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The present theoretical analysis investigates the simultaneous
effect of lubricant inertia and non-Newtonian pseudoplastic
lubricant (lubricant blended with viscosity index improver and
viscosity thickener)–Rabinowitsch fluid model on the perform-
ance of externally pressurized annular hydrostatic thrust bear-
ings. A close form solution is obtained for pressure distribution.
The effect of centrifugal inertia on the pressure distribution in
the recess region is considered by taking non-constant recess
pressure under a hydrodynamic condition. The load capacity and
flow rate have been numerically calculated for various values of
viscosity index improver together with the centrifugal inertia
effects. In the limiting case in which there is an absence of pseu-
doplasticity, the results are compared with the pre-established
Newtonian lubricants and are found to be in good agreement.
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1 Introduction

An annular hydrostatic thrust bearing is a type of hydrostatic
bearing or externally pressurized bearing system. Due to the
potential advantages of hydrostatic thrust bearings, several inves-
tigations have been presented by the researchers from time to time
on design and lubricant effects on the performance of hydrostatic
bearing systems [1–3], the effect of lubricant inertia and tempera-
ture [4–6], and dynamic characteristics including fluid compressi-
bility [7]. Chow [8] presented the concept of annular recess
hydrostatic thrust bearings to avoid cavitation and increase the
stability and life of the bearing, and recently the problem of annu-
lar hydrostatic thrust bearings has been analyzed by Bakker and
Ostayen [9] and the optimized recess depth was presented for
Newtonian fluids.

On the other hand, tribologists have also done a great deal of
work to increase the efficiency of stabilizing properties of non-
Newtonian lubricants through the addition of long chain polymer
solutions (polyisobutylene and ethylene propylene etc.) as viscos-
ity index improvers. The use of additives minimize the sensitivity
of the lubricant to the change in the shearing strain rate for which
many non-Newtonian models such as couple stress, power law,
micropolar, and Casson models are of common use. Among these
models, the Rabinowitsch fluid model [1,10] is an established
model [10] to analyze the non-Newtonian behavior of the fluid.
Wada and Hayashi [10] showed that the lubricants blended with
viscosity index improver behave like pseudoplastic fluids which
can be analyzed by the Rabinowitsch fluid model given by the fol-
lowing relation for one dimensional fluid flow:

�srz þ j�s3
rz ¼ �l

@�u

@�z
(1)

where �l is the initial viscosity and j is the nonlinear factor respon-
sible for the non-Newtonian effects of the fluid, which will be
referred to as coefficient of pseudoplasticity in this paper. This
model can be applied to Newtonian lubricants for j ¼ 0, to dilat-
ant lubricants for j < 0, and to pseudoplastic lubricants for j > 0.
The advantage of this model lies in the fact that the theoretical
analysis for this model is verified with the experimental justifica-
tion by Wada and Hayashi [10]. After Wada and Hayashi, many
researchers used this model for the theoretical study of bearing
performance with non-Newtonian lubricants [11–13]. Recently,
this model was used by Singh et al. [1,14] to analyze the perform-
ance of circular and curvilinear hydrostatic thrust bearings and
Lin [15] to analyze the performance of annular squeeze film
bearings.

Fig. 1 Schematic diagram of annular thrust bearing with (a)
inlet hole, (b) recess, (c) outer land, (d) inner land, (e) shaft, and
(f) collar
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The objective of the present paper is to extend the results of the
Rabinowitsch model [1,14] to the hydrostatic annular thrust
bearings.

2 Analysis

The physical configuration of an externally pressurized annular
thrust bearing is shown in Fig. 1. The lubricant in the system is
taken as a non-Newtonian pseudoplastic fluid. The body forces
and body couples are considered to be absent and the assumptions
of thin film lubrications are assumed to be applicable. After Singh
et al. [1], the modified Reynolds equation in the present problem
is obtained as:

1

�r

d

d�r

�r �h3

12�l
�f þ 3j�h2

20
�f 3

� �� �
¼ 0 (2)

where

�f ¼ 1
�h

ð �h

0

@�p

@�r
� q�v2

r

� �
d�z ¼ @�p

@�r
� q�rx2

3
and �v ¼ �rx

�z
�h

The modified Reynolds equation (Eq. (2)) takes the dimensionless
form:

1

r

d

dr

rh3

12l
f þ ~af 3
� �� �

¼ 0 (3)

where ~a ¼ 3ah2

20
and f ¼ @p

@r � 1
3

Sr:
As the Reynolds equation (Eq. (3)) is a nonlinear equation in

pressure p, it is not easy to solve it using analytical methods.
Therefore, the classical perturbation method is used to solve it.

