
A Systematic Approach to Plant-Wide

Control Based On Thermodynamics

Luis T. Antelo, Irene Otero-Muras, Julio R. Banga,
Antonio A. Alonso ∗

Process Engineering Group,Instituto de Investigaciones Marinas-CSIC
C/Eduardo Cabello, 6 – 36208 Vigo, Spain

Abstract

In this work, a systematic approach to plant-wide control design is proposed. The
method combines ingredients from process networks, thermodynamics and systems
theory to derive robust decentralized controllers that will ensure complete plant
stability. As a first step, the considered process system is decomposed into abstract
mass and energy inventory networks. In this framework, conceptual inventory con-
trol loops are then designed for the mass and energy layers to guarantee that the
states of the plant, both in terms of extensive and intensive properties, will con-
verge to a compact convex region defined by constant inventories. This result by
itself does not ensure the convergence of intensive variables to a desired operation
point as complex dynamic phenomena such as multiplicities may appear in the in-
variant set. In order to avoid these phenomena, thermodynamics naturally provides
the designer, in these convex regions, with a legitimate storage or Lyapunov func-
tion candidate, the entropy, that can be employed to ensure global stability. Based
on this, the control structure design procedure is completed with the realization of
the conceptual inventory and intensive variable control loops over the available de-
grees of freedom in the system. To that purpose, both PI and feedback linearization
control are employed. The different aspects of the proposed methodology will be
illustrated on a non-isothermal chemical reaction network.

Key words: Plant-wide Control, Process Networks, Irreversible Thermodynamics,
Inventory Control.

∗ Corresponding author
Email address: antonio@iim.csic.es (Antonio A. Alonso).

Preprint submitted to Elsevier Science 11 September 2006



1 Introduction

Over the years, the area of plant-wide control has attracted the process engi-
neering community as a challenging problem which drives continuing research
efforts. By re-phrasing Professor S. Skogestad words (Larsson and Skogestad,
2000): The objective of plant-wide control is not the tuning of a given set of
control loops on a chemical plant but rather the control philosophy of the over-
all plant with emphasis on the structural decisions. A number of solutions to
it were suggested, lying in between the following two extremes:

(1) A hierarchical decomposition of the original control design problem based
on heuristic rules. The heuristic logic is developed so to keep process vari-
ability and therefore the operational plant objectives under acceptable
limits for a given set of disturbances (see Buckley, 1964; Luyben et al.,
1997 or Skogestad, 2002, for further information about this decomposi-
tion)

(2) A mathematically oriented approach based on the solution of a given
large scale mixed integer nonlinear programming dynamic optimization
problem, which in the limit should be able to simultaneously determine
the optimal process units size and their interconnections as well as the
optimal control scheme configuration (see Biegler and Grossman, 2004,
for an excellent review).

Unfortunately, both lines of attack are hampered by a number of drawbacks
which prevent their systematic application to general classes of process plants:
On the one hand, the hierarchical approach usually leads to conflicting deci-
sions only unravelled on a case by case basis. On the other hand, the mathe-
matically oriented approach is limited by the high dimensionality of the prob-
lem, the nonlinear character of the constitutive equations and the restrictions
imposed by the definition of the objective function. In addition, the stabil-
ity and robustness of the resulting control scheme is highly dependent on the
number, type and characteristics of plant disturbances. In fact, such distur-
bances usually need to be known beforehand as part of the control design
problem. Furthermore, nothing prevents the resulting control configuration of
exhibiting instabilities under a different class of disturbances.

To overcome these issues, we combine previous results that link thermodynam-
ics with passivity and Lyapunov theory. The basic ingredients of the theory
have been established by Alonso and Ydstie (1996) and Ydstie and Alonso
(1997) in the context of passive control design and control of distributed sys-
tems (Alonso and Ydstie, 2001), and transport reaction systems (Ruszkowski
et al., 2005). A similar line of arguments was employed by Farschman et al.
(1998) to derive mass and energy inventory control concepts. Hangos et al.
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(1999) applied them to define structural stability conditions for separation
process networks. Thermodynamics was also central in the work by Bao et al.
(2002) to design passivity-based decentralized control of failure-tolerant sys-
tems.

In this paper, our aim is to apply and extend these results in order to sys-
tematically design stable decentralized control structures for process plants.
The proposed approach leads to a hierarchical decentralized inventory con-
trol structure which simultaneously ensures convergence of mass and energy
inventories to a compact convex set in which the system will remain on.

It must be pointed out that this convex region definition tries to generalize
the approach by Hangos et al. (1999), where extensive variables are assumed
constant, to derive the structural stability conditions. Once in this region,
convergence of the intensive variables (temperatures, pressures and concen-
trations) to a unique stable steady-state can be enforced by a number of well
established control schemes (for instance, PI control, feedback linearization
controllers, etc.).

Finally, it must be remarked that our approach complements others such as
the one recently proposed in the context of chemical reactors (Gonzalez and
Alvarez, 2005) since it provides the designer with the required physical insight
and systematic tools to select inputs and outputs, decide what variables to
estimate, and select stabilizing control alternatives.

The present paper is structured as follows: In Section 2, a formal representation
of chemical plants in terms of interconnected mass and energy networks is
presented as a first step in designing control structures. In this Section, we
formally introduce the so-called inventory network and describe the general
algebraic structure underlying its dynamics. The thermodynamic formalism
and its application in designing conceptual inventory controllers are presented
in Section 3. The realization of these control loops over the real available
degrees of freedom of the process and the intensive control problem, as the
final steps in the control design, are also developed in this Section. Finally, in
Section 4 the approach is applied to design a decentralized control structure
for a non-isothermal reactor network.

