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Dimension reduction and parameter estimation
for additive index models∗

Lingyan Ruan and Ming Yuan
†

In this paper, we consider simultaneous model selection
and estimation for the additive index model. The additive
index model is a class of structured nonparametric models
that can be expressed as additive models of a set of unknown
linear transformation of the original predictor variables. We
introduce a penalized least squares estimator and discuss
how it can be efficiently computed in practice. Both theo-
retical and empirical properties of the estimate are presented
to demonstrate its merits. Extensions to more general pre-
diction framework are also discussed.

Keywords and phrases: Additive model, Index model,
Model selection, Projection pursuit, Smoothing splines.

1. INTRODUCTION

In the additive index model, a response y is related to a
predictor x ∈ Rp through

(1) f(x) = h1(α′
1x) + h2(α′

2x) + · · · + hq(α′
qx),

with some projection indices α1, α2, . . . , αq and ridge func-
tions h1, h2, . . . , hq. The goal is to infer f based on n inde-
pendent copies (x1, y1), . . . , (xn, yn) of (x, y) without assum-
ing any parametric form for the ridge functions. The additive
model has several popular structured nonparametric regres-
sion models, most notably additive models or single index
models, as special cases. It is also known to be much more
flexible than these more specialized examples. In particular,
it has been shown that any square integrable function can
be approximated to an arbitrary precision by a function of
form (1) (Diaconis and Shahshahani, 1984).

To estimate f , the dimensionality q is often assumed to
be known apriori. Various methods have been proposed to
estimate f when q is given. See, e.g., Chen (1991) and Chiou
and Müller (2004) among others. The assumption that q is
known in advance, however, can be unrealistic. Its choice es-
sentially amounts to a model selection or dimension reduc-
tion problem. It is clear that if q is too small, the additive
index model cannot sufficiently capture the relationship be-
tween the response and the predictors. On the other hand,
∗This research was supported in part by NSF Grant DMS-0706724,
DMS-0846234, and a grant from the Georgia Cancer Coalition.
†Corresponding author.

when q is too big, some of the components in the additive
index model will be close to zero, which could cause identi-
fiability problems (see, e.g., Yuan, 2008), and subsequently
troubles in parameter estimation. The choice of q, albeit
critical, is notoriously difficult in practice.

In this paper, we propose a penalized least squares
method to simultaneously select the dimensionality q and
estimate the regression function f for the additive index
model. Our method is inspired by the COSSO recently pro-
posed by Lin and Zhang (2006) for the purpose of variable
selection in additive models. The penalty we employ encour-
ages some of the ridge functions to be exactly zero instead of
being estimated as close to zero, which avoids the potential
problem of unidentifiability. We prove that the additive in-
dex model estimated using the proposed estimator achieves
the same rate of convergence as the univariate nonparamet-
ric regression, which suggests that models of form (1) have
the potential to mitigate the curse of dimensionality.

The rest of this paper is organized as follows. In Section 2,
we introduce the proposed estimator for the additive index
model and study its asymptotic properties. We show that
given that all ridge functions come from a Sobolev space,
the additive index model estimated in this fashion achieves
the optimal convergence rate. Section 3 discusses an itera-
tive algorithm that can be used to efficiently compute the
proposed estimate in practice. Examples, both simulated
and real data, are presented in Section 4 to demonstrate
the merits of the proposed methodology. We conclude with
some discussions in Section 5.

2. PENALIZED LEAST SQUARES
ESTIMATE

To fix ideas, we shall begin by focusing on the usual mean
regression model:

(2) yi = f0(xi) + εi, i = 1, 2, . . . , n,

where the predictors are properly scaled so that xi ∈ [0, 1]p

and

(3) f0(x) = μ + h01(α′
1x) + h02(α′

2x) + · · · + h0q(α′
qx),

where the dimensionality q, although unknown, is assumed
to be upper bounded by a known value M . Such an upper
bound can be easily obtained in practice. For example, it
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can be the final dimensionality obtained by the projection
pursuit regression. To avoid ambiguity, we shall also assume
that the projection indices αjs satisfy ‖αj‖ = 1. To model
the ridge functions nonparametrically, we consider them as
members of the usual Sobolev space of order m:

Sm = {h : h(s) are absolutely continuous for(4)

s = 0, . . . , m − 1, h(m) ∈ L2[0, 1]}.

