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ABSTRACT 

Separation performance is improved in frequency-domain 
blind source separation (BSS) of speech with independent 
component analysis (ICA) by applying a parametric Pear-
son distribution system. ICA adaptation rules include a 
score function determined by approximated source distribu-
tion, and better approximation improves separation per-
formance. Previously, conventional hyperbolic tangent 
(tanh) or generalized Gaussian distribution (GGD) was 
uniformly applied to the score function for all frequency bins, 
despite the fact that a wideband speech signal has different 
distributions at different frequencies. To obtain better score 
functions, we propose the integration of a parametric Pear-
son distribution system with ICA learning rules. The score 
function is estimated by using appropriate Pearson distribu-
tion parameters for each frequency bin. We consider three 
estimation methods with Pearson distribution parameters 
and conduct separation experiments with real speech sig-
nals convolved with actual room impulse responses. Conse-
quently, the signal-to-interference ratio (SIR) of the pro-
posed methods significantly improve over 3 dB compared to 
conventional methods. 

1. INTRODUCTION 

Frequency-domain blind source separation (BSS) based on 
independent component analysis (ICA) [1][2] has been pro-
posed for the BSS of convolutive mixtures of speech signals 
[3][4][5][6][7]. ICA adaptation rules have a score function 
determined by approximated source distribution. In 
conventional applications of ICA to speech signals, super-
Gaussian distribution is used as a distribution model, typi-
cally with the score function tanh [1][2]. Recently, a GGD-
based modeling approach that is more adaptable than tanh 
has also been presented [8][9]. In these modeling ap-
proaches, the score function is uniformly applied to all fre-
quencies.  
However, when transforming the speech signals to the frame 
series (i.e., the time sequence in the frequency domain) by 
short-time Fourier transform (STFT), it is clear that the dis-
tribution of the frame series illustrates different patterns for 

each frequency. The shapes seem to have a non-Gaussian 
appearance, as shown by fat-tailed and skewed characteris-
tics, that resembles various distribution shapes of the Pear-
son distribution system [10]. A previous study investigated 
the application of the Pearson distribution system to ICA 
(Pearson-ICA) [11]. This approach showed better separation 
performance than such conventional nonlinear functions as 
tanh. Furthermore, a nonparametric ICA approach to esti-
mating the source distribution was proposed, and its separa-
tion performance was compared to those of several methods 
such as Pearson-ICA, Fast ICA, and Kernel-ICA [12]; how-
ever, [11] and [12] were performed in the time-domain and 
used artificial data. In order to achieve BSS of convolutive 
mixtures, which is the focus of this paper, time-domain 
processing is inefficient.  
Therefore, this article proposes a Pearson distribution sys-
tem approach to frequency-domain BSS. In this approach, 
the source distribution for each frequency bin is modeled by 
an adaptive parametric Pearson distribution, and the score 
function is formed by the parameters of the distribution to 
improve separation performance. So far, practical imple-
mentation of distribution parameters that depend on the 
moment of the signal has been unwieldy. To overcome such 
problems, [13], [14] and [15] have proposed the solution of 
introducing a discrimination method for Pearson distribution 
types and transforming formulae between the moment and 
distribution parameters. Accordingly, we also employ a new 
implementation in the proposed score function’s estimation 
procedure.  
This paper is organized as follows: Section 2 introduces the 
basic framework of BSS and conventional nonlinear func-
tions. Section 3 outlines the parametric Pearson distribution 
system. Section 4 describes our proposed BSS methods. 
Section 5 shows experimental results, and conclusions are 
given in Sec. 6. 

2. BLIND SOURCE SEPARATION OF SPEECH 

In this paper, we consider the blind source separation (BSS) 
of speech signals observed in real environments, i.e., the 
BSS of convolutive mixtures of speech. In such environ-



ments, source signalsN ( )is n are observed with their rever-
berant components and delays by M sensors. Therefore, 
observations are modeled as convolutive mixtures: 

1 1

( ) ( ) ( 1) ( 1, , )
N P

j ji i
i p

x n h p s n p j
= =

= − + =∑∑ " M

N

 ,      (1) 

( ) :  taps impulse response from source 
            to sensor .

jih n P i
j

−  

Our goal is to obtain separated signals  (( )ky n 1, ,k = " ) 
using only the information provided by observations ( )jx n . 
In this paper, we handle the case of (Fig. 1); 
however, we can expand our method to any N