2 The Underlying Structure of Process Networks

As a first step in the control structure design procedure, we systematize the
process representation by making use of the ideas of process networks as a
graph representation of the process flowsheet. A process network is defined by
a number j=1,. . . , θ of well mixed homogeneous material regions connected
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by material and energy fluxes we will refer to as nodes, plus an extra region
j = 0 which represents the environment. To each node j in the network, we
associate a state vector zj ∈ R

c+1 of the form:

zj = (n1
j , . . ., n

c
j, uj)

T (1)

where nkj represents the mole number of component k, uj is the internal energy
and c stands for the total number of chemical species. Graphically, each phase
present in the process is represented by one circle denoting a node, and solid
circles symbolize the environment. Nodes and environment are connected by
a set of θ convective fluxes which, for every node, we refer to as fj ∈ R

+c and
pj(fj) ∈ R

+ for component and energy, respectively. In addition, we have the
following relationship between mass and energy convective flows:

pj(fj) =
c∑

k=1

ukjf
k
j (2)

with ukj being the energy density associated to component k in node j. Since

Fig. 1. Reactor-Separator process flowsheet (See notation list in Table 4.1). R, W ,
CAr and CBw represent the flowrates and concentrations of A and B in the recycle
and final product streams, respectively.

energy is transported by convective flows, we also have that pj(0) = 0. In the
graphical representation, these mass and energy convective fluxes are denoted
by solid and dashed arrows, respectively. Nodes in the network can also be
interconnected by dissipative transfer fluxes collected in vectors ϕk ∈ R

+dc

(with k=1. . . ,c) and ψ ∈ R
+du , where dc and du stand for mass and en-

ergy dissipative transfer, respectively. In the network graphs, these dissipative
fluxes are represented by solid and dashed double-head arrows for mass and
energy, respectively. In order to exemplify this process network formalism, let
us consider the system depicted in Figure 1. This process includes a jacketed
exothermic reactor, where reactant A is transformed to product B through the
first order exothermic reaction A → B, plus a flash unit where B is obtained
as liquid product and reactant A is recycled.
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The process flowsheet in Figure 1 can be represented as the process network
depicted in Figure 2, where the reactor and its jacket are denoted by nodes 1
and 2, respectively, interconnected through a dissipative energy flow ψ. Both
nodes are also connected with the environment (node 0 is represented by small
solid nodes) by convective flows (a mass convective flow -f01

- for the reactor
case and an energy flow -p02

- for the jacket node). Nodes 1 and 3 are connected
through a convective flow (f1, p1). Note that nodes 3 and 4 denote the liquid
and vapor phases in the flash unit, respectively. It must be pointed out that the
formalism, as it stands, can also accommodate multiple connections between
nodes. This can be done as suggested in Hangos et al. (1999), by defining the
fraction αij of flow in the direction from node i to node j so that

∑

i
αij = 1.

For the case shown in Figure 2, part of the flow leaving node 4 (f4, p4) is
recycled to node 1 (α41), while the remaining goes to node 0 (1-α41 = α40).
Finally, the product stream is denoted as the convective flow leaving node 3 to
node 0 (f3, p3). In summary, for this particular network, we have that n = 4
(number of nodes), c = 2 (molecular species, A and B), dc =1 (number of mass
dissipative connections) and du = 1 (number of heat transfer connections).

Fig. 2. Process network of the reactor-separator process.

Network dynamics obey standard conservation principles for mole number and
energy which, with some abuse of notation, can be formally stated as:

ṅk = N0f
k
0 +Nφf

k +Nϕϕ
k + γW nk, fk ∈ R

+θ; fk0 ∈ R
+di ; k = 1, . . . , c; (3)

u̇ = N0p0 +Nφp+Nψψ +Q u, p ∈ R
+θ; p0 ∈ R

+di (4)

with f0 ∈ R
di being the vector of external convective inputs (and di the

number of inputs) , and matrices N0 ∈ R
+θ×di , Nφ ∈ R

θ×θ, Nϕ ∈ R
θ×dc and

Nψ ∈ R
θ×du describing dissipative and convective network interconnections.

Finally, the extra-terms ǫW and Q in Eqns. (3)-(4) have been included to
account, when necessary, either for chemical reaction units or external heat
sources. For the reaction term, ǫ and W are the stoichiometric and reaction
rate vectors, respectively.
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For the process network depicted in Figure 2, since neither component A nor
B are present in node 2 and the reaction takes place only on node 1, the
material network dynamics (Eqn. 3) becomes:








ṅk1

ṅk3

ṅk4








=








−1 0 α41

1 −1 0

0 0 −1















fk1

fk3

fk4








+








1

0

0







fk01 +








0

−1

1







ϕk +








ǫA ǫB

0 0

0 0











W1

W2



 (5)

Note that the signs of the stoichiometric coefficients ǫA and ǫB will depend on
whether one considers the reactant (positive) or the product (negative).

The corresponding energy network (Eqn. 4) is of the form:











u̇1

u̇2

u̇3

u̇4











=











−1 0 0 α41

0 −1 0 0

1 0 −1 0

0 0 0 −1





















p1

p2

p3

p4











+











1 0

0 1

0 0

0 0














p01

p02



+











1

−1

0

0











ψ (6)

Let us now define a dissipative sub-network D(θj) as that constituted by the
collection of θj nodes only interconnected through dissipative fluxes. Then,
any process network can be viewed as the convective interconnection of ℓ

dissipative sub-networks, so that θ =
ℓ∑

j=1
θj. Each dissipative sub-network D

has a given component and total inventory defined as:

nkD =
∑

i∈D

nki nD =
c∑

k=1

nkD (7)

We also introduce ∀ i ∈ D the following fluxes:

Fi =
c∑

k=1

fki FD =
∑

i∈D

Fi (8)

The dissipative sub-network concept, we just defined, allows us to consider
that any process network has an associated inventory network, which formally
can be constructed by projecting Eqns. (3)-(4) onto a set of linear operators
Pϕ ∈ R

ℓ×θ and Pψ ∈ R
ℓ×θ satisfying PϕNϕ = 0 and PψNψ = 0. By defining the

vectors of inventories and fluxes nI , uI , FI , pI ∈ R
+ℓ, the following inventory

representation is obtained:

ṅI = NFI + R nI , FI ,R ∈ R
+ℓ (9)

u̇I = NpI uI , pI ∈ R
+ℓ (10)
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where R =
c∑

k=1
PϕνW and N ∈ R

ℓ×ℓ satisfies:

NFI ≡
c∑

k=1

Pϕ(N0f
k
0 +Nφf

k) (11)

and N , by construction, is a column conservation matrix (Hangos et al., 1999),
so that 1TN = 0.

