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Extraction of motion from visual input plays an
important role in many visual tasks, such as separation
of figure from ground and navigation through space.
Several kinds of local motion signals have been
distinguished based on mathematical and computational
considerations (e.g., motion based on spatiotemporal
correlation of luminance, and motion based on
spatiotemporal correlation of flicker), but little is known
about the prevalence of these different kinds of signals
in the real world. To address this question, we first note
that different kinds of local motion signals (e.g., Fourier,
non-Fourier, and glider) are characterized by second- and
higher-order correlations in slanted spatiotemporal
regions. The prevalence of local motion signals in
natural scenes can thus be estimated by measuring the
extent to which each of these correlations are present in
space-time patches and whether they are coherent
across spatiotemporal scales. We apply this technique to
several popular movies. The results show that all three
kinds of local motion signals are present in natural
movies. While the balance of the different kinds of
motion signals varies from segment to segment during
the course of each movie, the overall pattern of
prevalence of the different kinds of motion and their
subtypes, and the correlations between them, is
strikingly similar across movies (but is absent from white
noise movies). In sum, naturalistic movies contain a
diversity of local motion signals that occur with a
consistent prevalence and pattern of covariation,
indicating a substantial regularity of their high-order
spatiotemporal image statistics.

Introduction

Extraction of motion from visual input is crucial to
making use of the visual input for a variety of purposes,
including separation of figure from ground (Grossberg,

1994), navigation through space (Ullman, 1979b), and
collision avoidance. Neural processing of visual motion
is usually considered to consist of two stages: first, the
extraction of local motion signals, and second, a stage
in which these local signals are combined.

Local motion signals are typically classified accord-
ing to their mathematical properties (Chubb & Sperl-
ing, 1988; Lu & Sperling, 2001; Reichardt, 1961). This
has led to an important insight: There are two kinds of
cues with distinct mathematical properties (Fourier and
non-Fourier; see below) that can lead to the perception
of visual motion. But it is unclear how these
mathematical distinctions relate to the kinds of motion
signals that are present outside of the laboratory. This
is the question we address here: Specifically, do
naturalistic spatiotemporal stimuli contain different
kinds of local motion signals? If so, how do they
covary? These questions have important functional
implications. For example, if different kinds of local
motion signals are strongly correlated, extraction of
only one kind of motion signal could suffice from a
functional point of view, and sensitivity to the other
kinds of local motion might just be a byproduct of
neural computations, useful to investigators for un-
covering their nature. Alternatively, if the complement
of motion signals depends on context (e.g., object
motion vs. self-motion), then there might be selective
pressure for separate extraction of multiple kinds of
local motion signals. This would enable higher-level
modules for action, object recognition, etc. to be
separately linked to the appropriate kinds of local
motion signals.

Approaching this question requires quantifying and
characterizing the different kinds of motion signals that
are present in natural contexts, and doing this in a way
so that they can be compared on an equal footing. This
is not as straightforward as it might at first seem
because motion types have been defined in very
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different manners. Specifically, Fourier (F) motion is
typically defined by the presence of a pairwise
spatiotemporal correlation (Adelson & Bergen, 1985;
Reichardt, 1961) of luminance. (The reason that the
term Fourier motion is used is that the set of pairwise
correlations—the autocorrelation function—is the
Fourier transform of the power spectrum, as is well
known [Bracewell, 1999].) In contrast, other kinds of
motion signals have been defined on the basis of
perceptual phenomena that occur in the absence of such
correlations. The best-known examples of this are often
called non-Fourier (NF) motion (Chubb & Sperling,
1988; Fleet & Langley, 1994), in which there is pairwise
spatiotemporal correlation of a feature (e.g., a spatial
edge or a temporal flicker edge). Moreover, motion
perception can also occur in the absence of pairwise
correlations of luminance (F motion) or of local
features (NF motion), a phenomenon known as glider
(G) motion (Fitzgerald, Katsov, Clandinin, & Schnit-
zer, 2011; Hu & Victor, 2010). However, the extent to
which these mathematically distinct signals are present
in naturalistic inputs is unknown. To address this
question, a necessary first step is to formalize the
notions of F, NF, and G motion signals (and their
subtypes) in terms of specific mathematical transfor-
mations so that they can be compared on equal footing.

Here, we develop such measures and apply them to
naturalistic movies (several popular films). The data
show that all kinds of motion signals that we analyzed
coexist in moving visual images. The proportions of
motions are relatively constant across movies, and
there are consistent correlations between the different
kinds of motion signals. However, within individual
movie segments, one or another kind of motion signal
may predominate, indicating that these correlations are
only partial; that is, the different motion types provide
nonredundant information.

Materials and methods

Data

The movie database was assembled by J. E. Cutting
(www.cinemetrics.lv) and included hand annotations of
the boundaries between continuous camera segments
(i.e., ‘‘shots’’). We used these boundaries (with fades
and similar transitions excluded, and a five-frame
additional margin) to define the analysis segments. All
movies had similar characteristics: 24 frames per
second, with each frame provided at a resolution of
256·256 pixels to respect copyright concerns. Most
analyses made use of this resolution, though some (as
indicated below) were carried out after further down-
sampling these pixels in blocks by averaging. We use

the term check to represent the analysis unit (i.e., either
a single pixel or a block of pixels that have been
averaged). Since the original films had a landscape
aspect ratio, each pixel in the database represented a
rectangular region of the original film, larger in the
horizontal direction than the vertical. Specific movies
that were selected were The 39 Steps (1935), A Night at
the Opera (1935), Anna Karenina (1935), and Mr. and
Mrs. Smith (2005). In designating check position, we
used matrix convention in which the X-coordinate
increases from top to bottom and the Y-coordinate
increases from left to right. The analyses in the main
text concern the YT plane (i.e., horizontal motion);
parallel analyses in the XT plane (vertical motion) are
in Supplement S1.

Quantification of motion signals

Our goal was to quantify different kinds of local
motion signals (F, standard NF, and G) in a segment of
a naturalistic movie. We did this by first measuring
each kind of motion signal based on the luminance
correlations within the appropriate spatiotemporal
template (Figure 1) to obtain local motion scores, and
then, for each kind of motion, we combined these
scores across space in different ways.