2N M= =
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without loss of generality.  
This paper employs a frequency-domain approach, that is, a 
short-time Fourier transform (STFT) is performed to convert 
our problem into a linear instantaneous mixture at each fre-
quency. In the frequency domain, mixtures (1) are modeled 
as  
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where denotes a frequency and m is the frame index. With 
matrices, (2) can be written as 

f

( , ) ( ) ( , ),f m f f m=X H S  

1

1

( ) :  ,

( , ) [ ( , ), , ( , )] :

                           

( , ) [ ( , ), , ( , )] :

                            

mixing matrix

STFT of source signal,

STFT of observed signal.

T
N

T
N

f M N

f m S f m S f m

f m X f m X f m

×

=

=

H

S

X

"

"

 

In a blind scenario, and are unknown.  ( )fH ( , )f mS
The separation process can be formulated in each fre-

quency : f
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( )fW  is determined so that  be-
come mutually independent using ICA. After getting the 
separated signals (3), we convert the frequency-domain sig-
nal  into a time-domain signal by using inverse 
STFT.   

1( , )Y f m , ," ( , )NY f m

( , )kY f m

   The separation matrix is independently estimated at each 
frequency. An algorithm based on a natural gradient [16] is 
widely used for this. The adaptation rule of the i -th iteration 
is 
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Here, ( is simplified by Y ) indicate the 

score function. If source distributions  are known, 
score functions (5) are defined as [1][2]: 
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,:  complex number, | | :  absolute value, :  argumentY Y⋅ ∠  
where '( ) ( )p x dp x dx= . In blind separation, however, 
source distribution cannot be obtained a priori. Usually, the 
score function has to be approximated, and the conventional 
tanh is widely used at all frequencies for speech separation 
because speech signals have a super-Gaussian distribution 
[1][2]: 
 

         ( ) tanh( | |)exp( )Y g Y j YΦ = ∠ .       (6) 
 

As mentioned in Sec. 1, conventional GGD has also been 
applied to BSS [8]. The GGD-based score function, uni-
formly applied to all frequencies [9], is represented by 

 
                   (7) 1( ) | | (| |)exp( ).Y Y sign Y j Yβ −Φ = ∠

: shape parameterβ . 
 
As is well known in speech signal processing/engineering, 
for 1β = , 2, and 0.5, the GGD becomes, respectively, a 
Laplacian distribution, whose speech closely follows it, a 
standard Gaussian distribution, and a Gamma distribution.  

 
Figure 1. Frequency-domain speech BSS system ( 2N M= = ) 

3. PARAMETRIC PEARSON SYSTEM 
APPROACH 

The above conventional nonlinear function approach is uni-
formly applied to all frequencies; however, the actual speech 
signal for each frequency has a different distribution. There-
fore, Fig. 2 shows the distribution shapes a, b, c, d, e, and f 
for bins 3, 5, 30, 125, 250, and 500, respectively. To adapt 
these different shapes, we apply the Pearson distribution 
system, which is widely used to model such various distri-
butions as Gaussian, Student’s t, gamma, and beta. Distribu-
tion parameters are detected by the sample moments as 
mean, variance, skewness (Skew), and kurtosis (Kurt). 
Pearson [10] defined the differential equation related to 

probability density function . If the random variable 
is complex value Y , the form is defined by 
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Figure 2. Histograms a, b, c, d, e and f of the frame series for several 
frequency bins f =3, 5, 30, 125, 250, and 500. STFT frame size: 512, 
Sampling rate: 8 kHz 

Note that form (8) has the same shape as score function (5) 
of the ICA. That is, if the coefficients of (8) can be estimated 
by an appropriate method through the observed data at each 
frequency, we can obtain the score function to approximate 
the source distribution at each frequency. For estimation of 
several kinds of distribution families in a Pearson system, 
[13] introduced parameter using Skew and Kurt obtained κ
by the data:   
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For , 0 1 , 1 , the types are discriminated to I, 
IV, and VI, respectively. In Fig. 2, panels a and b represent 
Types IV and VI. Panels c to f represent the shapes of Type I.  
In our preliminary consideration of the STFT series of real 
speech data, we calculated κ values for each frequency bin 
(Fig. 3). Figure 3 shows the distribution of the frame series as 
classified by Types I, VI, and IV. Type I was widely detected 
in the mid- and high-frequency bins; however, the height and 
tail of the distribution were different for each bin, as shown 
in panels c, d, e, and f of Fig. 2. The distribution figures are 
each different J-shaped distributions.  