When equipped with a norm:

(5) ‖h‖2 =
m−1∑
v=0

(∫
h(v)

)2

+
∫ 1

0

(
h(m)

)2

,

Sm forms a reproducing kernel Hilbert space (see, e.g.,
Wahba, 1990). Let S̄m be the orthogonal complement of
constant functions in Sm in that Sm = {1} ⊕ S̄m. It then
suffices to consider hj ∈ S̄m, i.e.,

f0 ∈ FM := {μ + h1(α′
1x) + h2(α′

2x) + · · ·(6)

+ hM (α′
Mx) : hj(·) ∈ S̄m, ‖αj‖ = 1

}
.

For any f ∈ FM , define

(7) J(f) = inf {‖h1‖ + ‖h2‖ + · · · + ‖hM‖}

where the infimum is taken over all possible hjs such that
f(x) = μ+h1(α′

1x)+h2(α′
2x)+ · · ·+hp(α′

px) and hj ∈ S̄m.
It is not hard to check that J is a pseudo-norm on FM .

We now propose to estimate f0 by the following penalized
least squares estimator:

(8) f̂λ = arg min
f∈FM

{
1
n

n∑
i=1

(yi − f(xi))
2 + λnJ(f)

}
,

where λn > 0 is a tuning parameter. The following theorem
states that our estimate achieves the same convergence rate
as the usual additive model.

Theorem 1. If f0 is not a constant, and λ−1
n =

Op(n2m/(2m+1))J (2m−1)/(2m+1)(f0), then

(9)
1
n

n∑
i=1

(
f̂λ(xi) − f0(xi)

)2

= Op (λn) J(f0).

If f0 is a constant, then

1
n

n∑
i=1

(
f̂λ(xi) − f0(xi)

)2

(10)

= Op

(
max{n−1, λ−1/(2m−1)

n n−2m/(2m−1)}
)

.

Proof. Recall that f̂ , f0 ∈ Fq. We have f̂−f0 ∈ F2q ⊆ F2M .
Therefore

(11)
f̂ − f0

J(f̂) + J(f0)
∈ {f ∈ F2M : ‖f‖ ≤ 1} =: G.

Denote the set on the right-hand side G. In the light of
Theorem 10.2 of van de Geer (2000), it suffices to show that

(12) H∞ (δ,G) ≤ Cδ−1/m.

Hereafter, we use C to denote a generic positive constant
that does not depend on δ.

For any f1, f2 ∈ G, there exists hjs and gjs such that

f1(x) = h1(α′
1x) + · · · + h2M (α′

2Mx);(13)
f2(x) = g1(β′

1x) + · · · + g2M (β′
2Mx),(14)

where hj , gj ∈ S̄m and

‖h1‖2 + · · · + ‖h2M‖2 ≤ 1;

‖g1‖2 + · · · + ‖g2M‖2 ≤ 1.

Recall that

‖hj‖2 =
m−1∑
s=1

{
h

(s)
j (1) − h

(s)
j (0)

}2

+
∫ (

h
(m)
j

)2

,(15)

j = 1, 2, . . . , 2p.

Following the same argument as that of Lemma A.1 in
Lin and Zhang (2006), one can show that ‖h′

j‖∞ ≡
max |h′

j(u)| ≤ 1, ‖hj‖∞ ≤ 1, j = 1, 2, . . . , 2M and the same
holds true for gjs. Denote Bm the unit ball in Sm. Then
hj , gj ∈ Bm. It is well known that the δ entropy of Bm for
the supreme norm is bounded by

(16) H∞ (δ,Bm) ≤ Cδ−1/m.

