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Abstract. Whole-body MR receives increasing interest as potential al-
ternative to many conventional diagnostic methods. Typical whole-body
MR scans contain multiple data channels and are acquired in a multi-
station manner. Quantification of such data typically requires correction
of two types of artefacts: different intensity scaling on each acquired im-
age stack, and intensity inhomogeneity (bias) within each stack. In this
work, we present an all-in-one method that is able to correct for both
mentioned types of acquisition artefacts. The most important proper-
ties of our method are: 1) All the processing is performed jointly on all
available data channels, which is necessary for preserving the relation
between them, and 2) It allows easy incorporation of additional knowl-
edge for estimation of the bias field. Performed validation on two types
of whole-body MR data confirmed superior performance of our approach
in comparison with state-of-the-art bias removal methods.

Keywords: Whole-body MRI, multi-spectral MRI, multi-station acqui-
sition, intensity inhomogeneity correction, intensity standardization.

1 Introduction

Whole-body (WB) MR has become a subject of intensive research for having
a large potential in being an alternative to other imaging modalities with high
anatomical detail. Nowadays, it has found clinical application in, among others,
oncology, e.g. in assessment of multiple myeloma (MM), or cardiology, e.g. in
obesity studies [1].

WB MR acquisitions are typically performed in multiple stages [2], a restric-
tion imposed by the limited field of view of the MR scanner. For further process-
ing, all the separately acquired image stacks need to be combined into a single
volume. Such reconstructed volumes typically exhibit two types of irregularity:
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intensity inhomogeneity (bias) within each stack and a different dynamic inten-
sity range for each station [3]. Both inhomogeneities cause significant problems
for further image processing, thus robust removal of these artifacts would be
highly desired.

A number of methods has been developed during last years for correction of
both types of intensity inhomogeneity. An extensive review of the bias correc-
tion methods can be found in [4]. For dealing with the second type of intensity
inhomogeneity, several specialized methods have been developed [3].

Here we present a novel all-in-one method for volume reconstruction from
multi-station multi-spectral WB MR data. The developed method performs cor-
rection of both types of intensity inhomogeneity. The main methodological con-
tribution of this work is two-fold: 1) We extend the Coherent Local Intensity
Clustering (CLIC) framework [5] to the multi-spectral data case with joint esti-
mation of the bias field for all data channels (Section 2.2), that allows preserving
relation between them; and 2) Two novel optimization constraints (Section 2.4)
were added to the model for improved estimation of the bias field. The following
section describes our method and its novel parts in full detail.

2 Method

Our method is based on the CLIC framework, which was extended in several
parts to cope with the complexity of our data. More precisely, the following
modifications were developed in comparison with the original method:

• All the processing is performed jointly on all available data channels. This
is important for preserving correspondence between these channels.

• We consider the bias field b to be additive, which is achieved by applying
the logarithmic transformation to the general MR acquisition model

I = J + b+ nbio, (1)

where I and J are logarithms of the measured and the true signal correspond-
ingly, and nbio is the “biological noise”. Additive bias model is more appropri-
ate when the tissue-related bias is more prominent than the hardware-related
one, and drastically simplifies solving the constrained optimization model.

• The possibilistic clustering [6] is used instead of the probabilistic one.
• The scaled Mahalanobis distance [6] is used instead of the Euclidean one.
• The centers ci and the fuzzy covariance matrices Σi [7] of each cluster
i = 1, N are kept fixed to the values estimated from the data’s intensity
histogram; see Section 2.3.

Here we formulate our model assuming WB MR data with two channels, but all
the methods can be directly extended to the three and more channels case.

2.1 Inter-station Intensity Calibration

Inter-station data calibration is applied for equalization of the intensity of differ-
ent stacks within the same scan. Depending on the anatomical region to which
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the acquired image stack corresponds, its intensity distribution can vary consid-
erably from that of other stacks. The equalization is performed according to the
approach described by Jäger and Hornegger [3]: each joint intensity histogram
Hi is registered to the histogram Href of a reference station, and the calculated
deformation fields are used for performing the intensity mapping. For performing
all the registrations, we used the software tool "elastix" [8].

