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Abstract: In this paper, a new powerful approach, called rational Legendre collocation method (RLC) is
used to obtain the solution for nonlinear ordinary deferential equations that often appear in boundary layers
problems arising in heat transfer. These kinds of the equations contain infinity boundary condition. The main
objective is to reduce the solution of the problem to a solution of a system of algebraic equations, which do
not require linearization and imposing the asymptotic condition transforming and physically unrealistic as-
sumptions. Numerical results are compared with those of other methods, showing that the collocation method
leads to more accurate results.

Keywords: collocation method; nonlinear ODE; porous media; rational Legendre functions; heat and mass
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1 Introduction
Natural convective heat transfer in porous media has received considerable attention during the past few decades. This
interest can be attributed due to its wide range of applications in ceramic processing, nuclear reactor cooling system,
crude oil drilling, chemical reactor design, ground water pollution and filtration processes. External natural convection
in a porous medium adjacent to heated bodies was analyzed by Nield and Bejan [1], Merkin [2, 3], Minkowycz and
Cheng [4–6], Pop and Cheng [7, 8], Ingham and Pop [9]. In all of these analyses, it was assumed that boundary layer
approximations are applicable and the coupled set of governing equations were solved by numerical methods.

In this paper, the same approximations are applied to the problem of natural convection about an inverted heated cone
embedded in a porous medium of infinite extent. No similarity solution exists for the truncated cone, but for the case of
full cone, if the prescribed wall temperature or surface heat flux is a power function of distance from the vertex of the
inverted cone similarity solutions exist [1, 7, 10], a great deal of information is available on heat and fluid flow about such
cones as reviewed by Refs. [11, 12].

Bejan and Khair [13] used Darcy’s law to study the vertical natural convective flows driven by temperature and
concentration gradients. Nakayama and Hossain [14] applied the integral method to obtain the heat and mass transfer
by free convection from a vertical surface with constant wall temperature and concentration. Yih [15] examined the
coupled heat and mass transfer by free convection over a truncated cone in porous media for variable wall temperature and
concentration or variable heat and mass fluxes and [16] applied the uniform transpiration effect on coupled heat and mass
transfer in mixed convection about inclined surfaces in porous media for the entire regime. Cheng [17] used an integral
approach to study the heat and mass transfer by natural convection from truncated cones in porous media with variable
wall temperature and [18] studied the Soret and Dufour effects on the boundary layer flow due to natural convection heat
and mass transfer over a vertical cone in a porous medium saturated with Newtonian fluids with constant wall temperature.
The problem of steady laminar hydromagnetic heat transfer over a vertical plate embedded in a uniform porous medium is
studied in [19–21]. [22] presented, a linear stability analysis to trace the time evolution of an infinitesimal on the base flow
of an electrically conducting fluid in a channel filled with a saturated porous medium. Natural convective mass transfer
from upward-pointing vertical cones, embedded in saturated porous media, has been studied using the limiting diffusion
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[23]. The natural convection along an isothermal wavy cone embedded in a fluid-saturated porous medium are presented
in [24, 25]. Lai and Kulacki [26] studied the natural convection boundary layer flow along a vertical surface with constant
heat and mass flux including the effect of wall injection. In [10, 27] fluid flow and heat transfer of vertical full cone
embedded in porous media have been solved by homotopy analysis method.

Guo et al. [35] introduced a new set of rational Legendre functions which are mutually orthogonal in L2(0,+∞).
They applied a spectral scheme using the rational Legendre functions for solving the Korteweg-de Vries equation on the
half line.

Parand et al. [36–42] applied spectral method to solve nonlinear ordinary differential equations on semi-infinite
intervals. Their approach was based on rational tau and collocation method.

In this paper a collocation technique based on rational Legendre functions is applied to solve present nonlinear differ-
ential equations, on semi-infinite domain.