We began by motivating the definition of each kind
of motion signal. Typically, F motion is defined by
pairwise spatiotemporal correlation of the luminance
values in the image (Van Santen & Sperling, 1985). NF
motion denotes the motion of a local feature, such as
an edge or flicker, in the absence of pairwise
spatiotemporal correlation of luminance. An example
of NF motion is an object that is flickering randomly—
thus eliminating pairwise correlations—while moving
across a background of equal mean luminance (Chubb
& Sperling, 1988). However, although several models
for NF motion extraction have been proposed (Chubb
& Sperling, 1988; Fleet & Langley, 1994), there is no
single mathematical quantity (analogous to spatiotem-
poral correlation used for F motion) that is recognized
as defining its strength. As will be shown later and in
Supplement S3, our approach is able to capture the
motion signals in these stimuli. Finally, G motion (Hu
& Victor, 2010) encompasses third- or higher-order
correlation in slanted spatiotemporal regions and
occurs in the absence of pairwise spatiotemporal
correlation of luminance (F motion) or simple features
(NF motion).

These motion types have a fundamental similarity:
They all depend on correlations within a slanted
spatiotemporal region (Figure 1). For F motion, the
correlation is pairwise, and the region consists of two
checks, offset in space and time. For NF motion, the
region consists of four checks, and the shape of the
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region depends on the subtype of NF motion. For NF
motion of a spatial feature (NF-S), the region is a
parallelogram consisting of two pairs of checks, and the
pairs are in adjacent time-slices. Each pair of checks
effectively detects the spatial feature (match vs.
mismatch), and the combination of the two pairs
detects whether this feature moves. For NF motion of a
temporal feature (NF-T), the same region is rotated to
interchange the roles of space and time. Each pair of
checks detects whether there is local flicker, and the
combination of the two pairs detects whether the
feature moves. For the G motion types considered here,
the region is a triplet of checks. Depending on the
orientation of the triangle formed by the three checks,
the region corresponds to either expansion or contrac-
tion over time. Thus, in all cases, the local motion
signal corresponds to the correlations among a group
of checks in a specific shape, i.e., the template (Figure 1).
The templates shown in Figure 1A correspond to

motion to the right; flipping them across the Y-axis
corresponds to motion to the left.

To quantify the correlations within these templates,
we calculated the product of the luminance values in
their checks (after subtracting the mean luminance of
each shot separately). To implement this for color
movies, we first converted the color inputs to gray
levels using Matlab’s (The MathWorks, Inc., Natick,
MA) rgb2gray function. (The numeric range of
luminance is irrelevant because we later normalized our
calculations by a parallel computation for a movie with
spatial correlations removed; see next section for
details.)

Following Reichardt (1961) and many others, we
noted that the raw correlation value (i.e., the product of
the luminance contrasts) will contain spurious motion
signals when a static spatial edge is present. As is
standard for F motion, we removed this spurious signal
by an opponent process in which correlations from left-

Figure 1. A summary of calculation of the basic local motion scores. (A) The templates used to quantify each kind of local motion. (B)

Details of the various motion score calculations. First, Weber contrast values in the solid-bordered checks are multiplied together.

These products are then summed in an opponent fashion (scores from red-outlined configurations are added; scores from green-

outlined configurations are subtracted) to generate a local score motion signal (see text for details). (C) How opponency removes

spurious signals due to static luminance edges. Each subpanel diagrams the result of a computation of the local motion score when

the template (stars) is positioned near a luminance edge. The four components of each subpanel correspond to the four components

of the subpanels in B. For F and NF templates, left-oriented and right-oriented placements of the template each include the same

number of dark and light checks. Thus, the left and right components of the calculation result in cancellation by their opponency. In

contrast, for the G template, the left-oriented placement of the template contains one dark check, while the right-oriented placement

contains two dark checks. Thus, the left-versus-right opponency does not result in cancellation. However, forward and backward

placements of the template are matched in terms of the luminances of the checks that they contain, and therefore the forward-

versus-backward opponency properly cancels the spurious motion signal. Note that for the F and NF templates, this second explicit

stage of opponency has no effect. This is because of their symmetry: A left-to-right flip of the template is the same as a forward-to-

backward flip (B).
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facing and right-facing templates were subtracted
(Figure 1). This strategy suffices for NF motion as well,
but is insufficient for G motion (Figure 1). To eliminate
this signal for G motion, we added a second opponent
stage in which signals from forward- and backward-
facing templates were subtracted. Fundamentally, this
second opponent stage is needed because the glider for
G motion lacks the symmetry of the templates for F
and NF motion—for F and NF templates, left-versus-
right spatial opponency is equivalent to forward-
versus-backward temporal opponency. In other words,
because of this symmetry for F and NF templates, the
standard single-opponent calculation (space only) is
equivalent to a double-opponent calculation (space and
time), but for G templates, these two opponencies must
be explicit. (Note that had we included only the
forward-versus-backward opponency for G templates,
then we also would not have eliminated spurious
motion signals due to full-field flicker.)

Formally, the calculation of the local motion score is
as follows. A motion type corresponds to a template, B,
which is a set of spatiotemporal voxels in a specific
relative position. We represent a template as a set of
triplets [(x1,y1,t1), (x2,y2,t2), . . ., (xn,yn,tn)], in which each
of the xi, yi, and ti are integers and n is the number of
elements in the template. Since the template is deter-
mined by the relative positions of its voxels, we require
that min(xi)¼min(yi)¼min(ti)¼ 0, where i¼ 1, . . ., n.

A template that is reversed along the X-dimension,
which we denote as BX, is the template in which each
triplet (xi,yi,ti) of B is replaced by [LX(B)�xi,yi,ti], where
LX(B) is the length of the template in the X-dimension,
namely, max(xi). Reversals along the Y and T
dimensions are similarly defined. BYT, for example,
denotes a template that has been reversed along the Y
dimension and then along the T dimension.