In other words, Bm can be covered by N = exp(Cδ−1/m)
balls with radius δ/4M . Note that

‖f1 − f2‖∞ ≤
2M∑
j=1

‖gj(β′
j ·) − hj(α′

j ·)‖∞(17)

≤
2M∑
j=1

(
‖gj(β′

j ·) − gj(α′
j ·)‖∞

+ ‖gj(α′
j ·) − hj(α′

j ·)‖∞
)

≤
2M∑
j=1

(
‖g′j‖∞‖βj − αj‖1 + ‖gj − hj‖∞

)
≤

2M∑
j=1

(‖βj − αj‖1 + ‖fj − hj‖∞)

where ‖βj − αj‖1 =
∑

k |βjk − αjk|. Because a unit sphere
in Rp can be covered by Cδ−p balls of radius δ/4p, G can
be covered by CN2Mδ−p, which implies the desired entropy
condition (12).

Note that additive models are also members of F . Ac-
cording to Stone (1985), n−2m/(2m+1) is the optimal rate in
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estimating f0 if it follows an additive model. This suggests
that the rate obtained in Theorem 1 is optimal and can not
be improved. Allowing projection directions renders the ad-
ditive index model more flexibility than the additive model.
Theorem 1 shows that such flexibility can be gained without
loss in terms of estimability asymptotically.

3. COMPUTATION

We now discuss the practical aspects in computing the
penalized least squares estimator (8). The objective func-
tion on the right-hand side of (8) can be minimized in an
iterative fashion. Similar to the COSSO, minimizing the ob-
jective function on the right-hand side of (8) is equivalent
to minimizing

(18)
1
n

n∑
i=1

{yi − f(xi)}2 + λ0

M∑
j=1

τ−1
j ‖hj‖2 +

λ2

4λ0

M∑
j=1

τj

for any λ0 > 0 with respect to both f and τjs under the con-
straint that τj ≥ 0, j = 1, . . . ,M . Hereafter, we abbreviate
the subscript of the tuning parameters that signifies their
dependence on the sample size. Now we can minimize (18)
with respect to the projection directions, ridge functions and
τjs iteratively.

Write A = (α1, . . . , αM ) and z = A′x. When A and τjs
are known, (18) becomes

(19)
1
n

n∑
i=1

⎛⎝yi − μ −
p∑

j=1

hj(zij)

⎞⎠2

+ λ0

M∑
j=1

τ−1
j ‖hj‖2,

the usual smoothing spline estimate of the additive model
(Wahba, 1990). The representer Lemma (Wahba, 1990) im-
plies that the minimizer of (19) can be given as

(20) hj(u) = τj

n∑
i=1

ciK(u; zij), j = 1, . . . ,M,

where K(·, ·) is the reproducing kernel associated with S̄m

and zij is the jth factor of the ith observation, i.e., zij =
α′

jxi. Furthermore,

(21) ‖hj‖2 = τj

n∑
i,k=1

cickK(zij , zkj).

Plugging both formulae back to (19), we can get a closed
form solution for μ and c = (c1, . . . , cn)′. Readers are re-
ferred to Wahba (1990) for details.

Now suppose that c and μ are known. Minimizing (18)
with respect to A can be done using Newton iteration. We
update A column by column. Consider, for example, updat-
ing αj . Write

(22) ri = yi −

⎧⎨⎩μ +
∑
k �=j

hk(α′
kxi)

⎫⎬⎭

with αjs from the previous iteration and hjs being given by
(20). Our goal is to solve

(23)

min
αj∈Rp

1
n

n∑
i=1

{
ri − hj(α′

jxi)
}2

, subject to ‖αj‖ = 1.

A Lagrange formulation leads to

(24) min
αj∈Rp

[
n∑

i=1

{
ri − hj(α′

jxi)
}2 + θ‖αj‖2

]
,

for some constant θ. First order condition yields

(25)
n∑

i=1

[{
ri − hj(α′

jxi)
}

h′
j(α

′
jxi)xi

]
= θαj .

Multiplying both sides by αj ,

(26) θ =
n∑

i=1

[{
ri − hj(α′

jx)
}

h′
j(α

′
jxi)α′

jxi

]
.