2.2 Joint Multi-spectral Bias Correction via Possibilistic Clustering

The CLIC framework estimates the bias field and the tissue probability maps
based on two core assumptions: 1) The object consists of a finite number of tissue
classes N , each of them having a constant true intensity value ci (i = 1, N); and
2) The estimated bias field b is slowly varying.

These assumptions allow to partition the entire image domain Ω into disjoint
tissue regions Ωi (i = 1, N) via fuzzy classification [9]. The tissue classification
and the bias field estimation is formulated as a single optimization problem. For
the case of an additive bias field (1), this requires minimization of the following
energy functional

J (U, c, b) �
∫ N∑

i=1

∫
uq
i (y)K(x − y) |I(y) − b(x)− ci|2 dydx, (2)

where ci is the center of the cluster i = 1, N , and ui is the membership probability
function of the corresponding tissue; x and y are Cartesian coordinates on Ω;
q ≥ 1 is a scalar; and K is truncated Gaussian kernel.

The energy (2) is convex with respect to the variables b, c and U , thus the
model unknowns can easily be determined by differentiation with respect to the
corresponding variables. For joint bias correction on two channels, the energy
functional (2) for the vector image intensity I = (I1, I2), bias field b = (b1, b2),
and centers ci = (c1,i, c2,i) of each cluster i = 1, N can be written as

J (U, c,b) =

∫ N∑
i=1

uq
i (y)di(y; c,b)dy, (3)

where

di(y; c,b) =

∫
K(x− y)dx

[
s11,i (I1(y) − b1(x)− c1,i)

2
+ (s12,i + s21,i)×

(I1(y) − b1(x) − c1,i) (I2(y) − b2(x)− c2,i) + s22,i (I2(y) − b2(x)− c2,i)
2

]
,

and [6] (
s11,i s12,i
s21,i s22,i

)
= (Σnew

i )
−1 |Σnew

i |1/nd .

Here we use an improved estimate Σnew
i [7] of the covariance matrix Σi, and nd

is the data dimensionality (in our case nd = 3).
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Within the possibilistic clustering framework, the class membership functions
are given by the following expression [6]

ûi =

[
1 +

(
di(I)

ηi

) 1
q−1

]−1

, i = 1, N, (4)

where ηi is the bandwidth of each cluster. Our definition of this parameter is
given in Section 2.3. Differentiation of (3) with respect to b gives us a following
linear system of equations for calculating the bias field, whose solution can be
written as

b̂s,k = T (3−k)
s Q(k)

s − T (3)
s Q(3−k)

s , k = 1, 2, (5)

where the variables P
(1:3)
s , Q

(1:2)
s , and T

(1:3)
s are defined in the Appendix. The

values of ui (i = 1, N) and b are iteratively updated till convergence by using
expressions given in equations (4) and (5).

2.3 Algorithm Initialization

Our algorithm is initialized by estimating the mean ci, the covariance Σi, and
the bandwidth ηi =

∫
Ri

di(x)dx of each cluster i = 1, N from segmented joint
histogram. Based on the typical appearance of the joint histograms, we identify
N as the number of present clusters. Consequently, the joint histogram is au-
tomatically segmented using a region-growing-type algorithm into N regions Ri

corresponding to each of the observed clusters.