The perturbation series for the pressure distribution p can be
expressed in the form

pðrÞ ¼ poðrÞ þ ~ap1ðrÞ þ ~a2p2 þ Oð~a3Þ (4)

For ~a� 1 (Table 3), it is sufficient to consider

pðrÞ ¼ poðrÞ þ ~ap1ðrÞ (5)

Substituting Eq. (5) in Eq. (3), the perturbed form of the
Reynolds equation is obtained as:

1

r

d

dr

rh3

12l
dpo

dr
� 1

3
Sr

� �� �
¼ 0 (6)

1

r

d

dr

rh3

12l
dp1

dr
þ dpo

dr
� 1

3
Sr

� �3
( )" #

¼ 0 (7)

Integrating equations (Eqs. (6)–(7)), the expression for pressure
distribution is obtained as

poðrÞ ¼
1

6
Sr2 þ c01 log rð Þ þ c02 (8)

p1ðrÞ ¼ c11 log rð Þ þ c3
01

2

1

r2
þ c12 (9)

In order to evaluate coefficients appearing in Eqs. (8)–(9), the
pressure is individually evaluated in the three regions of the
bearing: the inner region, the recess region and the outer region
(Fig. 1). After Bakker and Ostayen [9], the pressure distribution
including centrifugal inertia effect is evaluated in two steps as
follows.

Step 1: For S¼ 0, the values of the coefficients in Eqs. (8)–(9)
are evaluated under boundary condition p¼ 0 at r¼ ri and r¼ 1,
to find the general solution pGð Þ of the Reynolds equation. In this
case, the pressure in the recess equals a fraction of the supply
pressure bpPo : 0 < bp < 1

� �
. The pressure distribution is given

as

pG ¼

b101 log rð Þ þ b102 þ
3

20
ah2 b111 log rð Þ þ b3

101

2

1

r2
þ b112

� �
; ri � r � r1

bp; r1 � r � r2

b201 log rð Þ þ b202 þ
3

20
ah2 b211 log rð Þ þ b3

201

2

1

r2
þ b212

� �
; r2 � r � 1

8>>>>><
>>>>>:

(10)

where, the coefficients b01 through b21 can be found in Appendix B.
Step 2: For S> 0, the coefficients in Eqs. (8)–(9) are evaluated under the hydrodynamic condition, considering the hydrodynamic

pressure built up by the centrifugal inertia effects only, to obtain a particular solution pI of the Reynolds equation.

pI ¼

1

6
Sr2 þ c101 logðrÞ þ c102 þ

3

20
ah2 c111 logðrÞ þ c3

101

2

1

r2
þ c112

� �
; ri � r � r1

1

6
Sr2 þ c201 logðrÞ þ c202 þ

3

20
ah2 c211 logðrÞ þ c3

201

2

1

r2
þ c212

� �
; r1 � r � r2

1

6
Sr2 þ c301 logðrÞ þ c302 þ

3

20
ah2 c311 logðrÞ þ c3

301

2

1

r2
þ c312

� �
; r2 � r � 1

8>>>>>>>><
>>>>>>>>:

(11)

where, the coefficients c101 through c312 are evaluated under
the six boundary conditions: pI ¼ 0 at r ¼ ri and r ¼ 1, continuity
of pressure at the steps r ¼ r1 and r ¼ r2, and continuity of lubri-
cant flow at the steps r ¼ r1 and r ¼ r2. The expressions for the
coefficients c101, c102, c111, c112, c201, c202, c211, c212, c301, c302,
c311, and c312 are not presented in the analysis due to limited
utility.

It is expected that the overall pressure distribution P pG þ pIð Þ
will be a realistic estimate of the effects of centrifugal inertia and
pseudoplasticity.

3 Load Carrying Capacity and Lubricant Flow-Rate

After, Singh et al. [1], the dimensionless load carrying capacity
W and the dimensionless flow rate Q are given by
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W ¼ 2

ðr1

ri

rpdr þ
ðr2

r1

rpdr þ
ð1

r2

rpdr

� �
(12)

Q ¼ � rh3

l
f þ 3

20
ah2f 3

� �
(13)

where ‘f’ is found in Eq. (3).

4 Results and Discussions

To study the centrifugal inertia effects in case of non-
Newtonian (pseudoplastic) lubricants on the steady performance
of externally pressurized annular thrust bearing, the numerical
results for pressure, load capacity, and radial flow rate have been
obtained for the different values of parameter of pseudoplasticity,
aða ¼ jP2

oÞ. For the practical applicability of the problem, the
experimental values for coefficient of pseudoplasticity, j ¼ 0
(classical Newtonian fluids), j ¼ 5:65� 10�6 m4/N2 (0:3% addi-
tive), and 3:05� 10�6 m4/N2 (1% additive) obtained by Wada
and Hayashi [10] have been used (Table 2) in the discussions.
Furthermore, the theoretical results of pressure, load capacity and
radial flow rate for the Newtonian and non-Newtonian (pseudo-
plastic) lubricants have been compared with the results of Bakker
and Ostayen [9] for different values of rotation parameter S, in
Figs. 2–4, to justify the present analysis. It was observed that the
results (pressure, load capacity, and radial flow rate) for Newto-
nian fluids j ¼ 0ð Þ in the present analysis are the same as those
obtained by Bakker and Ostayen [9].

