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ABSTRACT 

Many goods undergo decay or deterioration over time which suffer from depletion by direct spoilage while stored. So decay 

or deterioration of these goods in stock is a very realistic feature and it is necessary to use this factor in inventory models. In 

this paper we have developed an order level inventory model for constant rate of deterioration. We have also considered a 

variable type of demand which behaves differently in the given time horizon. The demand rate is constant for a certain fixed 

time and then the demand varies linearly with time. This paper also deals with different selling prices in two different time 

periods. The objective of the model is to find the optimal on-hand inventory by considering the profit function. 
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INTRODUCTION  

One of the most developed fields of Operations Research 

is inventory modeling. Inventory has been defined as an 

idle resource that possess economic value by 

Monks(1987). Keeping an inventory for future sales or use 

is very common in business. Retail firms, wholesalers, 

manufacturing companies and even blood banks generally 

have a stock of goods on hand. Usually the demand rate is 

decided by the amount of the stock level. The motivational 

effect on the people may be caused by the presence of 

stock at times. Large quantities of goods displayed in 

markets according to seasons motivate the customers to 

buy more. If the stock is insufficient the customers may 

prefer some other brands, as shortages will fetch loss to the 

producers. On the other hand, deterioration is an important 

natural phenomenon and the consequent loss due to decay 

of items may be quite significant. Mainly when, physical 

goods are stocked for future use, in some items such as 

medicines, foodstuff, dairy items, volatile liquids, the 

process of deterioration is observed.  

Resh et al., (1976) and Donaldson (1977) are the first 

researchers who considered an inventory model with a 

linear trend in demand. The time dependent demand 

patterns reported above are linear, that is, the demand 

increases continuously with time or decreases continuously 

along with the time. Dave and Patel (1981), Dutta and Pal 

(1992), considered time proportional demand. Goyal 

(1986) considered linear trend in demand. Hariga and 

Benkherouf (1994) considered exponential time varying 

demand for deteriorating items. Hill(1995) proposed a time 

dependent demand pattern by considering it as the 

combination of linearly time dependent and exponentially 

time dependent of demand in two successive time periods 

over the entire time horizon and termed as “ramp- type” 

time dependent demand pattern.. The works done by 

Roy(2008), Sabahno(2009), Mirzazadeh(2010), Gayen and 

Pal(2009) are some of the models for deteriorating items 

based on different realistic situations. Deterioration is 

defined as decay, spoilage, loss of utility of the product as 

defined by Shah and Shukla(2009) . 
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In the present paper demand rate is considered as constant 

to a fixed time and  then it varies linearly with time. We 

have also considered different selling prices in two time 

periods since the demand decrease with time.. It is 

assumed that lead time is zero and shortages are not 

allowed.  The objective of the model is to find the on-hand 

inventory by maximizing the profit function. 

 

FUNDAMENTAL ASSUMPTIONS AND NOTATIONS  

 

Following assumptions are made for the proposed model: 

 Demand rate is variable with respect to time. 

 Single inventory will be used. 

 Lead time is zero. 

 Shortages are not allowed. 

 Replenishment rate is infinite but size is finite 

 Time horizon is finite. 

 There is no repair of deteriorated items will occur 

during the cycle 

 

Following notations are made for the given model: 

I(t) = On hand inventory at time t 

R(t) = Demand  

 θ=The constant deterioration rate where 0  θ 1 

I○=Inventory at time t=0 

  = Selling price per unit in (0,t1) 

  =Selling price per unit in(t1,T) 

c=Unit cost of the item per unit time 

Q=On-hand inventory 

H=Holding cost per unit item per unit time 

r=Replenishment cost per replenishment which is 

a constant 

T=Duration of a cycle 

  =Initial demand rate 

a=Rate of change of demand with respect to t. 

 

DESCRIPTION OF THE MODEL 

 

In this model we consider the rate of demand R(t) 

to be a constant up to a certain time t=   and after 

which it varies linearly with time. If I(t) be the on 

hand inventory at time t 0, then at time t+Δt, the 

on-hand inventory will be 
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Define R(t) =   +a(t-  ).H(t-  )                                      
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Now equation (1) becomes, 
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From equation (4),                                                                                                        
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Taking integral with respect to t on both sides, 
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To find c applying initial condition, I=I      
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Now average on hand inventory is given by, 
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Integrating the first part of  (#) we get 
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Integrating the second part of the above equation (#) we 

get 
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Again differentiating with respect to     both sides 
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It will give a global maximum for profit function        )    

 

CONCLUSION 

 

The above model deals with an inventory model of variable 

demand rate , that is, demand rate is 

constant up to a time t after which the demand rate varies 

linearly with time. The paper also deals two different 

selling prices for two different time periods .  During the 

period (0.t), the demand rate is maintained at a constant 

level but after that period the amount of inventory 

decreases continuously with time but the effect of 

deterioration is maintained throughout the cycle. Hence the 

inventory level decreases due to the combined effect of 

demand as well as deterioration.  The model is solved by 

maximizing the profit function and on hand inventory is 

also found.  The above model can also be studied under 

shortages, backlogging and backordering.   
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