For the reactor-separator process we are considering, there are two dissipative
subnetworks: one in the mass layer (formed by nodes 3 and 4) and one in the
energy layer (formed by nodes 1 and 2). The operators Pϕ and Pψ needed
to construct the corresponding inventory network described by Eqns. (9) and
(10) are of the form:

Pϕ =






1 0 0

0 1 1




 ; Pψ =









1 1 0 0

0 0 1 0

0 0 0 1









These operators are obtained by solving their defining equations (PϕNϕ = 0,
PψNψ = 0). Now, applying Pϕ to Eqn. (5), we have:




ṅI1

(ṅ3 + ṅ4)I2



 =




−1 0 α41

1 −1 −1












F1

F3

F4








+




1

0



 F0 +




−1 1

0 0








W1

W2





︸ ︷︷ ︸

R

(12)

Using expressions (7) and (8), where:

nI0
= n0, nI1

= n1, nI2
= n3+n4; FI0

= F0, FI1
= F1, FI2

= F3+F4

Eqn. (12) can be re-written in the form:







ṅI0

ṅI1

ṅI2








=








−1 0 α20

1 −1 α21

0 1 −1















FI0

FI1

FI2








+ R (13)

By using operator Pψ, the same logic applies to the construction of the corre-
sponding energy inventory network dynamics (Eqn. 10) from Eqn. (6), which
for our example becomes:








u̇I0

u̇I1

u̇I2








=








−1 0 α20

1 −1 α21

0 1 −1















pI0

pI1

pI2








+Q (14)
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Fig. 3. Mole inventory network representation. Node 0 represents the environment
while nodes 1 and 2 the reactor unit and the flash dissipative sub-network, respec-
tively.

Fig. 4. Energy inventory network representation. Node 0 represents the environ-
ment while nodes 1 and 2 the reactor dissipative sub-network and the flash unit,
respectively.

A graphical representation of the resulting mass and energy inventory networks
is presented in Figure 3 and Figure 4, respectively.

Alternative network representations can be derived from the mole inventory
network dynamics (9)-(10). In this way, the corresponding mass inventory
network representation for a dissipative subnetwork D can be easily obtained
by defining the following transformations:

mD =
∑

i∈D

c∑

k=1

σknkD ≡
∑

i∈D

mi (15)

φD =
∑

i∈D

c∑

k=1

σkfk ≡
∑

i∈D

φi (16)

where σk denotes the molecular weight of component k, while mi and φi rep-
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resent the hold-up and flow, in units of mass, associated to each node in the
dissipative sub-network. Using relations (15) and (16), Eqn (9) becomes:

ṁI = NφI mI , φI ∈ R
+ℓ (17)

with mI , φI ∈ R
+ℓ. Note that the reaction term R in (17) disappears when

projecting mole inventories onto mass inventories since the latter is a conserved
property.

3 Hierarchical Design of Decentralized Controllers

In this Section, we present the basic ingredients of conceptual inventory and
intensive variable control (the next steps in the systematic control design pro-
cedure), which exploit the underlying structure of the process networks previ-
ously discussed, and combines them with a number of results from irreversible
thermodynamics. Essentially, thermodynamics gives us a function -the entropy
of the system- which has a definite curvature (concavity) over compact regions
of the state space constrained by constant total mass and energy. Moreover,
the function has a well-defined maximum in those regions. Such function will
be the one employed to derive natural storage and Lyapunov function candi-
dates of use in designing controllers for stabilizing the intensive variables of
the network (i.e. temperature, pressure and concentration).

3.1 Thermodynamic foundations of process networks

To start with, let us consider that each node in the process network with vol-
ume νj is equipped with a continuous and twice differentiable scalar function
Sj (zj, νj) : R

+(c+2) 7→ R with the following properties:

(1) Sj (zj, νj) is a first order homogeneous function in all their arguments so
that

Sj = wTj zj + wννj (18)

being wT the vector of intensive variables

w =
∂S

dz
=

[

1

T
,−

µ1

T
, . . . ,−

µc

T

]

(19)

and wν = P
T

the intensive counterpart of the node volume νj.

(2) Sj
(

zj, ν
∗
j

)

is strictly concave with respect to the vector zj.

Note that the function Sj, as defined in (18), coincides with the classical ther-
modynamic entropy (Callen, 1985). From Property 1, it follows that entropy
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is an additive function so that the total entropy of a process network is of the

form S =
ℓ∑

j=1
Sj (zj, νj), where summation extends over the set of dissipative

sub-networks.

Property 2 ensures that for a given constant pair (m, u, ν) and for every
j ∈ D, the function S has a maximum over the convex set:

Λ(D) =






(zj, νj) ∈ R

+(c+2)

∣
∣
∣
∣
∣
∣

∑

j∈D

νj = ν,
∑

j∈D

uj = u,
∑

j∈D

c∑

k=1

σknkj = m







(20)

The entropy balance is obtained by computing the time derivative of S along
(3)-(4) so that:

dS

dt
=
∂S

∂z

dz

dt
= wT

dz

dt
= Ps + Φs(µj, φ) (21)

Ps corresponds with the entropy produced by the network, being of the form:

Ps =
∑

i

∑

j

[

ϕij ψij

]

(wi − wj) ≥ 0 (22)

which according to the second law is a non-negative quantity. In addition,
Φs (µj, φ) in (21) denotes the entropy flow through the network.

For closed systems (φI = 0 ), the material and energy inventories are constant,
as it can be easily shown by noting that:

φI = 0 ⇒ FI =
∑

i∈D

∑

k

fkI = 0 for k = 1,. . . ,c

and p(0) = 0, so that Eqns. (10) and (17) become ṁI = u̇I = 0. Consequently,
the states of the system remain in the convex set Λ defined by (20), with (m, u,
ν) being the initial values for the total mass, energy and volume, respectively.
Since for this case Φs (µj, 0) = 0 and by the second law Ps never becomes
negative, S is maximized in Λ. The maximum is attained at the equilibrium
state (z′j) of the network, defined by:

(

z′j
)n

j=1
= Arg Max

Λ
S (23)

which also corresponds with that of minimum entropy production i.e. Ps(z
′
j) =

0.

In general, boundedness of the entropy cannot be guaranteed in open networks
since the flows exchanging mass and energy with the environment might pro-
duce fluctuations of the inventories thus destroying Λ. Nevertheless, regions
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Λ as defined in (20) can still be meaningful in open networks, provided that
material and energy fluxes through the system are able to force their corre-
sponding inventories to be kept at some given constant reference.