2 Problem formulation
Consider an inverted cone with semi–angle γ and take axes in the manner indicated in Fig. 1(a). If the thermal boundary
layer is sufficiently thin in comparison with the local radius, the boundary layer equations for natural convection of a
Darcian fluid about a cone over the heated frustum x = x0 In terms of the stream function ψ are:

∂

∂x
(ru) +

∂

∂y
(rv) = 0 (1)

u =
ρ∞βKg cos γ(T − T∞)

µ

1

r
(
∂ψ

∂y

∂T

∂x
− ∂ψ

∂x

∂T

∂y
) = α

∂2T

∂y2
, x0 ≤ x <∞ (2)

For a thin boundary layer for the local radius we have approximately r = x sin(γ). We suppose the temperature is the
power function of distance from the vertex of the inverted cone. Accordingly, the boundary conditions at infinity are:

y → ∞ u = 0, T = T∞ (3)

and at the wall are

y = 0 : v = 0

the third condition, in the case of prescribed wall temperature, is [1, 7]:

T = Tw = T∞ +A(x− x0)
λ y = 0, x0 ≤ x ≤ ∞ (4)

If the surface heat flux qw is prescribed, Eq. (4) is replaced by

qw = −k
(
∂T

∂y

)
y=0

= A(x− x0)
λ y = 0, x0 ≤ x ≤ ∞ (5)

For the case of a full cone (x0 = 0, F ig.1(b)) a similarity solution exists [1, 7]. For the case of prescribed wall temperature
with boundary condition given by Eq. (4), the similarity solution for the stream function ψ and T is

ψ = αr(Rax)
1/2f(η), (6)

T − T∞ = (Tw − T∞)θ(η),

η =
y

x
(Rax)

1/2,

where the local Rayleigh number for the case of prescribed wall temperature is

Rax =
ρ∞gβK cos(γ)(Tw − T∞)x

µα
(7)
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Figure 1: (a)Coordinate system for the boundary layer on a heated frustum of a cone, (b)full cone, x0 = 0.

The dimensionless momentum and energy equations are, Ref. [1, 7]:

f ′ = θ (8)

θ′′ +
λ+ 3

2
fθ′ − λf ′θ = 0,

Subjected to boundary conditions as:
f(0) = 0, θ(0) = 1, θ(∞) = 0 (9)

Finally, from Equations (8) and (9) we have [1, 7, 10]:

{
ODE. f ′′′ + λ+3

2 ff ′′ − λ(f ′)2 = 0,

B.C. f(0) = 0, f ′(0) = 1, f ′(∞) = 0,
(10)

In the case of prescribed surface heat flux, we let:

ψ = αr(Rax)
1/3f(η), (11)

T − T∞ =
qwx

k
(Rax)

− 1
3 θ(η),

η =
y

x
Ra1/3x ,

where

Rax =
ρ∞gβK cos(γ)qwx

2

µαk
(12)

The governing equations become [7]

f ′ = θ (13)

θ′′ +
λ+ 5

2
fθ′ − 2λ+ 1

3
f ′θ = 0,

Subjected to boundary conditions as:
f(0) = 0, θ(0) = 1, θ(∞) = 0 (14)

Finally from Equations (13) and (14) we have [7, 27]:

{
ODE. f ′′′ + λ+5

2 ff ′′ − 2λ+1
3 (f ′)2 = 0,

B.C. f(0) = 0, f ′′(0) = −1, f ′(∞) = 0,
(15)

It is of interest to obtain the value of the local Nusselt number which is defined as:

Nux =
qwx

k(Tw − T∞)
(16)
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Where qw for the case of prescribed wall temperature can be computed from:

qw = −k(∂T
∂y

)y=0 (17)

From Eqs. (16), (17), (6) and (7) it follows that the local Nusselt number is given by:

Nux =

{
Rax

1/2[−θ′(0)], prescribed wall temperature
Rax

1/3[−θ(0)]. prescribed surface heat flux
(18)

3 Rational Legendre interpolation
In this section, first we introduce rational Legendre functions and express some of their basic properties. Then the approx-
imation of a function is presented, using Gauss integration and rational Legendre-Gauss points.

3.1 Rational Legendre functions
The well-known Legendre polynomials are orthogonal in the interval [−1, 1] with respect to the weight function ρ(y) = 1
and can be determined with the help of the following recurrence formula:

P0(y) = 1, P1(y) = y,

Pn+1(y) =

(
2n+ 1

n+ 1

)
yPn(y)−

(
n

n+ 1

)
Pn−1(y), n ≥ 1.

(19)

The new basis functions, denoted by Rn(x), are defined as follows

Rn(x) = Pn

(
x− L

x+ L

)
, (20)

where the constant parameter L sets the length scale of the mapping. Boyd [43] offered guidelines for optimizing the map
parameter L for rational Chebyshev functions, which is also useful for rational Legendre functions.