For the numerical calculation and discussions of the results,
dimensionless film thickness h¼ 0.003, film thickness ratio b¼ 2,
5, and parameter of centrifugal inertia S¼ 0, 1.0, 2.0 are taken [1]
in the analysis.

In Fig. 2, the variation of dimensionless pressure (P) with
respect to the radius of the bearing is shown for b¼ 2. The pres-
sure for Newtonian lubricants j ¼ 0ð Þ is higher than the pressure

for pseudoplastic lubricants and pressure also decreases with
the increase of viscosity index improver (i.e. decrease of pseudo-
plasticity j) even if the viscosity increases (Table 2). That is, the
pressure for pseudoplastic lubricants increases with the increase
of j but below the Newtonian pressure: a result in agreement with
the results of Singh et al. [1] and experimental results of Wada
and Hayashi [10]. It is further concluded that the effect of additive
(pseudoplasticity) on pressure distribution is small in the case of

Fig. 2 Variation of pressure with radius. Dimension of j is in
m4/N2 [10].

Fig. 3 Variation of load capacity (W) with S. Dimension of j is
in m4/N2 [10].

Fig. 4 Variation of lubricant flow rate (Q) with S for b 5 2.
Dimension of j is in m4/N2 [10].
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no rotation (S¼ 0), but in the case of high values of centrifugal
inertia “S” (i.e. the case of high rotation or large radius), the devi-
ation of pressure distribution for pseudoplastic lubricant from
Newtonian case can be easily observed. It can be explained as the
effect of increasing the rotation and hence the centrifugal inertia
decreases the shearing stress. A comparative analysis of combined
effects of pseudoplasticity (j) and centrifugal inertia (S) on pres-
sure is obtained in Table 1.

Figure 3 shows the variation of dimensionless load capacity
with respect to the inertia parameter S for thickness ratio
b ¼ 2; 5 and coefficient of pseudoplasticity j ¼ 0; 5:65� 10�6;
3:05� 10�6m4/N2 [10]. The variation of dimensionless load
capacity with j is similar with the pressure. It is observed that
for each value of rotation parameter S and thickness ratio b,
the dimensionless load capacity for Newtonian fluid (j ¼ 0) is
higher than that for the pseudoplastic fluids ðj > 0Þ and the
load capacity for pseudoplastic lubricants increases with j.
However, upon careful observation of Figs. 3 and Table 1, it
can be concluded that the deviation of load carrying capacity
for pseudoplastic lubricants is small in the case of no rotation
(S ¼ 0) but in the case of high rotation or large radius (i.e.
increase in the value of centrifugal effect (S)), the deviation of
load carrying capacity for pseudoplastic lubricants is signifi-
cant, which is similar with the variation of pressure. This can
also give a direction and a guideline for better bearing analysis
and design.

In Fig. 4, the variation of dimensionless radial flow-rate with
respect to S is shown for the two cases; first, when the viscosity
does not change but pseudoplasticity ðjÞ varies l ¼ �l=ln ¼ 1ð Þ,
the flow characteristics are plotted with blank circles and second,
when viscosity varies due to additives with the pseudoplasticity
l ¼ �l=ln > 1ð Þ (see Table 2), the flow characteristics are

plotted with the solid circles. In the first case (no variation of
viscosity), the flow rate for pseudoplastic fluids is higher than
the Newtonian fluids and the flow rate also increases with the
decrease of j. While in the second case, when the viscosity
increases with the amount of additive (Table 2), the flow rate
decreases with the increase of viscosity regardless of the value
of pseudoplasticity j. Since, in the real situation, the
viscosity of the base oil (Newtonian lubricant) increases with
the amount of additive [10], the dimensionless flow-rate for the
‘lubricants with additives’ will be always less than the base
(Newtonian) oil and it will also decrease with the amount of
additive. However, if it is possible to keep the viscosity of the
base oil unaltered with the blending of additives (viscosity index
improvers), the flow rate of these lubricants will be higher than
the base oil and it will increase with j (pseudoplastic parameter)
where j can be determined experimentally [10].

5 Conclusion

The pseudoplastic effect of an isothermal incompressible non-
Newtonian lubricant on the steady performance of annular thrust
bearing is presented.