Whenever this is the case, process networks can be easily connected with
passivity as defined in systems theory (see, for instance, Van der Shaft, 2000).
A dynamic system is said to be passive if it is equipped with a real function
V bounded from below and related to the inputs and outputs of the system
(u,y) by the following inequality:

V (t+ τ) ≤ V (t) +
∫ t+τ

t
φ(u, y) dt (24)

for any τ > 0. Function V -known as the storage- is usually related with a
norm of the states and reflects the total amount of ”energy” stored in the
system. The term φ(u, y), known as the supply, represents the net amount of
energy exchanged between the system and the environment. The particular
structure of inequality (24) allows the construction of control laws u(y) which
by making the supply term negative definite, will constrain the amount of
energy stored. This, in turn, will ensure the states to remain bounded, or even
to asymptotically converge to arbitrary references.

The connections between passivity and process networks can now be easily
established by comparing Eqn. (24) with the time integrated version of Eqn.
(21) where the storage function now reads V = Smax − S > 0, being Smax the
maximum attained in Λ, and S =

∑

j∈D
Sj.

Moreover, once in the convex set, the existence of a bijective map between
the vector of intensive properties wj and the vector of densities ρj = ν−1

j zj is
well established. In fact, by making use of the Newton’s theorem for vectorial
fields we have that:

w(z) − w (z∗) = Q (z − z∗) (25)

with

Q =
∫ 1

0
M (z∗ − ε (z − z∗)) dǫ (26)

where z∗ ∈ Λ is an arbitrary reference vector, ε ∈ [0, 1] is a scalar parameter
and the integration is carried out element-wise. Matrix M -which corresponds
with the Hessian of the entropy- is of the form:

Mij =
∂wi
∂zj

=
∂2S

∂zi∂zj
< 0 (27)

Since M is negative definite, it follows that Q is negative definite and thus
the relationship between w−w∗ and z − z∗ in (25) is one-to-one and onto for
arbitrary z∗.
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Such mapping between intensive variables and densities has been employed
by Alonso and Ydstie (2001) to derive stability conditions for distributed
process systems. Hangos et al. (1999) made use of the same bijective map to
derive structural stability conditions for process plants under constant hold-
up conditions. However, it must be highlighted that in order to ensure such
mapping, a region of constant mass and energy inventories of the form (20)
needs be constructed first by appropriate inventory control loops. This point
is discussed next.

3.2 Conceptual inventory control design

As discussed previously, concavity can only be attained once the network
states are in the set Λ defined in Eqn. (20). This fact motivates a hierarchical
control design decomposition in which mass and energy inventory controllers
are first designed to ensure that the network states will remain in Λ. This is
what we will refer from now on as conceptual inventory control. In particular,
these mass and energy inventory control layers consist of linear proportional
controllers of the form:

φI = φ∗
I + ωm (mI −m∗

I) (28)

pI = p∗I + ωu (uI − u∗I) (29)

for some φ∗
I being in the null space of N , i.e. Nφ∗

I = 0. ωn and ωu in (28)
and (29) are appropriate gain matrices constructed in such a way that the real
part of the eigenvalues associated to Nωm and Nωu are negative.

By defining the deviation variables m̄I = mI−m
∗
I , ūI = uI−u

∗
I and applying

(28)-(29) to the mass and energy inventory networks (10) and (17), we get:

˙̄mI = Nωmn̄I (30)

˙̄uI = NωuūI (31)

Integration of these expressions over time then results in:

m̄I = m̄I (0) eNωmt (32)

ūI = ūI (0) eNωut (33)

¿From these expressions, it follows that mI → m∗
I and uI → u∗I exponentially

fast. Integral action could be also added in Eqns. (28)-(29) to improve per-
formance without substantially altering the stability properties of the closed
loop network (Farschman et al., 1998). At this point, it should be mentioned
that although control is usually exerted on a mass (or volumetric) basis, the
design of a stabilizing control scheme for total mole inventory (for instance
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on a gas-phase sub-network) would follow a similar line of arguments in the
corresponding mole inventory representation.

In some situations, mass inventory control is enough to guarantee the stability
of both mass and energy inventories around a given reference. In order to
show this, we first introduce the following result on the stability properties of
a particular class of dynamic system:

Lemma 3.1 Let us have a dynamic system:

ẋ = AD(y)x x ∈ R
n (34)

where A is a row and column (Kirchoff) conservation matrix (Hangos et al.,
1999), y ∈ R+n is a constant vector and D(y) = Diag(y).

Then, the origin (x = 0) is a stable equilibrium point for the system (34).

Proof: The proof follows by defining a Lyapunov function candidate:

W =
1

2
xTD(y)x (35)

and computing its time derivative along (34), then:

Ẇ = xTD(y)AD(y)x (36)

Since A is a Kirchoff conservation matrix, it is negative semidefinite (Hangos
et al., 1999). Thus, Ẇ ≤ 0 and the result follows by applying standard Lya-
punov methods (Slotine and Li, 1991). �

Proposition 3.2 For a given dissipative sub-network D, the following pro-
portional controllers:

φi = φ∗
i + ωi (mi −m∗

i ) (37)

with reference flows and inventories satisfying:

φ∗
i

m∗
i

=
φ∗
D

m∗
D

(38)

for every node i ∈ D, will stabilize mass and energy inventories around a given
reference (m∗

I , u
∗
I).