2.4 Constrained Optimization

Overlap Constraint. Multi-station MR data is typically acquired with relatively
large overlap between the neighboring stations. The real image intensities in the
overlap region of each pair of neighboring stations should be approximately equal

J(x) = J
(
Ds(x)

)
, x ∈ O(2)

s , s = 1, Ns − 1. (6)

This property can be used to further improve the quality of bias correction.
Here index s denotes the image stack; Ns is the total number of stations in the

data set; O
(1)
s and O

(2)
s are respectively the overlap regions of stack Ss with the

previous and the next stacks; and Ds(x) is the function that maps O
(2)
s onto

O
(1)
s+1. Providing such extra knowledge into the system is especially important as

the regions adjacent to the boundary are the most prone to geometric distortions.
Condition (6) is incorporated into our model as an optimization constraint

J overlap
constr = J +

Ns−1∑
s=1

λs

[(
K ∗ Is − bs

)− (
K ∗ Is+1 − bs+1

)
(Ds))

]
, (7)

where λs = (λs,1, λs,2) (s = 1, Ns − 1) is the vector of Lagrange multipliers [10]

for both image channels for x ∈ O
(2)
s . The full derivation of the equivalents of

equations (5) for the constrained optimization case is presented in the Appendix.
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Linearity Constraint. For the two-point Dixon imaging, each voxel belongs to
one of the following classes: background (air), water, or fat. In order to better
preserve the relation between the last two classes, we introduce the following
constraint for x ∈ {x : argmaxi(ui(x)) ∈ {iw, if}}:

J linear
constr = J +

Ns∑
s=1

λs

2∑
k=1

(−1)3−ka3−k

[(
K ∗ Is,k − bs,k

)− ciw,k

]
, (8)

where a = ciw − cif , and iw and if denote correspondingly the background, the
water, and the fat class. Such constraint imposes a linear relation between the
two foreground classes (water and fat). Final expressions for the Lagrangian
multiplier λ and the bias field b for the described constrained optimization
problem are given in the Appendix.

2.5 Intensity Standardization and Volume Reconstruction

Inter-scan intensity standardization is applied when the analysis involves mul-
tiple different scans, e.g. for baseline–follow-up comparisons. In this case, WB
volumes belonging to different patients or follow-up scans of the same patient re-
quire prior intensity calibration. We achieve this by registering joint histograms
of the complete body volumes, using a similar approach to the one described in
Section 2.1.

Finally, all the separately acquired image stacks are reconstructed into a single
volume using the geometric information recorded by the scanner. Since the data
is acquired with some overlap between the neighboring stations, the information
from both stacks has to be combined in the overlap region. The combined image
is constructed by using the image blending method [11].

3 Experiments and Results

In this section, we apply the described method to two large sets of WB MR data:
multiple myeloma patients data set, and two-point water-fat Dixon data set. Bias
correction performance of our method was validated by comparing it to that of
the two state-of-the art methods: N4 [12] and the original CLIC algorithm [5].

MM Patients Data Set. The MM patients data set consisted of 24 WB volumes
of 8 patients, and was acquired on a commercial human WB 1.5T MR Philips
Intera system. Each WB volume had both a T1-weighted (T1W) and a Short Tau
Inversion Recovery (STIR) or T2-STIR sequence. Number of scans per patient
varied from 1 to 4, with approximately six month interval between the follow-
up scans. 3D image stacks with coronal slice direction were acquired with the
overlap approximately equal to 5% of the total volume of the two stacks. For
improved estimation of the bias field in the overlap area, the overlap optimiza-
tion constraint introduced in Section 2.4 was used. Processing time on a typical
volume of size 1500× 500× 50 voxels was around 20 minutes.
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Fig. 1. Result of bias correction on a two-point Dixon data set. The areas of the most
significant quality improvement are indicated by the arrows. The estimated inhomo-
geneity field is in nice agreement with characteristic RF wave propagation problems
known in quadrature body coil transmission at 3T.

Fig. 2. Bias correction performance of our method on the MM patients data set (left)
and the two-point Dixon data set (right). The histogram entropy of the raw data
and that corrected by three methods: N4, CLIC, and the presented method (labeled as
DZY13), is shown. Lower histogram entropy indicates better bias correction. Statistical
significance was calculated using the paired Kolmogorov-Smirnov test with the DZY13
method as the reference.