The raw correlation value for the glider B at the
position (x,y,t) is defined as a product that involves all
offsets contained in the glider:

RawCorrðx; y; t;BÞ ¼Y

ðxi;yi;tiÞ�B
Iðxþ xi; yþ yi; tþ tiÞ � Īshot½ �;

where I(x,y,t) is the luminance of the image at the
position (x,y,t) and Īshot is the median luminance across
the shot. Finally, the local motion score at position
(x,y,t) for motion type B in direction Z is defined by the
double-opponent calculation:

LocalMotionðx; y; t;B;ZÞ

¼ RawCorrðx; y; t;BÞ�RawCorrðx; y; t;BZÞ
� �

� RawCorrðx; y; t;BTÞRawCorrðx; y; t;BZTÞ
� �

:

Note that although our approach aims to capture
specific types and kinds of local motion signals (F,
NF-S, NF-T, and G), it can be easily modified to
capture motion signals carried by correlations in other
spatiotemporal configurations (e.g., Hu & Victor, 2010)
by using the appropriate templates.

Combining local motion signals within a shot

Once the local motion scores were calculated as
described above, the next step was to quantify motion
signals within a movie ‘‘shot’’ (i.e., a sequence of frames
that correspond to an individual scene). We used two
kinds of strategies: a first kind that simply aggregates
the local motion signals, and a second kind that is
sensitive to whether these local motion signals are
spatially coherent. Each of these strategies was applied
separately to the three kinds of templates (F, NF, and
G).

In the first kind of strategy, we simply computed the
sum of the squares of the local motion signals for all
placements of a particular kind of template within the
shot. We normalized this quantity by dividing it by the
results of a parallel computation applied to the same
shots but in which the checks within each frame were
scrambled. For the computation of the normalizing
quantity, local correlations were determined by sub-
tracting the global mean rather than the shot mean to
avoid normalizations requiring division by quantities
near zero. This allows for a meaningful comparison of
the different motion types, independent of the size and
shape of their templates. We call these quantities
(computed separately for F, NF-S, NF-T, and G
motions) the ‘‘simple motion’’ (SM) scores.

In formal terms, to derive the SM score from local
motion scores, we proceeded as follows. First, for
normalization purposes, we defined the local motion of
a random movie:

LocalMotionRandðx; y; t;B;ZÞ

¼ RawCorrRandðx; y; t;BÞ�RawCorrRandðx; y; t;BZÞ
� �

� RawCorrRandðx; y; t;BTÞ�RawCorrRandðx; y; t;BZTÞ
� �

;

where

RawCorrRandðx; y; t;BÞ ¼Y

ðxi;yi;tiÞ�B
Irandðxþ xi; yþ yi; tþ tiÞ � Īmovie½ �:

Here, Irand is a movie in which checks are randomly
permuted within a shot, and Īmovie is the median
luminance across the movie. The SM score for a shot,
for motion type B in direction Z, is the local motion
score, averaged over the shot, normalized by the
corresponding quantity for a random movie:
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SMðB;Z; shotÞ

¼
, LocalMotionðx; y; t;B;ZÞ½ �2.ðx;y;tÞ�shot
, LocalMotionRandðx; y; t;B;ZÞ½ �2. ðx;y;tÞ�shot

:

The above average is taken over all positions (x, y, t)
of the template within the shot.

We note that there is an important caveat that arises
when this approach is applied to synthetic stimuli (in
contrast to digitized naturalistic movies, considered
here). Specifically, the grid used for motion analysis
and the grid used for stimulus synthesis are separate
grids, and must be considered as such. That is, when
the motion scores are computed, the template must be
placed in generic positions on the stimulus and not just
in register with the grid used for stimulus generation.
This detail is critical. Without it, the present approach
might fail to detect the motion signal in some of the
drift-balanced stimuli of Chubb and Sperling (1988),
but with it, the approach captures the motion in all of
them. This is illustrated and further discussed in
Supplement S3 (Figure S13).

The second kind of strategy, which is designed to be
sensitive to whether the local motion signals are
spatially coherent, generalizes the use of a Reichardt
model output to quantify the strength of standard F
motion signals. In these strategies, the luminances in
the ‘‘region of interest’’ (ROI) of 16 checks (either
1·4·4 or 4·1·4; [X, Y, T]) are considered together.
Each ROI is then scored to indicate to what extent
there was a coherent F, NF, or G motion signal
throughout the patch. To simplify the process of
defining and computing these scores, we first binarized
the luminance values in each check—we replaced each
luminance by þ1(black) or �1 (white), depending on
how it compared with the median luminance within
the shot. (Parallel analyses in Supplement S1 show
that the results were robust with respect to the
threshold used for binarization [Figures S7, S8 and
S11] and that similar results were found for analysis in
the XT plane [Figures S5 and S6]. Results in the main
text are for the YT plane.) Note that this binarization
can be considered as a form of dimension reduction.
Prior to binarization, there are 25616 possibilities for
the ways that a 16-check ROI can be colored; after
binarization, there are only 216 such combinations.
Thus, binarization dramatically simplifies the process
of defining, and then computing, a mapping from all
of the possible ROI to a motion score; this is our
motivation for it.

Formally, binarization corresponds to replacing
each intensity I(x, y, t) by Ibinarized(x, y, t), where
Ibinarized(x, y, t) is þ1 or �1, according to whether
I(x, y, t) is above or below a threshold (here, the median
luminance within the shot). All of the above quantities
can then be calculated from the binarized movie. We
denote such quantities by RawCorrbinarized(x, y, t; B),

RawCorrRandbinarized(x, y, t; B) etc. Once binarization
replaces each luminance value with þ1 or �1, the
product of luminance values within a template reduces
to determining whether there is an even or an odd
number of checks of each color. All of the colorings
that yield a product of þ1 contribute positively to a
rightward motion signal, and all of the colorings that
yield a product of�1 contribute negatively. Thus, the
configurations that contribute positively to the mo-
tion score can be enumerated in a library. This is
shown in Figure 2A, using the four-check NF-S
template as an example. Since all of the colorings in
the library yield a product of þ1, they have an even
number of white and black checks distributed among
its four positions (two checks at one time step and two
checks at the next). Thus, if a coloring has a spatial
edge at one time step (one black and one white check),
it must have a spatial edge at the next; if it lacks a
spatial edge at one time step (two blacks or two
whites), it must lack a spatial edge at the next. These
relationships capture the notion that NF-S corre-
sponds to spatiotemporal correlation of the presence
or absence of an edge.