Proof: Controllers of the form (37) will stabilize the mass inventory since
the summation of the mass flows for every i ∈ D and for every sub-network
would lead to inventory control laws of the form (28) providing exponential
convergence of the mass inventories -see (32). Since mI → m∗

I , we also have
that φI → φ∗

I .
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In order to show convergence of the energy inventory, let us note that the
energy flow associated to each node i ∈ D, and thus to each sub-network, can
be expressed as:

pi =
ui
m∗
i

φ∗
i pD =

∑

i∈D

ui
m∗
i

φ∗
i (39)

Combining (38) with (39), allows us to re-write the total energy inventory flow
as:

pI = D(φ∗
I)D(m∗

I)
−1uI (40)

Substituting (40) into (10) and defining the inventory in deviation form as
ūI = uI − u∗I , for a given reference, u∗I we get:

˙̄uI = ND(φ∗
I)D(m∗

I)
−1ūI (41)

Since, as discussed in Section 2, N is a column conservation matrix and
Nφ∗

I = 0, ND(φ∗
I) is a row and column (Kirchoff) conservation matrix. The

result then follows by making use of Lemma 3.1 with A ≡ ND(φ∗
I) andD(y) ≡

D(m∗
I)

−1. �

3.3 Realization of the conceptual inventory control structure

The formalism concerning the conceptual inventory control design presented
must be translated into suitable control loops, constituting the next step in the
systematic control design procedure. For this purpose, the available inputs and
outputs of the system are used since, as shown previously in this work, the total
inventory fluxes can be the result of combining multiple convective outflow
streams. As a consequence, the inventory control law has to be obtained as a
combination of control loops implemented over the real manipulated variables
available in the process. This is what we will refer from now on as control loop
realization.

Additional inventory control loops for mass and energy in every node belonging
to the dissipative subnetwork D are needed. The reason is that the control
laws, as defined in Eqns. (28)-(29), do not necessarily ensure the convergence
of the node states (zj; ∀j ∈ D) to the interior of the convex set Λ since the
node states could in some instances evolve to the bounds where zj = 0. In
order to avoid this, we propose control laws for the inventories in each node
analogous to (28)-(29), and of the form:

φL = φ∗
L + ωL (mL −m∗

L) (42)

φV = φ∗
V + ωL (mV −m∗

V ) (43)

Note that these last expressions are for the case of a liquid-vapor dissipative
subnetwork as the one formed by nodes 3 and 4 in Figure 2. It follows that
the summation of Eqns. (42) and (43) results in φI = φ∗

I + ωm (mI −m∗
I) for
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ωL = ωV , ensuring the convergence of both total and node mass inventories.
An analogous result can be obtained for the case of the energy inventory
control layer.

3.4 The intensive variable control issue

Despite convergence of the system states to the interior of the convex set is
ensured by using inventory control, it is known that complex behavior such
as multiplicities or oscillatory phenomena can appear in Λ, in terms of the
intensive variables.

Based on the properties of the entropy function in compact regions, Alonso and
Ydstie (2001) proposed a formal framework for stability analysis and stabiliz-
ing control design of dissipative process systems. In this way, the framework
allows the construction of Lyapunov function candidates which can be used to
design new nonlinear robust controllers or to test the stabilizing capabilities of
existing control schemes. A typical candidate is that defined by the difference
between entropy and the supporting hyperplane at the reference, which takes
the form:

b (z, z∗) =
[

S(z∗) + w(z∗)T (z − z∗)
]

− S(z) ≥ 0 (44)

where wT is the vector of intensive variables as defined by (19). Recently, and
based on the same concept of availability, Jillson and Ydstie (2005) and Antelo
et al. (2005) have developed a more general storage candidate R(z, z∗) based
on the concept of available work (A) defined by Keenan (1951). This function
is of the form:

R(z, z∗) = A(z) + A(z∗) = − (z − z∗)T (w − w∗) ≥ 0 (45)

where the pairs (z, w) and (z∗, w∗) are defined by the vector of states and of
intensive variables for the system and the reference, respectively, and A(z) =
− (w − w∗)T z coincides with the availability. Note that R(z, z∗) is positive
definite, since as shown in Section 3.1 (z − z∗) and (w − w∗) are related
through a negative definite matrix Q (see Eqn. 26).

Thus, by designing intensive variable control schemes making the time deriv-
ative of (44) or (45) negative, Lyapunov stability can be concluded for the
intensive variables. Similar arguments were employed by Farschman et al.
(1998) and Hangos et al. (1999) to ensure convergence of process states to
their desired set points. As we will discuss next, this framework -forcing the
negativity condition over the entropy balance (21) by modifying the entropy
flux- will be the one adopted to design stabilizing temperature and concentra-
tion controllers for the reactor network.
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4 Control of Chemical Reactors

The proposed hierarchical control design methodology is now applied to the
case of an isolated jacketed non-isothermal CSTR, similar to the one con-
sidered in the process presented in Figure 1. This exothermic reactor was
widely studied in the literature as an example of nonlinear system exhibiting
multiplicities (Kevrekidis et al., 1986; Cordonier et al., 1990), and as a good
benchmark problem to test stabilizing control structures (see, for instance,
Alvarez et al., 1991; Alonso and Banga, 1998). Note that, in our case, and in
order to make the system compatible with physics, the exothermic reaction A
↔ B is assumed to be reversible, although highly displaced to the right. The
reaction rate ρ is defined as:

Fig. 5. The jacketed CSTR reactor scheme

ρ = k1CA − k2CB = CAe
(a1−

b1
T ) − CBe

(a2−
b2
T ) (46)

where k1 and k2 correspond with the direct and inverse kinetic constants, re-
spectively, obeying an Arrhenius-type temperature dependance. For the present
example, it was assumed that a1 = a2, and b2 = 3b1. Under these assumptions,
Eqn. (46) can be approximated by an quasi-irreversible first order reaction ki-
netic expression:

ρ ≈ CAe
(a1−

b1
T ) (47)

As a starting point in the control design procedure, we apply the process net-
works formalism developed in Section 2 to represent the reactor and define its
constitutive mass and energy inventory layers. Figure 6 shows the correspond-
ing associated network to the reactor. It consists of two nodes connected by
a dissipative heat transfer term plus extra mass and energy convective flows
connecting the nodes with the environment. The inventory networks derived
from this fundamental network are presented in Figure 7. The dynamic mass
and energy balances are of the form:

(1) Node 1:
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Fig. 6. Reactor process network. Nodes 1 and 2 represent the reactor and the jacket,
respectively. Solid nodes represent the environment

Fig. 7. Reactor mass and energy inventory networks

• Balance of component A:

dnA1
dt

= q0C
in
A − qCA − ρν (48)

• Balance of component B:

dnB1
dt

= −qCB + ρν (49)

• Energy Balance:

dU1

dt
= hA (Tin)C

in
A q0 − (hA (T )CA + hB (T )CB) q −Q (T, Tc) (50)

The nomenclature used in these balances is explained in Table 4.1.
(2) Node 2: In this node, since neither component A nor B are present, only

the energy balance is considered:

• Energy Balance:
dU2

dt
= Q (T, Tc) (51)

with
Q = UcA(T − Tc) (52)
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Table 4.1. Parameters and variables of the reactor model

Parameters/V ariables Definition Units

q0 Reactor inflow l
s

q Reactor outflow l
s

ρ Reaction rate mol
l·s

ν Reactor volume l

CA Concentration of A in the reactor mol
l

CAin
Concentration of A in the reactor inlet mol

l

hk(Tj) Enthalpy of component k at temperature Tj
J
mol

T Reactor temperature K

Tin Reactor inlet temperature K

Tc Coolant temperature K

Q Heat exchanged in the reactor J
s

Uc Heat transfer coefficient J
m2·K·s

A Heat transfer area m2

∆h∗ Reaction heat J
mol

d Liquid density mol
l

cp Liquid heat capacity J
mol·K

R Gas constant J
mol·K

Note that the algebraic structure underlying these fundamental dynamics of
the network is equivalent to Eqns. (3) and (4) by considering that:

fk0 = q0 ·Ckin
; fk = q ·Ck; p0 =

c∑

k=1

hk(Tin) · q0 ·Ckin
; p =

c∑

k=1

hk(T ) · q ·Ck

with c = A,B.

4.1 Mass and energy inventory control

The next step in the systematic control design is the application of the concep-
tual mass and energy inventory control approach (Section 3.2) to the reactor
network depicted in Figure 6 so to drive the network states inside region Λ.
For the mass layer case (Figure 7), the inventory loop is closed by considering
the total inventory outflow leaving node 1 as the manipulated variable. For
the energy case, it can be shown that there only exists an available degree of
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freedom (the inventory inflow to node 1). However, the total energy inventory
outflow from node 1 is formed by the summation of two flows present in the
dissipative sub-network (Eqn. 8):

• the energy flow associated to the convective mass flow leaving the reactor,
used to control the mass layer.

• the energy flow corresponding to the coolant stream.

Since there is not available valve at the reactor inlet, the energy flow is chosen
as the manipulated variable candidate to control the energy inventory.

As explained in Section 3.3., the next step consists of the realization of this
conceptual design over the available degrees of freedom of the system. The
result is shown in Figure 8:

• The mass inventory control results in a level control (LC) loop since the
level is directly related with the total mass inventory. This loop sets up the
residence time in the reactor by using the reactor outflow (q) as the manip-
ulated variable.

• In order to implement the energy inventory control, an internal energy ob-
server is designed to estimate the energy content in the reactor by using
temperature measurements. The reason is that the internal energy cannot
be directly measured. Then, this estimate is used in the flow control (FC)
loop acting over the coolant flow rate.

Fig. 8. The proposed control structure (control realization)

As discussed in previous Section, the proposed control structure (Figure 8)
guarantees the convergence of the system to the compact set Λ (Eqn. 20).
For the reactor example, this convex set is defined as the intersection of the
plane of constant internal energy, corresponding to the nominal value for this
inventory (U = 8.36e5 J), and the straight line satisfying the constant mass
condition mA+mB = 18 kg. The resulting convex region is presented in Figure
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9 (dashed line). It must be pointed out that the total mass condition implies
that the volume (ν) will be constant since the density of both components is
considered equal to the water density (dA = dB = d = 1000 g

l
).

However, as pointed out in Section 3, the proposed inventory control structure
does not necessarily ensure the stability of the intensive variables (concentra-
tion and temperature) into this convex region. Such behavior can be easily
detected by the following thermodynamic analysis.

Fig. 9. Convex set (Λ) representation for the reactor. Λ is the dashed line resulting
from the intersection of the constant energy inventory plane (U = 8.36e5 J) and
the straight line of constant mass condition (mA +mB = 18 kg).

4.2 Thermodynamic analysis of the reactor network

For the reactor case considered, the multiple steady states that exist into the
convex region (Λ) can be stated and analyzed by using the entropy balance
(Eqn. 21) associated to the network presented in Figure 6. To that purpose,
consider the Gibbs-Duhem Equation applied to each node:

dλS1 = 1
T1
dλU1 + P1

T1
dλν1 −

∑

k

µk
1

T1
dλn

k
1

dλS2 = 1
T2
dλU2 + P2

T2
dλν2 −

∑

k

µk
2

T2
dλn

k
2

(53)

where λ is a given variation parameter which, in our case, corresponds with
time, and µkj is the chemical potential of component k in node j (with j =
{1, 2}). For both nodes, we assume that there are not changes in the volume
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(dtν = 0) as a consequence of the considered mass inventory control. In addi-
tion, it is considered that dtn

k
2 = 0 in node 2, since neither chemical reaction

nor mass transfer takes place. With these assumptions, Eqn. (53) becomes:

dtS1 = 1
T1
dtU1 −

∑

k

µk
1

T1
dtn

k
1

dtS2 = 1
T2
dtU2

(54)

Due to the energy inventory control implemented, the global internal energy
of the network will remain constant, thus dtU1 = −dtU2. Finally, the entropy
variation for the global network is equal to the sum of the entropy variations
in the nodes: dtStotal = dtS1 + dtS2. With these last considerations, Eqn. (54)
results in the following general expression for the entropy variation in the
reactor:

dtS =
(

1

T
−

1

Tc

)

dtU −

(

µA

T
dtn

A +
µB

T
dtn

B

)

(55)

The analytical expression of this balance can be obtained by substituting the
balance equations (Eqns. 48-50) into Eqn. (55).

As presented in Eqn. (21), the entropy balance is constituted by two different
contributions: entropy production and entropy flow. We define both terms next:

(1) Entropy Production (Ps): The entropy generation is related to ir-
reversible processes, being its rate a product of dissipative fluxes and
thermodynamic driving forces, as shown in Eqn. (22). The analytic ex-
pression for the entropy production in the non-isothermal reactor can be
defined as follows:

Ps = γ
(

1

Tc
−

1

T

)

(T − Tc) −
R

dcp
ρ
∆µ

T
(56)

with ∆µ = µB − µA = log(CB

CA
) − log(k1

k2
) and R (the gas constant) equal

to 8.314 J/mol · K. In order to compute these terms, and as presented
previously, it is assumed in the model that the fluid has the same physical
properties than water, i.e. molecular weight = 18 kmol/kg, d = 1000 g/l
and cp = 4.18 J/mol ·K. The right hand side Eqn. (56) consists of two
terms:

(a) The first term is due to the heat transfer between nodes. Irreversible
heat flux is caused by the difference of temperatures which acts as a
thermodynamic driving force.