Rn(x) is the nth eigenfunction of the singular Sturm-Liouville problem

(x+ L)2

L

(
xR′

n(x)
)′

+ n(n+ 1)Rn(x) = 0, x ∈ [0,∞), n = 0, 1, 2, ... (21)

and by Eq. (19) satisfies in the following recurrence relation:

R0(x) = 1, R1(x) =
x− L

x+ L
,

Rn+1(x) =

(
2n+ 1

n+ 1

)(
x− L

x+ L

)
Rn(x)−

(
n

n+ 1

)
Rn−1(x), n ≥ 1.

(22)

3.2 Function approximation
Let w(x) = 2L

(x+L)2 denotes a non-negative, integrable, real-valued function over the interval Λ = [0,∞). We define

L2
w(Λ) =

{
v : Λ → R

∣∣∣ v is measurable and ∥v∥w <∞
}
, (23)

where

∥v∥w =

(∫ ∞

0

| v(x) |2 w(x)dx
) 1

2

, (24)

is the norm induced by the inner product of the space L2
w(Λ),

⟨u, v⟩w =

∫ ∞

0

u(x)v(x)w(x)dx. (25)
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Thus
{
Rn(x)

}
n≥0

denotes a system which is mutually orthogonal under (25), i.e.,

⟨Rn, Rm⟩w =
2

2n+ 1
δnm, (26)

where δnm is the Kronecker delta function. This system is complete in L2
w(Λ). For any function u ∈ L2

w(Λ) the following
expansion holds

u(x) =
+∞∑
k=0

akRk(x), (27)

with

ak =
⟨u,Rk⟩w
∥ Rk∥2w

. (28)

The aks are the discrete expansion coefficients associated with the family {Rk(x)}.

3.3 Rational Legendre interpolation approximation
Canuto et al. [44] and Gottlieb et al. [45] introduced Gauss integration. Further, Guo et al. [35] introduced rational
Legendre-Gauss points. Let

RN = span
{
R0, R1, ..., RN

}
, (29)

and yj , j = 0, 1, . . . , N , be the N + 1 roots of the polynomial PN+1(x). These points are known as Legendre-Gauss
points. We define

xj = L
1 + yj
1− yj

, j = 0, 1, . . . , N, (30)

which are called as rational Legendre-Gauss nodes. In fact, these points are zeros of the function RN+1(x). Using Gauss
integration we have: ∫ ∞

0

u(x)w(x)dx =

∫ 1

−1

u

(
L
1 + y

1− y

)
ρ(y)dy

=
N∑
j=0

u(xj)wj ∀u ∈ R2N , (31)

where
wj =

2L

(xj + L)2xj [R′
N+1(xj)]

2
, j = 0, ..., N, (32)

are the corresponding weights with the N + 1 rational Legendre-Gauss nodes.
The interpolating function of a smooth function u on a semi-infinite interval is denoted by PNu. It is an element of

RN and is defined as

PNu(x) =

N∑
k=0

akRk(x). (33)

PNu is the orthogonal projection of u upon RN with respect to the inner product (25) and the norm (24). Thus by the
orthogonality of rational Legendre functions we have

⟨PNu− u,Ri⟩w = 0, ∀Ri ∈ RN . (34)

To obtain the order of convergence of rational Legendre approximation, at first we define the space

Hr
w,A(Λ) = {v : v is measurable and ∥v∥r,w,A <∞}, (35)

where the norm is induced by

∥v∥r,w,A =

(
r∑

k=0

∥∥∥∥(x+ 1)
r
2+k dk

dxk
v

∥∥∥∥2
w

) 1
2

, (36)
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and A is the Sturm-Liouville operator as follows:

Av(x) = −w−1(x)
d

dx

(
x
d

dx
v(x)

)
. (37)

We have the following theorem for the convergence:

Theorem 1 For any v ∈ Hr
w,A(Λ) and r ≥ 0,

∥PNv − v∥w ≤ cN−r∥v∥r,w,A. (38)

A complete proof of the theorem and discussion on convergence is given in [35].
To apply a collocation approach, we consider the residualRes(x) when the expansion is substituted into the governing

equation. It requires that ak’s be selected so that the boundary conditions are satisfied, but make the residual zero at as
many (suitable chosen) spatial points as possible.

4 Numerical results
First, consider equation that prescribed wall temperature case that is expressed by Eq.(10). In the first step of our analysis,
we apply PN operator on the function f(η) as follows:

PNf(η) =
N∑

k=0

akRk(η) (39)

Then, we construct the residual function by substituting f(η) by PNf(η) in the model Eq.(10):

Res(η) =
d3

dη3
PNf(η) +

λ+ 3

2
PNf(η)

(
d2

dη2
PNf(η)

)
−λ
(
d

dη
PNf(η)

)2

, (40)

The equations for obtaining the coefficients aks come from equalizing Res(η) to zero at rational Legendre-Gauss points
(xj , j = 1, 2, ..., N − 1) plus two boundary conditions:

Res(xj) = 0, j = 1, 2, ..., N − 1,

PNf(0) = 0,
d
dηPNf(η)

∣∣∣
η=0

= 1.