Based on these libraries, each ROI can be analyzed
in terms of the configurations it contains to yield a
score that quantifies the amount of each kind of
coherent motion. We used two complementary ap-
proaches (but as we show below, the conclusions are
largely similar).

The first approach (Figure 2B, top left) considers
all of the placements of the template within the ROI
and tallies the number that contributes positively to
the motion signal. This yields a set of ‘‘rule match’’
(RM) scores—one for each orientation of the tem-
plate (right forward, left forward, right backward, left
backward). These components are then compared to
form a final ‘‘rule match opponent’’ (RMO) score for
the ROI.

The second approach, ‘‘pattern match’’ (PM),
treats the ROI in a more holistic fashion. To compute
the PM measure (Figure 2B, bottom left), we
determine the minimum number of checks that must
be changed so that the ROI is made up entirely of
template colorings within the library (i.e., that all
have the relevant motion signal). As is the case for the
RM approach, the four separate scores for each
orientation of the template are then combined to yield
a final ‘‘pattern match opponent’’ (PMO) score for the
ROI.

The formal definition of the RMO and PMO
scores are as follows. These scores are defined for
any template B and any slab-like ROI that can
contain the template along either the X or Y dimension,
and has its other spatial dimension equal to one.
Since the RMO score is an opponent score, we first
define its components: the RM score RM(B; Z; ROI).
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This is given by the total number of displacements
(xi, yi, ti) of the template within the ROI for which
RawCorrbinarized (xþ xi, yþ yi, tþ ti; B)¼ 1, and thus is
effectively a sum of RawCorrbinarized scores within the
ROI. The RMO score, RMO(B; Z; ROI), is then

RMOðB;Z;ROIÞ
¼ RMðB;Z;ROIÞ � RMðBZ;Z;ROIÞ
� �

� RMðBT;Z;ROIÞ � RMðBZT;Z;ROIÞ
� �

:

To define the PM score (PMO), we use the Hamming
distance, a standard way of comparing two sets of
binary numbers. Specifically, the Hamming distance
between an ROI and another region K of the same size
is given by

dðROI;KÞ ¼
X

x;y;t�ROI

jROIðx; y; tÞ � Kðx; y; tÞj:

The PM score PM(B; Z; ROI) is the minimum
Hamming distance from the ROI to any region K for
which every placement of the template in K yields a
local motion score of þ1. This minimum takes into
account all possible colorings of K; this is one reason
why the dimensionality reduction is important. Finally,
the PMO score is given by

PMOðB;Z;ROIÞ
¼ PMðB;Z;ROIÞ � PMðBZ;Z;ROIÞ
� �

� PMðBT;Z;ROIÞ � PMðBZT;Z;ROIÞ
� �

:

Analogous RMO and PMO calculations were
carried out for the other motion types (F, NF-T, and
G) based on libraries that consisted of all colorings of
the corresponding templates (Figure 1) that yielded a
product of þ1. For G motion, the procedure is
asymmetric with respect to bright and dark: The
resulting library includes three black checks but not
three white ones, so it captures expansion and
contraction of dark regions but not of light ones. We
therefore designated this library G-K (black glider)
and, in parallel, carried out computations based on a
library G-W (white glider) containing the complemen-
tary colorings. Further, we also calculated RMO and
PMO scores for the ‘‘pure NF-S’’ and ‘‘pure NF-T’’
signals. These were based on libraries that consisted of
the NF-S or NF-T library, from which the libraries that
contained F motion signals were removed (purple-
outlined templates on the right in Figure 2).

Once RMO and PMO scores were calculated within
each ROI, they were pooled within each shot by
summing their squares. As is the case for the SM scores,
we normalized this quantity by dividing it by the results
of a parallel computation applied to random movie
segments.

Note that for F motion, the RMO score is exactly
the output of a special case of a Reichardt detector (one

with spatial inputs that are point-like and closely
spaced, and has a pure delay of one frame prior to the
multiplication step) operating on a binary image. For
the PMO score, the correspondence is close but not
exact (see Supplement 2, Figure S12 for further details).
These correspondences were expected because the
RMO and PMO scores were intended to generalize the
Reichardt model in a manner that would be sensitive to
local coherence.

Results

Our results concern the prevalence of different kinds
of local motion signals in naturalistic scenes and how
they covary. As described above, we considered three
basic kinds of motion: F, NF, and G. F motion is
equivalent to pairwise spatiotemporal correlation of
luminance. NF motion (Chubb & Sperling, 1988; Fleet
& Langley, 1994) is spatiotemporal correlation of a
feature, and we identified two subtypes: spatiotemporal
correlation of a spatial feature (NF-S) or a temporal
feature (NF-T). The G motion considered here is
characterized by expansion or contraction of either
white or black patches, which can occur in the absence
of pairwise spatiotemporal correlation of luminance,
flicker, or edge (Hu & Victor, 2010). We begin with an
analysis of the prevalence of each kind of motion in
four popular movies, using a simple measure of local
motion signals (SM) and two measures that are
sensitive to whether these signals are locally coherent
(RMO and PMO; see Materials and methods for details
on how these measures are defined). Then, using the
various subtypes of motion signals that emerge from
the RMO and PMO procedure, we consider how the
different kinds of motion signals covary across movie
segments (shots).