(b) The second contribution is that related to chemical reaction, being
the associated driving force the difference of chemical potentials.

(2) Entropy flux (Φs): This term is associated with material and energy
throughput flows connecting the network with the environment. For the
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reactor case, the entropy flux can be defined as:

Φs =
1

T

[

[hA (Tin) − hB (T )]Cin
A + [hB (T ) − hA (T )]CA

]

q+

+
∆µ

T
q
(

Cin
A − CA

)

−Q
1

TC

(57)

The enthalpy of the pure components A and B is defined as:

hB (T ) = h∗B + c′pB
(T − T ∗)

hA (T ) = h∗A + c′pA
(T − T ∗)

hA (Tin) = h∗A + c′pA
(Tin − T ∗)

(58)

In these last expressions, h∗i is the enthalpy of component i for a given
reference state and c

′

p is the specific heat of the pure components. It is
assumed that both components have the same specific heat (c′p = c′pA

=
c′pB

). From Eqn. (58), it is possible to define:

hB (T ) − hA (T ) = ∆h∗

hA (Tin) − hB (T ) = −∆h∗ + c′p (Tin − T )
(59)

The reaction heat (∆h∗) is considered constant. Now, substituting Eqns.
(58) and (59) into Eqn. (57), and introducing the dimensionless parame-
ters and the expression for Q previously presented (Eqn. 52), we get the
entropy flux for the reactor network:

Φs =
1

T

[

Cin
A cpA

(Tin − T )

dcp
+ β

(

CA − Cin
A

)
]

θ−

−
∆µ

Tdcp

(

Cin
A − CA

)

θ −
γ

Tc
(T − Tc)

(60)

Process entropy and its time derivative (defined by the summation of Eqns.
56 and 60) are depicted in Figure 10 along the manifold of constant mass and
energy Λ defined by Eqn. (20). In order to represent dS with respect to CA, we
need the temperature corresponding to each concentration. To that purpose,
the stationary energy balance (Eqn. 62) is considered to calculate T . As it can
be seen in this Figure, there are three points in Λ satisfying the steady-state
entropy balance which corresponds to an unstable and two stable stationary
points. As presented in Section 3.1, entropy is a concave function that attains
its maximum at the equilibrium. For the quasi-irreversible reaction A ↔ B
we are considering, this maximum lies very close to the point CA = 0. This
allows us to plot a proper approximation of S versus CA, as shown in Figure
10. On this plot, the stability or instability of the different steady states can
be easily established from the curvature of the system entropy and its time
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derivative (Eqn. 21). For instance, the stationary point in Figure (10) which
corresponds to CA=0.0885mol

l
is stable since any disturbance decreasing the

concentration results in a negative sign for dS, which makes S to decrease.
On the other hand, positive disturbances around this stationary point make
dS positive so that S will increase. As a consequence, this point is attainable
and stable.

Fig. 10. Steady states stability analysis using S. The zoom window shows the maxi-
mum of entropy S (very close to CA = 0 mol

l
). The points where dS = 0 correspond

to the steady states exhibited by the reactor. Stability or instability is determined
by the sign of dS and the curvature of S.

The multiple steady states inside Λ, where the system remains on as a result
of the proposed inventory control structure, can be also detected by using a
classical analysis. This approach is based on the reactor network dynamics
(Eqns. 48 - 50) expressed only in terms of intensive variables (concentration
and temperature), which for this case take the form:

ĊA = −ρ+ θ
(

Cin
A − CA

)

(61)

Ṫ = βρ+ θ (Tin − T ) − γ (T − Tc) (62)

where θ, β, and γ are dimensionless physical parameters related with residence
time, reaction heat, and heat transfer areas, respectively. They are defined as
follows (see Cordonier et al., 1990 or Alonso and Banga, 1998, for further
details):

θ =
q

ν
(63)

β =
−∆h

dcp
(64)
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Table 4.2. Nominal values for inlet variables and parameters employed

for the non-isothermal reactor model

CinA (mol/l) Tin (K) a1 a2 b1 (K) b2 (K) θ (1/s) β γ

1 350 25 25 10000 30000 1 200 1

γ =
UcA

dνcp
(65)

The values considered in the model for the inlet conditions, kinetics and dimen-
sionless parameters, are presented in Table 4.2. Considering these values, the
reaction network represented by Eqns. (61) and (62) exhibits the same three
steady states detected by applying the thermodynamic analysis, as shown in
Figure 11. In this Figure, the trajectories of composition and temperature in
the reactor (for different initial conditions) are plotted, showing that different
reactor product compositions can be attained depending on the initial condi-
tions. In addition, the geometric place of constant concentration (ĊA = 0) is
represented by a dashed curve as a consequence of the existing nonlinear rela-
tionship between these intensive variables. It intersects the stationary energy
balance (Ṫ = 0) in the three different steady states.

Fig. 11. State Space for the Non-Isothermal CSTR. The dashed and straight lines
represent the stationary balances of CA and T , respectively. The intersection be-
tween these are the three steady states present in the reactor
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4.3 Intensive variable control design

In the last step on the control structure design procedure, the inventory control
configuration proposed in Section 4.1 is completed with a controller of intensive
variable acting on the coolant temperature Tc. This extra loop, as we will se,
ensure the stabilization of the intensive variables (reactor concentration and
temperature) to the desired point which, for the reactor example, corresponds
to the unstable steady state.

Although different control structures could serve to that purpose, we apply
well-known geometric controllers to stabilize the intensive variables: a PI tem-
perature controller and a non-linear exact linearizing control were tested, and
state stabilization was demonstrated for both cases. With this intensive vari-
able control considered, the entropy flux (Eqn. 57) is modified as explained
in Section 3. As a consequence, a unique steady state in Λ, where dS = 0, is
obtained.