Two-point Dixon Data Set. For two-point Dixon data, in vivo experiments were
conducted on 8 healthy adults using a 3.0T clinical Philips Achieva Tx scan-
ner. For simplicity and patient comfort reasons, the body coil was used for RF
transmission and reception in the quadrature mode. 3D multi-station spoiled
gradient echo (FFE) imaging was performed using a dual-echo-Dixon imaging
sequence [13] with alternating readout gradients for water-fat separation. Bias
correction on this data set was performed by using the algorithm described in
Section 2, with the linearity optimization constraint. Processing time for both
typical volume sizes 256 × 256 × 1520 voxels and 336 × 336 × 960 voxels was
around 30 minutes.

A typical result of performing bias correction by our method is shown in
Figure 1. The histogram entropy [4], which is widely applied for measuring
the quality of bias correction when a ground truth is not available, was used
for quantitative evaluation. The results with respect to the entropy intensity
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histogram of the raw images and the images corrected by our algorithm and two
reference methods N4 and CLIC are shown in Figure 2. This analysis clearly
indicates large quality improvement of the data corrected by our method, and
its better performance in comparison with the reference state-of-the-art bias
removal algorithms.

4 Conclusions

In this paper, we have presented a new algorithm for reconstruction of a com-
plete volume from multiple separately acquired stations in multi-spectral WB
MR data. Our method performs reconstruction of two types of intensity inho-
mogeneity, and combines all the acquired stations into a single volume. Among
the novelties introduced in our algorithm compared to established methodology,
the most important two are: 1) The joint processing (bias correction, calibra-
tion, standardization, etc.) on all available data channels; and 2) Integration
of optimization constraints for improved estimation of the bias field. The de-
scribed algorithm is applied to two different types of WB MR data, resulting in
considerable quality improvement of the volumes reconstruction.
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Appendix

We introduce the following notation for k = 1, 2 and l = 1, 3

P (k)
s = 2K ∗

N∑
i=1

uq
i,sskk,i, P (3)

s = K ∗
N∑
i=1

uq
i,s(s12,i + s21,i),

Q(k)
s = K ∗

N∑
i=1

uq
i,s

[
2(Is,k − ci,k)skk,i + (Is,3−k − ci,3−k)(s12,i + s21,i)

]
,

T (l)
s =

P
(l)
s

P
(1)
s P

(2)
s −

(
P

(3)
s

)2 , R(k)
s = K ∗ Is,k − T (3−k)

s Q(k)
s + T (3)

s Q(3−k)
s ,

Using the optimization constraint (7), the following equivalent of the expres-
sion (5) can be derived for k = 1, 2

b̂
(c)
s,k= b̂s,k + T (3)

s

(
λs−1,3−k(D

−1
s ) + λs,3−k

)− T (3−k)
s

(
λs−1,k(D

−1
s ) + λs,k

)
, (9)

where D−1
s (x) denotes the inverse mapping of O

(1)
s+1 onto O

(2)
s .

Combining (9) with the constraint (7), we obtain a linear system of equations
for calculating the Lagrange multipliers λ. Its solution for k = 1, 2 is given by

λs,k=
V

(k)
s W

(k)
s − V

(3)
s W

(3−k)
s

V
(1)
s V

(2)
s −

(
V

(3)
s

)2 , V (l)
s =T (l)

s +T
(l)
s+1(Ds), W

(k)
s =R(k)

s −R
(k)
s+1(Ds).

Substituting this solution into (9) gives us the resulting expressions for b.
For the case of the optimization constraint (8), the following expression for

the bias field b̂(c) is obtained

b̂
(c)
s,k = b̂s,k + (−1)3−kλs(a3−kT

(3−k)
s + akT

(3)
s ), k = 1, 2. (10)

Substituting the latter into the constraint (8) gives us

λs,k =
a2(K ∗ Is,1 − b̂s,1 − c1,iw)− a1(K ∗ Is,2 − b̂s,2 − c2,iw)

a21T
(1)
s + a22T

(2)
s + 2a1a2T

(3)
s

, k = 1, 2.

This solution, together with (10), gives us the final expression for the bias b.
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