(41)

The 3th boundary condition already is satisfied. Solving the set of equations we have the approximating function PNf(η).
Table 1 shows good agreement between RLC method, homotopy analysis and Runge-Kutta method for f ′′(0) or θ′(0)

with various λ.
The results for f ′(η) have been shown in Table 2 with two selected λ = 0 and λ = 1/2 and comparison has been

made between the Runge-Kutta’s solution and the presented numerical solution. Absolute errors show that RLC gives us
approximate solution with a high degree of accuracy with a small N .

The resulting graph of Eq. (10) for N = 10 is shown in Fig.2.
Now, we restart the previous procedure for the case of prescribed wall heat flux with the thermal boundary condition

given by Eq.(15).
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Figure 2: RLC approximation of f ′(η) for different values λ = 0, 1/4, 1/3, 1/2, 3/4 and 1 in the case of prescribed
wall temperature

Table 1: A comparison of methods in [7, 10] and the present method with the values for f ′′(0) in the case of prescribed
wall temperature

Runge-Kutta RLC method Other methods
λ Solution[10] N L RLC Error HAM[10] Ref. [7]
0 −0.76854 10 1.4675 −0.76855 0.00001 −0.77363 −0.769
1/4 −0.88498 10 1.453 −0.88499 0.00001 −0.88890 −
1/3 −0.92101 10 1.448 −0.92102 0.00001 −0.92433 −0.921
1/2 −0.98956 10 1.434 −0.98957 0.00001 −0.99382 −0.992
3/4 −1.08518 10 1.415 −1.08519 0.00001 −1.08840 −
1 −1.17372 10 1.397 −1.17372 0.00000 −1.17686 −
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Table 2: Comparison between RLC solution and Runge-Kutta solution for f ′(η) with λ = 0 and λ = 1/2 with N = 10
in the case of prescribed wall temperature

λ = 0, f ′(η) λ = 1/2, f ′(η)
RLC Runge-Kutta Absolute RLC Runge-Kutta Absolute

η Solution Solution Error Solution Solution Error
0 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000
0.2 0.8478 0.8478 0.0000 0.8129 0.8130 0.0001
0.4 0.7035 0.7036 0.0001 0.6499 0.6500 0.0001
0.6 0.5732 0.5733 0.0001 0.5124 0.5124 0.0000
0.8 0.4599 0.4599 0.0000 0.3994 0.3994 0.0000
1 0.3641 0.3643 0.0002 0.3084 0.3084 0.0000
1.2 0.2853 0.2855 0.0002 0.2364 0.2364 0.0000
1.4 0.2217 0.2218 0.0001 0.1802 0.1802 0.0000
1.6 0.1713 0.1713 0.0000 0.1368 0.1367 0.0000
1.8 0.1317 0.1315 0.0002 0.1035 0.1034 0.0001
2 0.1009 0.1007 0.0002 0.0782 0.0780 0.0002

Table 3: A comparison of methods in [27] and the present method with the values for f ′(0) in the case of prescribed
surface heat flux

Runge-Kutta RLC method Other methods
λ Solution[27] N L RLC Error HAM[27]
0 0.94760 10 1.98 0.94765 0.00005 0.94783
1/4 0.91130 10 2 0.91133 0.00003 0.91119
1/3 0.90030 10 2 0.90032 0.00002 0.90103
1/2 0.87980 10 2 0.87975 0.00005 0.87964
3/4 0.85220 10 2.02 0.85216 0.00004 0.85242
1 0.82760 10 2.02 0.82757 0.00003 0.82726

Same as the first step which was followed we apply PN operator on the function f(η), Then, we construct the residual
function by substituting f(η) by PNf(η) in the model Eq.(15):

Res(η) =
d3

dη3
PNf(η) +

λ+ 5

2
PNf(η)

(
d2

dη2
PNf(η)

)
− 2λ+ 1

3

(
d

dη
PNf(η)

)2

, (42)

The equations for obtaining the coefficients aks come from equalizing Res(η) to zero at rational Legendre-Gauss points
(xj , j = 1, 2, ..., N − 1) plus two boundary conditions:

Res(xj) = 0, j = 1, 2, ..., N − 1,

PNf(0) = 0,
d2

dη2PNf(η)
∣∣∣
η=0

= −1.