To this end, we need to be able to compute the gradient and
hessian of (24). Note that from (20)

h′
j(u) = τj

n∑
i=1

ci
∂K(u; zij)

∂u
;(27)

h′′
j (u) = τj

n∑
i=1

ci
∂2K(u; zij)

∂u2
.(28)

Both can be easily evaluated. The gradient and hessian of
(24) can then be deduced from

G(αj) = − 2
n∑

i=1

[{
ri − hj(α′

jx)
}

h′
j(α

′
jxi)xi

]
+ 2θαj ;

(29)

H(αj) = 2
n∑

i=1

[{
h′

j(α
′
jxi)

}2

(30)

−
{
ri − hj(α′

jx)
}

h′′
j (α′

jxi)
]
xix′

i + 2θI.

Now a Newton iteration would update the current estimate
αj by βj/‖βj‖ where

(31) βj = αj − H−1 (αj)G (αj) .

Lastly, we update τjs. This can be done in a similar fash-
ion as the COSSO. Denote Kj an n × n matrix whose (i, l)
entry is K(α′

jxi, α
′
jxl) and

(32) F = (K1c, . . . , Kpc).
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Define ỹ = y−nλ0c/2−μ1. It is not hard to show that the
τjs that minimize (18) are also the solution to

min
τ1,...,τp

{ỹ − F (τ1, . . . , τp)′}′ {ỹ − F (τ1, . . . , τp)′} +
λ2

4λ0

p∑
j=1

τj

(33)

subject to τj ≥ 0.

This is the Lagrange formulation of

min
τ1,...,τp

{ỹ − F (τ1, . . . , τp)′}′ {ỹ − F (τ1, . . . , τp)′}(34)

subject to τj ≥ 0,

p∑
j=1

τj ≤ T

for some T > 0, which is in the same form as the so-called
nonnegative garrote proposed for variable selection in linear
regression (Breiman, 1995). This optimization problem is a
quadratic program and can be solved efficiently using the
standard quadratic program solver.

In summary, (18) can be minimized using the following
algorithm.

Algorithm.

(I) Initialize A with a random p×M matrix normalized so
that each column has norm one.

(II) Initialize τ1 = . . . = τM = 1.
(III) Choose λ0 by the generalized cross validation and com-

pute the initial estimate of μ and hjs using the smooth-
ing spline algorithm (Wahba, 1990).

(IV) Compute the first and second derivative of hjs using
(27) and (28).

(V) Update αjs by a one-step Newton iteration as described
before.

(VI) Given A, update μ and hjs using the smoothing spline
algorithm.

(VII) Update τjs by solving (34).
(VIII) Go back to step (IV) until a certain convergence crite-

rion is met.

Thus far, we have assumed that the tuning parameter
λ, or equivalently T of (34) is fixed. In practice, it can be
selected using cross-validation. In cross-validation, the full
data set D is randomly split into K subsets of about the
same size, denoted by D(1), . . . ,D(K). For each k = 1, . . . , K,
we use the data in D−D(k) to estimate the model parameters
and the data in D(k) to validate. The squared prediction
error could be used as the performance measure in our case.
For each candidate value of M , the K-fold cross-validated
score is defined as

(35) CV(T ) =
K∑

k=1

∑
i∈Ik

(yi − f̂ (−k)(xi))2

where Ik is the index set of the data in D(k), and f̂ (−k) is the
estimated regression function f using the training data set

D−D(k). Typically, K is set to be five or ten and CV(T ) is
minimised over a grid of values of T . Let T̂ be the minimiser
of CV(T ). Our final estimate of f is based on T̂ and the full
data set.

4. NUMERICAL EXAMPLES

We now illustrate the finite sample performance of the
proposed method through several sets of numerical exam-
ples.

4.1 Partial single index model

We begin with a partial single index model from Carroll
et al. (1997).

