edge)=
6Tn
En

;

Av#(faces per edge)=
3Fn
En

;

Av#(tetrahedra per node)=
4Tn
Nn

;

Av#(faces per node)=
3Fn
Nn

;

Av#(edges per node)=
2En
Nn

:

Proof. The argument is the same as in Lemma 5.1.

Analogously, for the 3D case the following result holds:
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Lemma 5.4. Let �0 be a 3D triangulation; and �n the triangulation obtained after n iterative global
applications of any regular partition. Let Nn; En; Fn; and Tn be the number of nodes; edges; faces;
and tetrahedra of �n; respectively. Then; the non-trivial adjacency relations; in average; verify:

lim
n→∞Av#(tetrahedra per edge)= lim

n→∞Av# (faces per edge);

1
2 limn→∞Av# (tetrahedra per node)=

1
3 limn→∞Av#(faces per node):

In order to calculate the asymptotic average adjacencies of the topological components of a par-
ticular skeleton-regular partition, we need to solve its associated constitutive equations. This can also
be done either by generation functions [12] or by using a symbolic calculus package like MAPLE ?
[18] or Mathematica ?.
Next we report the results relative to the partitions introduced in Sections 3 and 4.

Theorem 5.1. Let �0 be a (conforming) triangular mesh. For any skeleton-regular partition let
Nn; En; and Tn be the total number of nodes; edges; and triangles; respectively; after the nth partition
application. Then the asymptotic average of non-trivial adjacency numbers (noted as As Av# for
Asymptotic Average Number of) of topological elements are independent of the particular partition
of each triangle and these numbers are as follows:

As Av#(triangles per node)= lim
n→∞

3Tn
Nn

=6;

As Av#(edges per node)= lim
n→∞

2En
Nn

=6:

Proof. The constitutive Eqs. (5) associated to a general skeleton-regular partition in a 2D triangu-
lation can be written in matrix form as follows:

un=


Nn
En
Tn


=



1 a b

0 c d

0 0 e






Nn−1
En−1
Tn−1


=Aun−1 (10)

So, applying the former equation to un−1, and so on, we obtain:

un=A2un−2 = · · ·=Anu0 =An

N0
E0
T0


 ; (11)

where N0; E0, and T0 are the initial values for the number of nodes, edges and triangles, respectively.
Note that matrix A is non-singular since c=#(edges per edge)¿ 1, and e=#(triangles per triangle)
¿ 1. Furthermore, d¿ 0, and consequently e¿c since counting the number of edges after one
application of the partition to a single triangle we obtain 3e=3c + 2d, so 3(e − c)= 2d¿ 0.
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So, if c¿ 1, since e¿c, then matrix A de6ning the constitutive equation is diagonalizable.
Otherwise, if c=1, then a=0 and matrix A can be written as

A=


 1 0 b
0 1 d
0 0 e


=




−−e+1+b
e−1

b
e−1 1

− d
e−1

d
e−1 0

0 1 0






1 0 0

0 e 0

0 0 1






0 − e−1

d 1

0 0 1

1 −−e+1+b
d −1


 :

Therefore, we can apply the classical result that states that if A is a diagonalizable matrix
(A= SDS−1, D being a diagonal matrix and S non-singular matrix) An= SDnS−1 [30]. Then we
get the following value for un:

un=


Nn
En
Tn


=



(1 + 1

2(1 + 3a+ 2b)
n − 3

2 (a+ 1)
n)T0 + (−1 + (a+ 1)n)E0 + N0

( 32 (1 + 3a+ 2b)
n − 3

2 (a+ 1)
n)T0 + (a+ 1)nE0

(1 + 3a+ 2b)nT0


 :

Once the recurrence equations have been solved, taking limits in the quotients we obtain:

lim
n→∞

3Tn
Nn

= lim
n→∞

3(1 + 3a+ 2b)nT0
(1 + 1=2(1 + 3a+ 2b)n − 3=2(a+ 1)n)T0 + (−1 + (a+ 1)n)E0 + N0

= lim
n→∞

3(1 + 3a+ 2b)nT0
(1=2(1 + 3a+ 2b)n)T0

= 6;

lim
n→∞

2En
Nn

= lim
n→∞

2(3=2(1 + 3a+ 2b)n − 3=2(a+ 1)n)T0 + (a+ 1)nE0
(1 + 1=2(1 + 3a+ 2b)n − 3=2(a+ 1)n)T0 + (−1 + (a+ 1)n)E0 + N0

= lim
n→∞

2(3=2(1 + 3a+ 2b)n)T0
(1=2(1 + 3a+ 2b)n)T0

= 6:

In 3D di<erent asymptotic values are obtained in general for di<erent partitions, as shown below
for the partitions of Section 4.