(43)

The 3th boundary condition already has been satisfied. Solving the set of equations we have the approximating function
PNf(η).

Table 3 shows good agreement between RLC method, homotopy analysis and Runge-Kutta method for f ′(0) or θ(0)
with various λ.

The results for f ′(η) have been shown in Table 4 with two selected λ = 0 and λ = 1/2 and comparison have been
made between the Runge-Kutta’s solution and the presented numerical solution. Absolute errors show that RLC gives us
approximate solution with a high degree of accuracy with a small N .

The resulting graph of Eq. (15) for N = 10 is shown in Fig. 3.
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Table 4: Comparison between RLC solution and Runge-Kutta solution for f ′(η) with λ = 1/4 and λ = 3/4 with N = 10
in the case of prescribed surface heat flux

λ = 1/4, f ′(η) λ = 3/4, f ′(η)
RLC Runge-Kutta Absolute RLC Runge-Kutta Absolute

η Solution Solution Error Solution Solution Error
0 0.911336 0.911295 0.00004 0.852162 0.852193 0.00003
0.1 0.813649 0.813604 0.00006 0.755349 0.755377 0.00003
0.2 0.721378 0.721351 0.00002 0.665407 0.665448 0.00004
0.3 0.635508 0.635531 0.00003 0.582895 0.582985 0.00011
0.4 0.556638 0.556661 0.00003 0.508036 0.508141 0.00011
0.5 0.485026 0.484997 0.00003 0.440786 0.440849 0.00016
0.6 0.420667 0.420587 0.00008 0.380895 0.380907 0.00001
0.7 0.363353 0.363276 0.00008 0.327971 0.327973 0.00000
0.8 0.312722 0.312677 0.00005 0.281523 0.281536 0.00001
0.9 0.268308 0.268264 0.00004 0.241002 0.241013 0.00001
1 0.229585 0.229508 0.00008 0.205834 0.205832 0.00000
1.1 0.195999 0.195878 0.00014 0.175450 0.175434 0.00002
1.2 0.166999 0.166847 0.00015 0.149298 0.149275 0.00002
1.3 0.142054 0.141837 0.00022 0.126861 0.126821 0.00004
1.4 0.120665 0.120362 0.00030 0.107663 0.107596 0.00007
1.5 0.102374 0.102025 0.00030 0.091276 0.091196 0.00080

Figure 3: RLC approximation of f ′(η) for different values λ = 0, 1/4, 1/3, 1/2, 3/4 and 1 in the case of prescribed
surface heat flux
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5 Conclusion

A numerical solution based on orthogonal functions has been presented for three order nonlinear differential equations
arising from similarity solution of inverted cone embedded in porous medium. The problem of natural convection about
a cone embedded in a porous medium at local Rayleigh numbers is analyzed based on the boundary layer approximation
and Darcy’s law. Local similarity solutions are obtained for a full cone with the prescribed wall temperature or surface
heat flux being a power function of distance from the vertex of the inverted cone. The obtained approximate solution by
RLC provides us with calculating Nusselt numbers.

Most numerical methods reported in the literature thus far are based on transforming maps of the physical domain
[0,+∞) to the finite domains, shooting methods or finite-difference methods obtained by first truncating the semi-infinite
physical domain of the problem to a finite domain at an unknown finite boundary, which is determined as a part of the
solution by imposing an “asymptotic boundary condition” at this boundary.

The method presented in this paper used a set of orthogonal rational Legendre functions and solved the problems on
the whole domain without requiring small parameters, truncating it to a finite domain, imposing the asymptotic condition
transforming and transforming domain of the problem and physically unrealistic assumptions.

These orthogonal functions are proposed to provide an effective but simple way to improve the convergence of the
solution by collocation method. The validity of the method is based on the assumption that it converges by increasing the
number of collocation points. Through the comparisons made among the numerical solutions of Sohouli et al. [10, 27],
Cheng et al. [7] and the current work, it has been shown that the present work has provided an acceptable approach for
this equation; also it was confirmed by the theorem that this approach has an exponentially convergence rate. In total,
an important concern of spectral methods is the choice of basis functions; the basis functions have three properties: easy
computation, rapid convergence and completeness, which means that any solution can be represented to arbitrarily high
accuracy by taking the truncation N sufficiently large.
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