Results for the SM scores are shown in Figure 3.
Overall, F motion strengths are the weakest, NF
motion strengths are approximately 10 times stronger,
and G motion strengths are intermediate between those
two. There is a slight difference between spatial and
temporal subtypes of NF motion: NF-S is slightly
stronger than NF-T. Importantly, this pattern of
relative strengths of the different kinds of motion
signals is preserved across movies. The consistency of
motion signals across movies holds across spatial
scales. In Figure 3, the full available movie resolution
was used (each analysis check consisted of a single
movie pixel of the 256·256-pixel frame in the
database); Figure 4 shows the results of an analysis in
which each analysis check contains the average across a
16·16 block of pixels. With this coarse-grained
analysis, F motion strength remains much weaker than
NF and G strengths, and there is a modest change in
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the behavior of the NF and G signals. Specifically,
while the tails for NF motions remain larger than the
tails for G motion (as was the case at the fine scale), the
median for G motion is now larger than the median for
NF motion. This shift, as well as the overall pattern of
motion strengths at each scale, is consistent across

movies. An extended analysis of motion strengths at
intermediate scales is shown in Supplement S1, Figures
S1 and S2.

The above analyses quantify the strength of each
kind of motion signal in each movie segment (shot), but
do so via an SM measure that is insensitive to whether

Figure 2. A summary of calculation of the RMO and PMO local scores in a spatiotemporal ROI, using NF-S motion as an example;

further details are in the text. (A) The library of eight template colorings consistent with NF-S motion. Note that all colorings have an

even number of black checks. (The four rightmost colorings, marked in purple, are the templates used for pure NF-S, as the two-check

F templates that they contain are inconsistent with F motion.) (B) Calculation of RMO and PMO scores for a 1·4·4 spatiotemporal

ROI. For the RMO method (top), we consider all placements of the template within the ROI. There are six such placements (red

dashes), and we tally the placements that yield colorings contained in the library of panel A, as these are the placements in which the

black and white checks are consistent with NF-S motion. Checkmarks indicate the placements that result in colorings that are within

the library; circles indicate the placements that result in colorings that are not in the library. Tallying the number of placements in the

library yields a unidirectional RM motion score (in this case, right forward). Analogous scores are calculated by reversing the NF-S

template in space (left forward) and time (right backward, left backward). These four unidirectional RM scores are combined in an

opponent calculation to yield the RMO score for the ROI. For the PMO method (bottom) the entire ROI is treated as a whole. We

determine the fewest number of checks that must be changed so that every placement of the template within the ROI yields a

coloring that is in the library of panel A. In this case, changing two checks suffices: When these two checks are flipped in contrast

(dashed arrows), all glider placements are in the library, and the resulting ROI is entirely consistent with NF-S motion. The tally of

these changes yields the right, forward unidirectional PM signal. These four unidirectional PM signals are combined by an opponent

computation to yield the PMO score for the ROI.
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the motion signals are locally coherent. We next carry
out parallel analyses with two measures (RMO and
PMO; see Materials and methods) that are designed to
be sensitive to coherence of motion signals within 16-
check ROIs. A key step in the construction of these
measures is binarization of the movie to reduce the
dimensionality of the problem (see Materials and
methods). Thus, as a preliminary step, we first
examined the effects of binarization itself.

Figure 5 directly compares measures of motion
strength on a shot-by-shot basis calculated with and
without binarization. For all motion types, binarization
compresses the range of the motion scores from
approximately a factor of 106 (without binarization) to

103 (with binarization to þ1 and �1). Most of this
compression is due to an increase in the lowest motion
scores since binarization eliminates the possibility of
multiplication by values near zero. But the upper ends
of the distribution are also affected by binarization:
Thresholding substantially reduces highest values for
NF-S and NF-T (Figure 5B and C) and slightly reduces
the highest values for G (Figure 5D). The likely reason
for this is that the NF scores reflect products of four
values (since the templates have four checks) and the G
scores reflect products of three values (since the
templates have three checks). Hence, binarization

results in a moderate reduction in the extreme high
values that result from products of three luminance
values (G) and a more severe reduction in the extreme
high values that result from products of four values
(NF). In line with the increasing range compression as
the number of checks in the template increase,

Figure 5. The effect of binarization on local motion scores for (A)

F, (B) NF-S, (C) NF-T, and (D) G motions. SM scores were

calculated for each movie segment based on raw luminance

values (abscissa), and also following binarization with the

threshold set at the overall shot median luminance (ordinate).

No spatial downsampling was applied. A random sample of 500

shots from each movie is presented here. Movies were color

coded as follows: (red) The 39 Steps, (blue) Anna Karenina,

(green) A Night at the Opera, and (cyan) Mr. and Mrs. Smith

(2005). The black line is the line of identity.

Figure 4. Prevalence of different kinds of motion signals,

analyzed at a coarse spatial scale, is similar across movies. For

each movie, SM scores were calculated after downsampling

each 16·16 block of pixels in the original movie to a single

check. For other details see Figure 3.

Figure 3. Prevalence of different kinds of motion signals is similar

across movies. For each movie, SM scores (see Materials and

methods) were calculated for each movie segment, and the

distribution is summarized by the median (horizontal line), the

interquartile range (heavy vertical line), the ‘‘whiskers’’ (thin
vertical line, covering four times the interquartile range), and the

outliers (individual symbols, outside the range of the whiskers).

Values are normalized by SM motion scores obtained from

movies of random pixels of similar segment length. Each motion

was calculated with respect to its relevant template shape (see

Figure 1A) in the YT plane (i.e., horizontal motion); each check

corresponded to a single pixel in the discretization of the movie

(256·256 pixels per frame, 24 frames per second). Movies were

(1) The 39 Steps (1935), (2) Anna Karenina (1935), (3) A Night at

the Opera (1935), and (4) Mr. and Mrs. Smith (2005).
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correlations of the log-scaled SM scores with and
without binarization are largest for F motion (0.79),
next-largest for G motion (0.69), and smallest for NF-S
and NF-T motion (0.62 and 0.63, respectively;
p , 0.001 in all cases).

We note that when applied to binary movies, the
local motion score for F motion coincides exactly with
the output of a Reichardt detector because the SM
score computes exactly the same product as the
Reichardt detector, and the binarization step has no
effect on a movie that has already been binarized. See
Supplement S2, Figure S12 for further details and for
the relationship of the RMO and SMO scores to the
Reichardt detector for binary and gray-level movies.