Theorem 5.2. Let � be a (conforming) initial tetrahedral mesh in which the 8T-LE partition is
recursively applied. Then the asymptotic average non-trivial adjacencies are the following:

As Av#(tetrahedra per edge)= lim
n→∞

6Tn
En

=
36
7
;

As Av#(tetrahedra per node)= lim
n→∞

4Tn
Nn

=24;

As Av#(faces per edge)= lim
n→∞

3Fn
En

=
36
7
;

As Av#(faces per node)= lim
n→∞

3Fn
Nn

=36;

As Av#(edges per node)= lim
n→∞

2En
Nn

=14:
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Proof. Note 6rst that the constitutive Eqs. (6) for the 8T-LE partition can also be written in matrix
form as

un=



Nn
En
Fn
Tn


=



1 1 0 0
0 2 3 1
0 0 4 8
0 0 0 8






Nn−1
En−1
Fn−1
Tn−1


=Aun−1; (12)

where matrix A is diagonalizable

A=



1 1 0 0
0 2 3 1
0 0 4 8
0 0 0 8


= SDS−1

=




− 4
3

7
3 − 7

6
7
6

0 7
3 − 7

2
7
6

0 0 − 7
3 2

0 0 0 1






1 0 0 0
0 2 0 0
0 0 4 0
0 0 0 8







− 3
4

3
4 − 3

4
3
4

0 3
7 − 9

14
11
14

0 0 − 3
7

6
7

0 0 0 1


 :

Then, since un=Anu0 the constitutive equations can be easily solved and we obtain:

Nn
En
Fn
Tn


=



( 168

n − 4n + 11
6 2

n − 1)T0 + (1− 3
22

n + 1
24

n)F0 + (−1 + 2n)E0 + N0
( 768

n − 34n + 11
6 2

n)T0 + (− 3
22

n + 3
24

n)F0 + 2nE0
(28n − 24n)T0 + 4nF0

8nT0


 ;

where N0; E0; F0, and T0 are the number of nodes, edges, faces and tetrahedra in the initial tri-
angulation. Taking limits in the appropriate quotients as in Theorem 5.2 we obtain the asymptotic
average adjacencies.

Remark 5.1. Since the 3D Freudenthal–Bey partition is equivalent in average to the 8T-LE partition,
both have the same asymptotic average adjacencies.

Theorem 5.3. Let � be a (conforming) initial tetrahedral mesh in which the baricentric partition
is recursively applied. Then the asymptotic average adjacencies are the following:

As Av#(tetrahedra per edge)= lim
n→∞

6Tn
En

=
66
13
;

As Av#(tetrahedra per node)= lim
n→∞

4Tn
Nn

=22;

As Av#(faces per edge)= lim
n→∞

3Fn
En

=
66
13
;

As Av#(faces per node)= lim
n→∞

3Fn
Nn

=33;

As Av#(edges per node)= lim
n→∞

2En
Nn

=13:
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Remark 5.2. Note, that although all the triangle partitions show the same asymptotic behavior for
their average adjacencies, not all of them have the non-degeneracy properties of the longest-edge
based partitions (Theorems 3.1 and 3.2). To see this, consider the 3-triangles partition de6ned by
putting one interior node at the baricenter of each triangle and then joining this node with the three
nodes of the triangle. This partition degenerates, since the smallest angle tends to zero when the
partition is repeatedly used over any triangle and its descendants.
In 3D the non-degeneracy properties of both the longest-edge partition and the 8-tetrahedra

longest-edge based partition, and the respective local re6nement algorithms have not been reported
yet.