0 κ> κ< < κ<

Then the score functions of Types I, IV and VI were applied, 
as described below in terms of distribution parameters:  
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Parameters , , , , , , , , ,  and p q b a cµ τ δ β α can be calculated by 
the moments of the frame series (see [13][14]). When apply-

ing the Pearson system to frequency-domain BSS, our pro-
posed method sets forms (8) and (10) as the score functions. 
 

 

Pearson IV 
( 1κ > ) Pearson IV 

( 0 1κ< < ) 

Pearson I 
( 0 κ> ) 

Figure 3.κ values for frequency bin. The horizontal axis indicates 
frequency bin within 512 STFT frame size and the vertical axis 
indicates κ value calculated by (9), which was applied to each se-
ries obtained by STFT. 

  

4. PROPOSED METHODS 

To estimate the score function mentioned above, we propose 
the following three methods: 
 
Method 1: Minimization of cross-correlation 
 Here, we use the score function (8). To estimate the Pearson 
parameters , we select the 
parameters that minimize the sum of the absolute values of 
the off-diagonal components of 

0 1 0 1 2{ ( ), ( ), ( ), ( ), ( )}b f b f c f c f c f

[ ( ) H− ΦI Y Y ] in (4); that 
is,  
                        *| ( ( , ) ( , ) | ( )i ji

Y f m Y f m i jφ ≠∑ .          (11) 
These off-diagonal components represent the higher-order 
cross-correlation of the outputs. If output signals are well-
separated, they become mutually independent, and the value 
of (11) becomes 0.On the other hand, when the separation is 
incomplete, the absolute value of off-diagonal components 
is far from zero. Therefore, we can use the off-diagonal 
components as measures of separation performance. Accord-
ing to this measure, we search for the Pearson system pa-
rameters  that minimize 
(11) in an arbitrary range with a grid search. Using these 
parameters, we determine the score function of ICA corre-
sponding to (8) and estimate the separating matrix with (4). 
In this paper, Pearson parameters are determined by a grid 
search. 

0 1 0 1 2{ ( ), ( ), ( ), ( ), ( )}b f b f c f c f c f

 
Method 2: Estimation of appropriate Pearson distribution 
type 
  This method directly determines the appropriate Pearson 
type for each bin in the learning process of the separation 
matrix. Score function (10) is used in this method. The 
specific calculation procedure for each frequency proceeds 



specific calculation procedure for each frequency proceeds 
as follows: 
1) Estimate separation matrix using (6) and set ini-

tial value ; 

ˆ ( )fW

0
ˆ( ) ( )f f=W W

2) Calculate (see (9)) by the skewness and kurtosis of 
the absolute value of obtained with (4); 

κ
( , )f mY

3) Following , the appropriate Pearson distribution type 
is specified and the parameters of the score function de-
fined in (10) are calculated by the moments of the STFT 
frame series according to [13] [14]; 

κ

4) Renew ( )fW by (4); and 
5) Iterate procedures 2) to 4) until there is a convergence 

of (4). 
Compared with Method 1, the computational burden is sig-
nificantly reduced because it is not necessary to perform grid 
search. 
 
Method 3: Combining Methods 1 and 2 
 In Fig. 3, the values for low-frequency bins are unstable. 
The distribution shape of the frame series at high frequency 
is illustrated by the various J-shape patterns shown as Type 
I. In a preliminary investigation, we found that the individ-
ual histograms, corresponding to the frequencies of the es-
timated parameters , , , , and , 
have similar tendencies for all speaker combinations at high 
frequency. On the other hand, at low frequency, the distribu-
tion types depend on each speaker. From this fact, we pro-
pose another method, Method 3, that combines Methods 1 
and 2. Here, the score function (10) is applied at low 
frequencies, while score function (8) is applied at high fre-
quencies. However, score function (8) is not estimated by a 
grid search; instead, the pre-estimated mean value for each 
parameter is used for (8), thus significantly reducing the 
time needed for calculation. Concretely, the procedure is 

κ

0 ( )b f 1 ( )b f 0 ( )c f 1 ( )c f 2 ( )c f

1) Calculate mean values 0 1 0 1 2{ ( ), ( ), ( ), ( ), ( )}b f b f c f c f c f  
of parameters estimated by applying Method 1 to arbi-
trary data combinations; 

2) Define as the boundary point; 0f
3) Apply Method 2 to low-frequency  according to 

the appropriate Pearson type for each frequency bin; 
and 

0f f≤

4) To high-frequency , input averaged parameters 0f f>

0 1 0 1 2{ ( ), ( ), ( ), ( ), ( )}b f b f c f c f c f for each bin directly 
into (8). 