The effects of binarization on the shot-by-shot
distributions of SM scores are shown in Figure 6
(analyzed at a fine spatial scale) and Figure 7 (analyzed
after 16·16 downsampling). An extended analysis of
motion strengths at intermediate scales is shown in
Supplement S1, Figures S1 and S2. As expected from
Figure 5, the distributions are more compact than the
corresponding distributions shown in Figures 3 and 4.
F motion remains the smallest signal and G motion is
the largest, as the upper tail of the NF motion
distributions is most severely affected by the binariza-
tion. As is the case for the analysis without binariza-
tion, the pattern of motion strengths is similar across
movies at each spatial scale.

We now turn to the indices that examine the strength
of coherent motion of each type. Briefly (see Materials
and methods for further details), the indices were
calculated as follows. First, correlations of the binar-
ized movies were calculated within slanted spatiotem-
poral templates corresponding to each motion type
(Figure 1). Since the movies are binarized, calculation
of the correlations (the products of the luminances in
each check) reduces to determining whether each

template’s coloring is present in a library (shown in
Figure 2 for NF-S). Second (Figure 2B), correlations
were combined within a spatiotemporal ROI. Two
variants were used for this pooling process: one in
which the local correlations were simply summed
(RMO) and one in which they were treated holistically
(PMO). Third, signals in opposite directions were
compared to determine a net motion signal for each
ROI. Finally, the sum of the squares of these local
signals within each shot were normalized by the results
of a similar calculation applied to random movie
segments. Results for the PMO index are shown in
Figure 8. Overall, F motion strengths were the largest,
NF motion strengths were 50% to 70% as large, and the
other kinds of motion (pure NF and G) were somewhat
smaller. There was virtually no difference between
spatial and temporal subtypes of NF motion and
virtually no difference between white and black
subtypes of G motion. As with all previous analyses,
the pattern of relative strengths of the different kinds of
motion signals was preserved across movies.

Parallel results for the RMO index are shown in
Figure 9. Overall values of motion strength are smaller
than for the PMO index (Figure 8), and the RMO index
shows a larger difference between the NF motion
strengths and the G motion strengths than the PMO
index. However, the basic findings obtained with the
two kinds of ROI indices are similar: F motion
strengths are largest, followed by NF motion, and then
by G motion, and the relative sizes of the motion
signals are consistent across movies.

The analyses in Figures 8 and 9 were performed with
ROI oriented parallel to the YT plane and for a single
resolution (each check used in the analysis corre-
sponded to one pixel in the database’s digitization of
the movie); the results hold for other resolutions

Figure 6. Prevalence of different kinds of motion signals is

similar across binarized movies. For each movie, data were first

converted to �1 or þ1 using a threshold equal to the median

overall luminance value within each shot, and SM scores were

then calculated. For other details, see Figure 3.

Figure 7. Prevalence of different kinds of motion signals,

analyzed at a coarse spatial scale, is similar across binarized

movies. For each movie, SM scores were calculated after

downsampling each 16·16 block of pixels in the original movie

to a single check, and then binarization. For other details see

Figure 4.
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(Supplement S1, Figures S3 and S4) and orientations
(Supplement S1, Figures S5 and S6). In addition,
Supplement 1, Figures S7 and S8 show parallel results
for binarization at the global midgray level rather than
the median for each shot.

In sum, when motion signals are measured in a
purely local manner (SM score), F signals are weaker
than NF or G signals (Figures 3, 4, 6, and 7). But when
spatial coherence is taken into account (via either the
PMO index [Figure 8] or the RMO index [Figure 9]), F
signals dominate. This shift, as well as the pattern of
motion strengths captured by each index, is similar
across analysis scales and movies.

Covariation of motion signals

The distributions shown in Figures 8 and 9 indicate
a substantial variation in the amount of motion
signals present in each shot. We now focus on this
variability and examine how the different kinds of
motion signals covary with one another. One possi-
bility is that the different kinds of motion signals are
tightly correlated—that some segments have low
levels of all motion signals and others have high
levels, with the amount of one signal determining the
amount of the others. Alternatively, the motion
signals may be somewhat independent, present in
ratios that depend on the characteristics of the
individual shots. With this motivation in mind, we
determined the pattern of covariation of the several
kinds of motion signals.

Results are shown in Figure 10 (panel A for PMO
and panel B for RMO). While it is clear that there are
strong correlations between motion signals of each type

with every other type, it is also clear that they are not
completely redundant (except for the specific pairs of
motion scores that are guaranteed to be identical; see
Supplement S2). That is, given the size of one kind of
motion signal, the size of another kind can vary by a
factor of two or more. The extent to which one motion
signal determines the other depends on the specific pair
of signals. For example, considering the PMO indices
(Figure 10A), an F signal is only a weak determinant of
a pure NF-T signal (their ratios can vary by more than
a factor of two), but the G and the NF-S signals are
strongly correlated (their ratios vary by less than 40%).
With the RMO index (Figure 10B), the patterns of
covariation are in general similar, though there is
somewhat less correlation overall between the motion
indices. Supplement S1, Figure S9 shows a corre-
sponding analysis for a second movie; the pattern of
covariation for each kind of index (PMO and RMO) is
very similar to that of Figure 10. This shared pattern of
covariation across movies is a consequence of the
statistical structure of the movies themselves, not of the
way that the indices are calculated (e.g., that they are
determined from overlapping sets of templates). This is
shown in Supplement S1, Figure S10, when a similar
analysis is applied to random movies. In this case, the
different kinds of motion signals are largely uncorre-
lated. Supplement 1, Figure S11 shows parallel results
for binarization at the global midgray level rather than
the median for each shot for one movie.

Discussion

Identifying the presence of moving objects and
determining their velocity begins with neural compu-

Figure 8. Prevalence of different kinds of motion signals is

similar across movies, as measured by the PMO score. The ROI

consisted of a 4·4 block of checks in the YT plane (i.e.,

horizontal motion); each check corresponded to a single pixel in

the discretization of the movie (256·256 pixels per frame, 24

frames per second). For other details see Figure 3.