Based on the present analysis, the following conclusions are
drawn:

(1) In comparison to the Newtonian case, the film pressure
with the pseudoplastic lubricants is lower. Furthermore,
there is a significant decrease in the pressure and load
capacity by decreasing the pseudoplastic coefficient j [1].

(2) The effect of pseudoplasticity on the pressure and load
capacity of the bearing is small in the case of ‘no rotation’
and it relatively increases with the rotation due to centrifu-
gal inertia effect (S) [1].

(3) The effect of additive (viscosity index improver) is attribut-
able to pressure and hence to load capacity due to the
change of the lubricant’s nature from Newtonian (base oil)
to pseudoplastic [1].

(4) In comparison with the Newtonian lubricant (base oil),
the flow rate increases with the increase of pseudoplastic-
ity while it decreases with the increase of viscosity. How-
ever, the major effect of an additive (viscosity index
improver) on the flow rate is due to the viscosity varia-
tion [1].

Nomenclature

f ¼ �f R
Po

�h; h ¼ film thickness, h ¼ �h
R

�p; p ¼ film pressure, p ¼ p
Po

Po ¼ supply pressure
Q;Q ¼ radial flow rate, Q ¼ 6lnQ

pR3Po

�r1; �r2 ¼ recess radii
r1; r2 ¼ �r1

R ;
�r2

R
�ri; ri ¼ inner radius, ri ¼ ri

R
r ¼ �r

R
R ¼ bearing outer radius
s ¼ 3

20
qR2x2

Po

�u ¼ radial velocity of the fluid
u ¼ �u

rx
�v ¼ circumferential velocity
v ¼ �v

rx
W ¼ �W

pR2Po

�W ¼ load capacity
a ¼ jP2

o
~a ¼ 3ah2

20

b ¼ film thickness ratio
bp ¼ fraction of supply pressure
j ¼ coefficient of pseudoplasticity
l ¼ �l

ln

�l ¼ viscosity of the fluid blended with viscosity index
improver

ln ¼ viscosity of base fluid
q ¼ density of fluid
s ¼ �s

2plNR2x

x ¼ angular velocity of runner

Appendix A

Table 1 Maximum variation (decrease) of pressure (P) and var-
iation (decrease) of load (W) from newtonian results [9]. b 5 2.

S 0 1 2

j ðm4=N2Þ P W P W P W

5:65� 10�6 4.54% 0.12% 8.24% 2.13% 16.01% 11.03%
3:05� 10�6 7.06% 0.67% 14.32% 9.15% 25.62% 19.31%
2:95� 10�6 7.38% 0.94% 17.12% 12.10% 27.11% 21.07%

Note: Data for j taken from the experimental result of Wada and Hayashi
[10].

Table 2 Lubricants additive

Additives % Tð�CÞ (Pa � s) l ¼ �l=ln jðm4=N2Þ

0 25 0.140 (ln) 1 0
0.3 22 0.250 1.786 5.65� 10�6

1.0 22 0.610 4.357 3.05� 10�6

2.0 25 0.865 6.1786 2.95� 10�6

Note: Data are from the experimental result of Wada and Hayashi [10].

044502-4 / Vol. 134, OCTOBER 2012 Transactions of the ASME

Downloaded From: https://tribology.asmedigitalcollection.asme.org on 06/29/2019 Terms of Use: http://www.asme.org/about-asme/terms-of-use



Appendix B

Coefficient for S¼ 0

b101 ¼
bp

l logðr1Þ � logðriÞf g ; b102 ¼ �
bp logðriÞ

logðr1Þ þ logðriÞ

b111 ¼
r2

1b
3
p � r2

i b
3
p

2r2
1r2

i l
3 logðr1Þ � logðriÞf g4

;

b112 ¼ �
r2

1b
3
p logðr1Þ � r2

i b
3
p logðriÞ

2r2
1r2

i l
2 logðr1Þ � logðriÞf g4

b201 ¼
bp

l logðr2Þ
; b202 ¼ 0

b211 ¼ �
b3

p � r2
2b

3
p

2r2
2l

3 logðr2Þ4
; b212 ¼ �

b3
p

2l2 logðr2Þ3
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Table 3 Calculation of dimensionless parameter ~a

�hðmÞ R (m) hð�h=RÞ Po(Pa) jðm4=N2Þ aðjP2
0Þ ~að3ah2=20Þ

0.002 0.5 0.004 104 0 0 0
0.002 0.5 0.004 104 5.65� 10�6 565 0.001356
0.002 0.5 0.004 104 3.05� 10�6 305 0.000732
0.002 0.5 0.004 104 2.95� 10�6 295 0.000708

Note: Present data are taken for numerical calculations. However, analysis
is valid for any set of values of �h, R, j and Po, which satisfy the condition
~a� 1.
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