(36) y = sin
[
π(α′x − A)

B − A

]
+ βz + ε,

where z is a binary variable taking value 1 and 0 respec-
tively for half of the observations, x = (x1, x2, x3)′ and xi

are independent observations from a uniform distribution
U [0, 1], A =

√
3/2 − 1.645/

√
12, B =

√
3/2 + 1.645/

√
12,

and ε ∼ N(0, 0.12). The parameters used in this example
are α = (1, 1, 1)′/

√
3 and β = 0.3. Following Carroll et al.

(1997), the sample size is n = 200.
The estimate we developed in Section 2 can be easily

extended to accommodate the linear component βz. To es-
timate f and β, we minimize

(37)

{
1
n

n∑
i=1

(yi − f(xi) − βz)2 + λnJ(f)

}
,

with respect to both f and β. We apply this estimate to
one hundred simulated data sets. The left panel of Figure 1
shows a typical simulated data set together with the esti-
mated regression functions for both values of Z. The over-
all performance is also summarized in Table 1 and the box
plots presented in the right panel of Figure 1. These re-
sults compare favorably with those reported by Carroll et
al. (1997).

4.2 Additive index model

To gain further insight of predictive performance of the
additive index model and the proposed penalized least
squares estimate, we consider a more complex model. The
simulated data consist of observations from the regression
model y = f0(x) + ε where

f0(x) = 5 sin(2πα′
1x)+

4 sin(2πα′
2x)

2 − sin(2πα′
2x)

+ 6×
{
0.1 sin(2πα′

3x)

+ 0.2 cos(2πα′
3x) + 0.3 sin2(2πα′

3x)

+ 0.4 cos3(2πα′
3x) + 0.5 sin3(2πα′

3x)
}

.

For each simulated data set, the predictor x is generated in
two steps: we first sample (z, w) from a uniform distribution
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Figure 1. Simulation Example: left panel gives a typical simulated data set with size 200. The open circles correspond to
observations with z = 0 and triangles correspond to observations with z = 1. The solid black lines are the estimated functions

for z = 0 and 1 respectively. The grey lines, almost coincide with the estimated functions represent the true regression
function. The right panel summarizes the parameter estimate for 100 repetitions. The grey horizontal lines correspond to the

true values for α and β respectively.

Table 1. Mean values of the parameter estimation for the
simulated example. The numbers in the parentheses are the

standard errors

α1 α2 α3 β

0.575 (0.003) 0.576 (0.001) 0.579 (0.002) 0.302 (0.001)

over [0, 1]11 and then compute xj = (zj +tu)/(1+t) for some
t. We consider t = 0 and t = 1, corresponding to uncorre-
lated and correlated predictors respectively. The projection
directions are also generated in two steps: a 10×10 random
matrix was first generated and then we normalize each col-
umn so that it has norm one. We discard all the random
matrices whose smallest eigenvalue is smaller than 0.1 to
ensure that the projection directions are sufficiently linearly
independent. The regression noise ε ∼ N(0, (5/3)2) to yield
a signal to noise ratio 3:1. For each simulated data set, we
generate 500 observations and estimate f using the proposed
penalized least squares estimate. Note that we assumed that
q is unknown in our estimation procedure. To measure the
performance of an estimate of f0, we use the mean squared
error defined as

(38) MSE(f̂) = Ex

{
f̂(x) − f0(x)

}2

where the expectation is taken with respect to x. To eval-
uate the MSE, we generate an additional 10, 000 x′s in the

same fashion as before. We then estimate the MSE using its
sample version:

(39) ̂MSE(f̂) =
1

10000

10000∑
i=1

{
f̂(x∗

i ) − f0(x∗
i )
}2

where x∗
i s are the additionally generated xs. For compar-

ison, we also included the MARS (Friedman, 1991) and
the projection pursuit regression of Friedman and Stuezle
(1981). The MARS is a nonparametric regression technique
with built-in variable selection features. For the projection
pursuit regression, we use five fold cross validation to deter-
mine the number of components. The left panel of Figure 2
shows the boxplot of the MSE for the three methods when
t = 0 summarized over 200 simulated data sets. The right
panel corresponds to t = 1. From Figure 2, we observe that
the proposed penalized least squares estimate enjoys supe-
rior performance in estimating the regression function f .