6. Empirical results

In this section, we report evidence that supports the conjecture on the non-degeneracy property of
both the 8T-LE partition and the mesh re6nement algorithms based on this partition.
Here three numerical examples are presented. In every case, the 8T-LE partition has been applied

seven times to an initial tetrahedron and its descendants, so the last level of division (�8) contains
366; 145 vertices and 2; 097; 152 tetrahedra. For each test tetrahedron a set of three tables have been
produced: the 6rst one contains the coordinates of the vertices, while that the second and third ones
summarize statistical information for the meshes obtained.
The values +T ; +min and +max expressed in sexagesimal degrees, refer to the solid angle measure

(+P) used by Rivara and Levin [26] and de6ned, at each vertex P as follows:

+P =sin−1{(1− cos2 �P − cos2 ,P − cos2 �P + 2cos �P cos,P cos �P)1=2}; (13)

where �P; ,P, and �P are the three planar angles sharing vertex P.
+T is the minimum +-value for the solid angles of tetrahedron T , and +min and +max are, respec-

tively, equal to the minimum and maximum +-values attained for the mesh at level n. Note that
06+T 6 45, and +=0 implies a totally degenerate tetrahedron. (For a discussion on tetrahedron
shape measures see, for example [14].)
Note that the solid angle at P, say �P, can be calculated from the following formula [14,19] as

a function of the planar angles at P:

sin(�P=2)=
(1− cos2 �P − cos2 ,P − cos2 �P + 2cos �P cos,P cos �P)1=2

4 cos(�P=2) cos(,P=2) cos(�P=2)
: (14)

In the 6rst test problem the initial tetrahedron is a right-tetrahedron, with a vertex in the origin of
the coordinate system, and three vertices over the axes of the coordinate system to equal distance
from the origin (see Table 2). The evolution of the shape for the tetrahedra as the partition proceeds
is in Table 3. Since the element improvement is relative to the shape quality of the input tetrahedron,
an element T is assumed to be bad-shaped if its minimum solid angle associated measure veri6es
+T ¡ 10 for the test problems 1 and 3, while that for the test problem 2 it is assumed +T ¡ 0:24 for
bad-shaped tetrahedra. Note that the minimum solid angle remains constant since the second global
partition, while the percentage of volume covered by bad-shaped elements improves from the third
global partition.
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Table 2
Vertices (Test problem 1—right-shaped tetrahedron)

0.0 0.0 0.0
4.0 0.0 0.0
0.0 4.0 0.0
0.0 0.0 4.0

Table 3
Evolution of shape (Test problem 1—right-shaped tetrahedron)

Level Num. Num. +min Planar angles +max % of bad elems. % volume covered
of nodes of elems. (+T ¡ 10) by bad elems.

1 4 1 30.00 45.00 # 60.00 # 45.00 90 0.00 0.00
2 10 8 9.59 19.47 #35.26 # 30.00 90 25.00 25.00
3 35 64 9.59 30.00 #35.26 # 19.47 90 25.00 25.00
4 165 512 9.59 30.00 #35.26 # 19.47 90 20.31 20.31
5 969 4096 9.59 30.00 #35.26 # 19.47 90 15.62 15.62
6 6545 32,768 9.59 30.00 #35.26 # 19.47 90 11.82 11.82
7 47,905 262,144 9.59 30.00 #35.26 # 19.47 90 8.89 8.89
8 366,145 2,097,152 9.59 30.00 #35.26 # 19.47 90 6.67 6.67

Fig. 8. Distribution of vertices versus number of tetrahedra per vertex. Right-shaped tetrahedron.

Figs. 8–10 show the evolution of the numbers of tetrahedra per vertex as the global re6nement
(partition) proceeds. Note that the distribution tends to concentrate more tetrahedra per node around
24, which is the asymptotic average number for this partition.
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Fig. 9. Distribution of vertices versus number of tetrahedra per vertex. Needle tetrahedron.

Fig. 10. Distribution of vertices versus number of tetrahedra per vertex. Flat tetrahedron.

The second example considers a needle tetrahedron (see Table 4). Table 5 shows the evolution of
the minimum and maximum angles, and the % of volume covered by bad-shaped elements, while
Fig. 9 shows the evolution of tetrahedra per node for this needle tetrahedron. Note that in this case
the distribution also approaches the mean value 24.
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Table 4
Vertices (Test problem 2—Needle tetrahedron)

−0:5 0.0 0.0
0.5 0.0 0.0
0.0 0.2 0.0
0.0 0.0 7.0

Table 5
Evolution of shape (Test problem 2—Needle tetrahedron)

Level Num. Num. +min Planar angles +max % of bad elems. % volume covered
of nodes of elems. (+T ¡ 0:24) by bad elems.