Figure 9. Prevalence of different kinds of motion signals is

similar across movies, as measured by the RMO score. The ROI

consisted of a 4·4 block of checks in the YT (horizontal motion)

plane. For other details see Figure 8.
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tations that analyze restricted patches of the visual
input in order to extract local motion signals.

Based on their mathematical properties, several
types of local motion signals have been recognized. The
simplest is pairwise spatiotemporal correlation of the
luminance pattern (Adelson & Bergen, 1985; Reichardt,
1961); this is known as F motion since the presence of
pairwise spatiotemporal correlation can be identified
from the Fourier amplitudes of the stimulus. Subse-
quently, it was recognized that pairwise spatiotemporal
correlation is not necessary to produce a percept of
visual motion (Chubb & Sperling, 1988; Fleet &
Langley, 1994; Hu & Victor, 2010). A percept of
motion can be produced by spatiotemporal correlation
of a local feature rather than of the luminance pattern
itself—a phenomenon typically called NF motion
(Chubb & Sperling, 1988) to emphasize that the
correlations cannot be identified from the Fourier
amplitudes. A percept of motion can also be produced
by spatiotemporal correlations among three points, a
phenomenon known as G motion (Hu & Victor, 2010),
even when spatiotemporal correlations of simple
features are not present. Note that both NF motion
and G motion each encompass multiple distinct
subtypes of local motion signals—for NF motion the
subtype is determined by the choice of local feature
(e.g., edge or flicker), and for G motion the subtype is
determined by the geometry of the three spatiotemporal
points that are correlated (although here we consider

only one specific configuration: a right triangle whose
legs are aligned with space and time axes).

Although each of these kinds of motion signals is
mathematically distinct and separately available to
perception, their occurrence in the natural environment
is poorly characterized. We therefore developed several
ways to quantify the strengths of different kinds of
local motion signals so that they could be compared on
an equal footing.

This step was necessary because of the way that the
different kinds of motion signals are usually defined: F
motion signals are defined in terms of a computational
model that is applicable to any stimulus (Adelson &
Bergen, 1985; Reichardt, 1961), while NF motion and
G motion are defined in terms of specific exemplars,
along with the absence of an F signal. The key
consideration that enabled a comparable measure that
is applicable to the different kinds of motion signals is
that each kind of motion corresponds to a correlation
in a spatiotemporal region with a specific geometry
(i.e., within a specific template; see Materials and
methods). For standard (F) motion, this template is a
pair of checks on a space-time diagonal. For NF
motion, the template is a set of four checks, forming a
parallelogram in space-time. For G motion, the
template is a set of three checks in a triangle. As
expected, when applied to standard (F) motion, this
method yields results that are consistent with compu-
tations based on standard spatiotemporal correlation

Figure 10. Covariance patterns of motion scores: (A) PMO and (B) RMO. Within each scattergram, each point represents a pair of

normalized motion scores determined from a single movie segment (‘‘shot’’). Axes range from 0 to 2 (PMO) and 0 to 1 (RMO). The

number in each plot indicates the average ratio between the pair of motion scores; the two sloping lines in each plot indicate the

wedge that contains 95% of the values. Large values of one motion score typically occur with large values of the other scores, but the

ratios between a pair of scores can vary by up to a factor of two. (Pure NF-S and NF-T PMO scores are identical, and the two G motion

RMO scores are identical; see Supplement S2.) Analysis was carried out in the YT plane (horizontal motion) at the maximum

resolution of the database for The 39 Steps.
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(i.e., the Reichardt detector; Adelson & Bergen, 1985;
Reichardt, 1961, 1987; Van Santen & Sperling, 1985):
For gray-level movies, results are strongly correlated,
and for binary movies, they coincide (Supplement S2,
Figure S12).

For NF motion, the development of a motion score
is less straightforward, as different exemplars of NF
motion can have qualitatively different natures. For
example, NF motion stimuli can be constructed based
on beats, contrast modulation, transparency, or occlu-
sion. Fleet and Langley (1994) observed that the
motion signals in all of these stimuli have a common
aspect that is manifest in the power spectrum: Power is
concentrated in spatiotemporal planes that do not
include the origin. Since calculation of the power
spectrum requires inspection of a wide region of space,
this observation does not directly translate into a
measure of a local NF motion signal. However, it is
closely linked to the rationale for our approach. As
Fleet and Langley (1994) observe, power in a spatio-
temporal plane away from the origin corresponds to
pairwise spatiotemporal correlation of a feature; this
pairwise correlation, in turn, can be detected by a local
nonlinearity. This is exactly the approach taken here.
Each of the two kinds of features considered—spatial
and temporal edges—are identified based on whether
the values within a pair of checks match or mismatch (a
local nonlinearity). Then, multiplication (or the parity
rule) within the four-check template computes the
pairwise spatiotemporal correlation of these two-check
features. However, the actual computations used by the
visual system to extract NF motion are unknown.
Thus, despite the grounding of the approach in a
common mathematical feature of NF motion (Fleet &
Langley, 1994), we used multiple variants of the basic
correlation measure to ensure the robustness of our
results: measures with and without a binarizing
nonlinearity, and measures that used different kinds of
spatial pooling (SM, RMO, PMO).

An advantage of this approach to measuring NF
motion strength is that it extends to G motion simply
by changing the shape of the template. Moreover, by
changing the template and the rules for scoring its
colorings, this approach can be extended to deal with
further types of features, such as temporal correlation
of orientation (Dong & Atick, 1995; Fleet & Langley,
1994; Kayser, Einhäuser, & König, 2003).