4.3 Generalized additive index model

Our last example illustrates how the the proposed method
can be applied to more general regression settings. Although
we have focused on mean regression, the additive index
model can also be extended to more general regression set-
tings such as the generalized linear model. In the generalized
regression, the conditional mean μ(x) = E(y|x) is related
to a canonical function η(x) via the so-called link function
η = g(μ) which is known. For example the usual Gaussian
regression amounts to the g(μ) = μ. A popular example

Dimension reduction and parameter estimation for additive index models 497



Figure 2. Simulation Example: boxplot of estimated MSE for three methods: MARS, the proposed penalized least squares
estimate (PLS) and the original projection pursuit regression (PPR).

Table 2. Estimated projection directions for the Pima Indian
Diabetes data

term 1 term 2 term 3

pregnant 0.01 0.12 −0.15
glucose −0.24 0.36 −0.05
pressure 0.45 0.26 −0.03
triceps −0.16 −0.14 0.47
insulin 0.25 0.33 −0.30
mass 0.36 0.78 −0.07
pedigree −0.32 0.21 −0.09
age −0.65 −0.09 0.80

of the generalized regression is the logisitic regression for
binary responses where η(x) is the conditional log-odds ra-
tio

(40) η(x) = log
Pr(y = 1|x)
Pr(y = 0|x)

.

The idea of the additive index model can be generalized to
these situations by assuming

(41) η(x) = μ + h1(α′
1x) + · · · + hq(α′

qx).

The generalized additive index model can be estimated
in a similar manner as the usual additive index model. A
deviance function such as the negative log-likelihood is used
in place of the least squares of (8):

(42) L(f) =
1
n

n∑
i=1

� [η(xi); yi] + λJ(f).

For example, in the case of logisitic regression, we estimate
the generalized additive index model by minimizing

(43) L(f) =
1
n

n∑
i=1

[
yiη(xi) − log

(
1 + eη(xi)

)]
+ λJ(f),

where η(·) is given by (41). The readers are referred to Mc-
Cullagh and Nelder (1989) for more general discussion re-
garding the choice of the deviance. Similar to the general-
ized linear model L can be minimized by the iteratively re-
weighted least squares. In each iteration, the deviance func-
tion is approximated by a weighted least squares and can
therefore be optimized using the algorithm given in Sec-
tion 2. According to our experience, it suffices to run our
algorithm only for one iteration at each step in the itera-
tively re-weighted least squares and the algorithm usually
converges in a few iterations.

To illustrate the idea of the generalized additive index
model, we consider here a real data example. The Pima
Indians Diabetes data have 768 observations on nine vari-
ables. The purpose is to predict whether or not a particular
subject has diabetes using eight remaining variables. It was
often used as a benchmark data set for classification. An
application of the additive index model and the penalized
least squares estimate yields an additive model with three
linear factors. The estimated projection directions are given
in Table 2 and their corresponding ridge functions are given
in Figure 3. The classification error of the additive index
model is estimated as 18.3% using ten fold cross validation,
which compares favorably with other popular classification
tools (Newman et al., 1998).
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Figure 3. Estimated ridge functions for the Pima Indian Diabetes data.

5. CONCLUSION

In this paper, we propose a penalized least squares es-
timator to simultaneously determine the number of factors
and estimate the regression function in the additive index
model. The method becomes the recently proposed COSSO
estimate if the factors are known in advance and the addi-
tive index model reduces to the additive model. We show
the regression function estimate can achieve the optimal
convergence rate. Thanks to the efficient algorithm for com-
puting the smoothing spline estimate and their derivatives,
the proposed estimate can be computed using an iterative
algorithm.

Numerical experiments have been conducted to demon-
strate the flexibility of the additive index model and the
efficiency of the proposed estimate. We also used a real data
example to show that the idea of the additive index model
can be extended beyond the usual mean regression which is
the primary focus of this paper.

Received 17 October 2010
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