1 4 1 0.23 8.00 # 4.36 # 4.28 43.58 100.00 100.00
2 10 8 0.23 8.00 # 4.26 # 4.28 67.84 75.00 75.00
3 35 64 0.22 4.26 # 4.36 # 8.00 68.14 68.75 68.75
4 165 512 0.22 4.28 # 4.36 # 8.01 68.14 67.19 67.19
5 969 4096 0.22 4.23 # 4.35 # 7.96 68.14 66.80 66.80
6 6545 32,768 0.22 4.23 # 4.35 # 7.96 68.14 66.71 66.71
7 47,905 262,144 0.22 7.96 # 4.23 # 4.35 68.14 66.63 66.63
8 366,145 2,097,152 0.22 7.96 # 4.23 # 4.35 68.14 66.63 66.63

Table 6
Vertices (Test problem 3—Sat tetrahedron)

−2:0 0.0 0.0
4.0 0.0 0.0
1.3 3.5 0.0
1.0 1.3 0.5

The third example corresponds to a Sat tetrahedron (Table 6). Table 7 shows for this example
the evolution of the shape of the elements and meshes obtained at global partitioning. Note that the
minimum solid angle remains constant since the second global re6nement, while the percentage of
volume covered by bad-shaped tetrahedra improves when the partitioning proceeds.
Table 8 shows the evolution of the average number of tetrahedra per vertex, and the standard

deviation for the distribution of tetrahedra per vertex for the last example, in the 6rst seven stages
of application of the 8T-LE partition.

Remark 6.1 (a comparison on Beall and Shephard estimates). Beall and Shephard [3,4] have esti-
mated numbers of nodes, edges, faces and tetrahedra in the meshes used in 6nite element calculations
as follows:

Av#(tetrahedra per edge)= 5;
Av#(tetrahedra per node)= 23;
Av#(faces per edge)= 5;
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Table 7
Evolution of shape (Test problem 3—Flat tetrahedron)

Level Num. Num. +min Planar angles +max % of bad elems. % volume covered
of nodes of elems. (+T ¡ 10) by bad elems.

1 4 1 6.31 24.90 # 24.74 # 46.78 24.94 100.00 100.00
2 10 8 3.68 40.11 # 6.08 # 38.42 33.30 62.50 62.50
3 35 64 3.12 46.68 # 27.74 # 19.70 75.29 45.31 45.31
4 165 512 3.12 46.68 # 27.74 # 19.70 75.29 37.50 37.50
5 969 4096 3.12 46.68 # 27.74 # 19.70 75.29 30.03 30.03
6 6545 32,768 3.12 46.68 #27.74 #19.70 75.29 22.97 22.97
7 47,905 262,144 3.12 46.68 # 27.74# 19.70 75.29 17.13 17.13
8 366,145 2,097,152 3.12 19.70#46.78# 27.74 74.85 12.57 12.57

Table 8
Statistical measures

Level n Num. tets. Av#(tetrahedra per node)

4 512 12.41
5 4.096 16.90
6 32.768 20.03
7 262.144 21.88
8 2.097.152 22.91
9 16.777.216 23.45
10 134.217.728 23.72

Av#(faces per node)= 35;
Av#(edges per node)= 14:

To compute this estimation an equilateral mesh is assumed, which is known is impossible in 3D,
but good for the purposes of determining memory storage requirements. Thus, for example in the
case of Av#(tetrahedra per node), the ratio between the value of the solid angle of the full sphere
around a vertex and the value of the solid angle of a regular tetrahedron is computed (equal to
22:6 rounded to 23). The other adjacency numbers for the tetrahedral mesh were calculated in a
similar way. These numbers were then checked with various practical meshes to make sure that they
were suTciently representative for their purposes. Note that, these numbers, although obtained in a
di<erent way and for another purpose than ours, are in the same range that the asymptotic average
numbers reported in this paper.

7. Concluding remarks

In this paper, we present a general class of partitions, the skeleton-regular partitions. The asymp-
totic average adjacencies for skeleton-regular triangular and tetrahedral partitions are studied by solv-
ing the recurrence equations characterizing these partitions. We prove that the asymptotic number
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of average adjacencies is identical for each 2D skeleton-regular partition, while that in 3D di<erent
values are obtained for each 3D partition. This study can be applied to other polyhedral or polygonal
partitions of the space, not only simplicial partitions.
Furthermore, empirical experimentation on the practical behavior of the 8T-LE partition has shown

that, in general, the minimum solid angle stabilizes in the second or third global iterative partition,
while that the percentage of better tetrahedra tends to improve as the re6nement proceeds.
Theoretical research in course on the nondegeneracy properties of the 3D longest-edge based

partitions will be published elsewhere.
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