Since many studies have been devoted to under-
standing the correlation structure of natural scenes
(Field, 1987; Reinagel & Zador, 1999; van Hateren &
van der Schaaf, 1998)—including their temporal
aspects (Cutting, DeLong, & Brunick, 2011; Dong &
Atick, 1995; Kayser et al., 2003)—it may appear
surprising that relatively little is known about the
local motion signals that they contain. The basic
reason is that the focus of most studies has been on

the second-order statistics of natural scenes. While F
motion signals can be determined from second-order
statistics, G motion and NF motion require, respec-
tively, knowledge of third- and fourth-order statistics.
Thus, studies of the spatiotemporal power spectrum
(Dong & Atick, 1995) cannot characterize NF motion
and G motion completely, as the spectrum is a
characterization only of pairwise correlations. On the
other hand, it is difficult to carry out an exhaustive
characterization of high-order statistics of natural
scenes because of the dimensional explosion that
results. Thus, in order to carry out an analysis that
suffices to identify G motion and NF motion, we are
necessarily selective about the high-order image
statistics that are analyzed.

Once the motion-related high-order statistics were
identified, we used two methods to pool them within
each ROI (see Materials and methods): RMO and
PMO. The RMO score simply compares the number of
template positions in which the local motion signal is
present and the number of positions in which it is
absent; it is thus linear and is as local as possible, as it
adds no further spatial interactions. In contrast, the
PMO score determines the closest match of the ROI to
an exemplar ROI in which the local motion signal is
present in every template position. Therefore, the PMO
score is nonlinear—it is strongly sensitive to whether
the motion is coherent throughout the ROI—and,
consequently, is somewhat less local than the RMO
score. Neither score is necessarily larger than the other:
For specific ROI colorings, the RMO score may be
higher than, equal to, or lower than the PMO score.
Thus, the two scores provide different ways to measure
the strength of each kind of motion signal. Neverthe-
less, as emphasized above, our basic conclusion holds
in either case (Figures 8, 9, and 10) and across scales of
analysis and binarization strategies (Supplement S1).
That is, each kind of motion signal (F, two varieties of
NF, and two varieties of G) is present in natural
movies. Across movies they are present in approxi-
mately similar amounts, and at the level of individual
movie segments there is substantial variation in the
proportion of each kind of motion signal but a similar
pattern of covariation.

The level of consistency across movies is perhaps
surprising, given the finding of Cutting et al. (Cutting,
Brunick, DeLong, Iricinschi, & Candan, 2011; Cutting,
DeLong, et al., 2011) that the general amount of visual
change in movie shots increased significantly over the
period that the movies span (1935–2000). Our ap-
proach, though, is different, as it is specifically sensitive
to different kinds of local motion rather than overall
amount of visual change. Further, the similarity of the
strengths of local motion signals appears to hold over a
range of shot lengths, which vary over a twofold range
(8.96 s, 9.6 s, and 9.16 s in the 1935 films but 4.15 s in
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the 2005 film, also reflecting a trend in movie making;
Cutting, Brunick, et al., 2011; Cutting, DeLong, et al.,
2011).

The segment-to-segment variation in the relative
strength of the different kinds of motion signals (Figure
10) also deserves comment. As is evident from these
scattergrams, different kinds of motion signals tend to
occur in combination. This is very different from most
artificial stimuli used to study motion in the laboratory,
as such stimuli are typically designed with the goal of
isolating a single kind of cue. Moreover, the fact that
there are correlations between different kinds of motion
signals in the natural environment has implications for
understanding the design of neural circuits that detect
motion. If high-order motion cues coexist with F
motion cues, then they can be exploited (Fitzgerald et
al., 2011) to improve on the performance of a standard
Reichardt detector (Reichardt, 1961). As we show here,
this coexistence is characteristic of motion signals in
naturalistic movies (Figure 10 and Supplement S1,
Figure S9), so these theoretical considerations (Fitz-
gerald et al., 2011) are relevant to natural vision.

Although there are correlations between different
kinds of motion signals, they are not redundant.
Specifically, given the level of one motion signal (e.g., F
motion) in a movie segment, one can estimate the level
of another (e.g., G motion), but the estimate holds only
within a factor of two.

This diversity in the complement of motion cues that
are present in a given movie segment may have
implications for how motion is analyzed at later
processing stages. In central visual processing, motion
is used for many different purposes, such as navigation,
collision avoidance, extraction of object structure
(Ullman, 1979a; Vaina, Lemay, Bienfang, Choi, &
Nakayama, 1990), and the analysis of biological
motion (Ahlstrom, Randolph, & Ahlstrom, 1997;
Beintema & Lappe, 2002; Burr & Thompson, 2011; Fox
& McDaniel, 1982; Grill-Spector & Malach, 2004;
Grossberg, 1994; Johansson, 1973; Koenderink & Van
Doorn, 1991; Nakayama, 1985; Ullman, 1979a), each
of which is carried out in distinct networks of brain
areas (Grill-Spector & Malach, 2004; Grossman et al.,
2000; Smith, Greenlee, Singh, Kraemer, & Hennig,
1998; Vaina et al., 1990).

Some aspects of the different kinds of low-level
motion signals suggest that they may be selectively
important in these different contexts, or for different
purposes. One example of this potential for selectivity is
that, as Fleet and Langley (1994) point out, NF motion
signals can arise from occlusion. When an untextured
object moves across the visual field in front of a
textured background, it progressively occludes and
then reveals spatial features of the background,
generating a spatial NF motion signal. A similar NF
motion phenomenon occurs if the foreground object is

semitransparent: The features are not eliminated, but
their contrast is modulated. Another way in which a
specific kind of motion signal may arise in a specific
context is that G motion signals can arise from
looming—that is, the motion of an object toward the
observer. This is because the basic element of G motion
is correlation in a three-point spatiotemporal configu-
ration of checks (Hu & Victor, 2010). For three points
arranged in a right triangle with one side aligned with
the temporal axis—the case considered here—this
corresponds to an expanding or contracting region.

Since different kinds of local motion signals can arise
in different contexts, it is reasonable to speculate that
brain areas that make use of motion for different
purposes (e.g., segmentation vs. navigation) receive
inputs from local motion detectors with appropriately
matched properties. This would enable the parallel
high-level analyses of motion in central visual areas to
focus on the kinds of low-level signals that are the most
relevant to their separate functions.

Keywords: local motion signals, non-Fourier motion,
glider motion, spatiotemporal image statistics
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