Let us redefine CA and T as x1 and x2, respectively, being the model (61)-(62)
in input affine form:

ẋ = f(x) + g(x)u

y = h(x)
(66)

where

f(x) =






−ρ+ θ(xi1 − x1)

βρ+ θ(xi2 − x2) − γx2




 (67)

g(x) =






0

γ




 ; h(x) = x1 (68)

1. PI Control: The selected control law is of the form:

u = x2c = x2cr − k(x2 − x2r) +
1

τI

∫

(x2 − x2r)dt (69)

where x2cr is the reference temperature for the coolant (350 K), k is the con-
troller gain, T2r is the set point for the reactor temperature and τI is the time
constant. The controller parameters were adjusted to k = 10 and τI = 58.

The entropy variation (dS = Ps + φs) for this closed loop system is presented
in Figure 12. It is clearly demonstrated that the entropy flux term is modified
by this intensive variable control, as explained in Section 3.4. This variation
can be shown when comparing Figures 13 and 14. As a result, the multiplic-
ities detected in Figure 10 disappear, existing a unique steady state which
corresponds to the selected point. Note that this control can also modify the
entropy production (Eqn. 56). However, these variations (Figure 15) are quite
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similar for both open and closed loop cases and not significative when com-
pared to changes in the entropy flux (Figure 14).
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Fig. 12. Entropy variation (dS) for the re-
actor with a PI control loop for T
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Fig. 13. Entropy flux (φs)

for the open loop reactor
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Fig. 14. Entropy flux (φs) for the reactor
with PI control loop for T
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Fig. 15. Entropy production (Ps) for the
open and closed (PI and nonlinear control
of T ) loop reactor

The proper performance of this intensive PI control is confirmed by repre-
senting the dynamic trajectories in the state space (Figure 16), where the
convergence of all trajectories to a unique steady state point can be checked.

2. Nonlinear Control: We apply global linearization control for SISO sys-
tems (Isidori, 1995). The proposed feedback control law has the form:

ū =
−L2

fh(x̄) − k0x̄1 − k1Lfh(x̄)

LgL2
fh(x̄)

(70)

where x and u are in deviation form and the parameters k0 and k1 are the
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Fig. 16. State Space for the Non-Isothermal CSTR with PI control over T

gains of the controller. The Lie derivatives in (70) for this case are:

Lfh(x̄) = ∂h
∂x̄
f(x̄) =

[

1 0

]






ρ∗ − ρ− θx̄1

β(ρ− ρ∗) − (θ + γ)x̄2




 = ρ∗ − ρ− θx̄1

L2
fh(x̄) =

∂Lfh

∂x̄
f(x̄) =

[

−r − θ −qρ

]






ρ∗ − ρ− θx̄1

β(ρ− ρ∗) − (θ + γ)x̄2






LgLfh =
∂Lfh

∂x̄
g(x̄) = qργ

(71)

where r and q are:

r =
∂ρ

∂x̄1

= e
a− b

x̄2+x∗
2 ; q =

∂ρ

∂x̄2

=
b

(x̄2 + x∗2)
2 (x̄1 + x∗1)e

a− b
x̄2+x∗

2

By using the nonlinear control law presented in Eqn. (70) for Tc with the gain
values presented in the work of Alonso and Banga (1998) (k0 = 0.1054 and k1

= 0.6581), the entropy variation takes the form presented in Figure 17. As for
the PI control case, there only exists a point where dS = 0 due to changes in
the entropy flux (Figure 18) caused by the nonlinear control. Note that there
is another point very close to dS = 0 but, as shown in Figure (17), it does not
reach this value. This fact indicates that the considered nonlinear control is
suitable to stabilize the system states in the desired set point.

The new space state for the closed loop system is depicted in Figure 19.
The unique steady state corresponds to the chosen reference, where all the
trajectories will converge to.
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Fig. 17. Entropy variation (dS) for the re-
actor with a nonlinear control loop for T
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Fig. 18. Entropy flux (φs) for the reactor
with nonlinear control over T
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Fig. 19. State space for the non-isothermal CSTR with nonlinear control of T

Finally, some control experiments were carried out in order to test the un-
stabilizing effect of input constraints on the intensive variables closed loop
dynamics. To that purpose, we assume a constraint in the manipulated vari-
able Tc. In this particular case, the variation range will be set to:

335 ≤ Tc ≤ 365

For the constrained PI control, we can corroborate the existence of two
stable steady states as shown in Figure 20. For the more interesting case
corresponding to the constrained nonlinear control, it is possible to iden-
tify two stable steady states and a region where a limit cycle exists (Figure
21). This oscillatory behavior is generated by the fluctuation of the energy
inventory that defines the convex region due to the control variable Tc reach-
ing upper and lower constraints. This can be shown by assuming an initial
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Fig. 21. State space for the non-isothermal CSTR with nonlinear control of T and
Tc bounded

condition for the reactor near the limit cycle region (CA = 0.25 mol/l and
T = 420 K). The evolution of the system to the limit cycle is presented in
Figure 22. The fluctuation causes the energy inventory in the network to vary
along time which, in turn, produces oscillations of the compact region respect
to the nominal position. In this case, the thermodynamic analysis reveals new
points in the region Λ satisfying the stationary entropy balance (see Figure
23). These corresponds with either stable, unstable or even limit cycles caused
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Fig. 22. Evolution of the intensive variables (CA and T ) and manipulated variable
(Tc) in the presence of input constraints for the nonlinear control of T

by total inventory fluctuations.
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Fig. 23. Reactor steady states stability analysis in the presence of input constraints
for the nonlinear control of T .

5 Conclusions

In this paper, a systematic plant-wide control design methodology has been
presented. The approach, which combines tools and concepts from systems the-
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ory and thermodynamics, allows the design of decentralized control structures
which simultaneously ensure stabilization of both plant extensive and inten-
sive variables: inventory control loops are designed first to guarantee that the
states of the plant will remain on a convex invariant region. Intensive variable
control loops are then designed to avoid multiplicities and ensure the appro-
priate convergence rate. The proposed methodology has been illustrated on a
reactor network exhibiting complex behavior, achieving the stabilization of the
system states in the case of unconstrained control of the intensive variables.
For the constrained input case, complex behavior cannot be handled properly.
The dynamical results were also confirmed using the entropy balance, which is
revealed as a powerful tool to analyze the stability or unstability of the steady
states of the system.
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