For choosing the best in advance, we compared SIR val-
ues when using between 0 and 200 bins and selected 
the that provided the highest SIR. 

0f

0f

0f

5. EXPERIMENTAL RESULTS 

5.1    Experimental conditions 
We conducted separation experiments with real speech sig-
nals and measured room impulse responses. The speech data 
were convolved with impulse responses measured in an ac-
tual room (Fig. 4) whose reverberation time was 130 ms. 

 

        
 

Figure 4. Room layout used for experiments 
 

As original speech, we used Japanese sentences of 3 seconds 
spoken by male and female speakers. We made observation 
signals with (1) and investigated four combinations of speak-
ers. The STFT frame size was 512, and the frame shift was 
256 at a sampling rate of 8 kHz. To solve the permutation 
problem of frequency-domain ICA, we employed the direc-
tion of arrival and correlation approach [7], and to solve the 
scaling problem we used the minimum distortion principle 
[17]. For numerical analysis, we arranged four data sets: 
female and female (f & f), two types of female and male (f 
& m), and male and male (m & m). As an evaluation meas-
ure, we used the signal-to-interference ratio (SIR) as a sepa-
ration performance measure: 
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5.2        Results 
Results using Methods 1, 2, and 3, conventional tanh, and 
GGD-based modeling methods with the above four types of 
data sets are summarized in Table 1. The SIR for GGD was 
the value obtained for the best SIR for [0.5,1.0]β ∈ . For 
conventional nonlinear functions, the GGD-based modeling 
method was slightly better than tanh. For the proposed Pear-
son approach, we obtained maximum improvement in sepa-
ration performance of around 3 dB better than conventional 
tanh and around 2 dB better than conventional GGD.        
Method 3, combining Methods 1 and 2, showed better sepa-
ration performances than that by using only Method 2, even 
though the mean parameters used in Method 3 were first 
estimated by using only two data combinations. The mean 
parameters were applied to all data combinations, including 
the data that were not used to estimate the mean parameters. 
In fact, the SIR values sometimes became unstable in the 
calculation applying only Method 2. Therefore, Method 3’s 
results suggest that using the mean parameter values pre-
estimated by Method 1 at high frequencies did not lead to 



instability and that at low frequencies the parameters esti-
mated with data moments worked well.  
Furthermore, we considered the computational time needed 
to perform these methods. We obtained the results using 
Matlab® profile report and summarize them in Table 2. The 
CPU clock speed was 594 MHz. Methods applying conven-
tional nonlinear functions to the score function were faster 
than Methods 1 and 2. In particular, Method 1 took about 
two hours because the calculation algorithm included a grid 
search to obtain optimized parameters. By reducing this 
optimization procedure, Method 3 could work at a reason-
able computation speed, thus improving performance. 
 
 Table 1: SIR (dB) values for conventional nonlinear functions and 
three proposed methods 

 
 

Table 2: Computational time required to perform BSS 
 

 Methods Time [s] 
tanh 10.38 conventional nonlin-

ear function GGD 18.09 
Meth. 1 6888.66 
Meth. 2 56.11 

Proposed  
Pearson system  

approach Meth. 3 13.07 
 

6. CONCLUSION 

To estimate the frequency-domain separation matrix for ICA, 
we proposed a practical parametric Pearson distribution sys-
tem. This system detects a score function for the source dis-
tribution at each frequency. We first confirmed the effi-
ciency of three methods developed to apply the Pearson 
system to frequency-domain speech BSS under blind condi-
tions. As the first method, unknown parameters were esti-
mated to minimize the cross-correlation of the separation 
matrix. In the second method, we directly calculated the 
transform formulae based on κ discrimination. The third 
method was a combination of these two methods. The pro-
posed approach significantly improved separation perform-
ance compared with conventional tanh and GGD-based 
modeling approaches. Furthermore, the combined method 
showed better performance than applying the individual 
methods, and its computational speed was reasonable.   
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