
A Generalized Malfatti Problem

Ching‐Shoei Chiang,1 Christoph M. Hoffmann,2 and Paul Rosen3
Soochow University, Taipei, Taiwan, R.O.C.
Purdue University, West Lafayette, IN, USA

Abstract

Malfatti’s problem, first published in 1803, is commonly understood to ask fitting three circles into a given
triangle such that they are tangent to each other, externally, and such that each circle is tangent to a pair of the
triangle’s sides. There are many solutions based on geometric constructions, as well as generalizations in
which the triangle sides are assumed to be circle arcs. A generalization that asks to fit six circles into the
triangle, tangent to each other and to the triangle sides, has been considered a good example of a problem that
requires sophisticated numerical iteration to solve by computer. We analyze this problem and show how to
solve it quickly.

Keywords: Malfatti’s problem, circle packing, geometric constraint solving, GPU programming.

1. Introduction
Geometric constraint solving plays a pivotal role in computer-aided design (CAD). Practical solvers

include graph-theoretic solvers in which the constraint problem is decomposed into sub problems of
known structure, those sub problems subsequently are solved, and then the solution fragments are
assembled into a solution of the original problem; e.g., [1,10,11,13,15]. Such constraint sub problems
often involve constructing circles with unknown radius and center. In the literature on this subject, such
circles are determined, one at a time, either sequentially, for instance when required to be tangent to three
geometric elements [5], or simultaneously with other elements, for example when tangent to four
geometric elements, not all fixed in relation to each other; e.g., [6]. In this paper we consider a third class
of problems in which several circles are to be determined simultaneously, such that they are tangent to
each other and to the sides of a given container, in this case a triangle. We consider this problem with
three and with six circles. The problem thus has more similarity to circle and sphere packing problems,
although the radii are not required to be equal.

Malfatti’s problem, as originally stated in 1803, was to carve three circular columns from a prismatic
slab of marble so as to minimize waste. Equivalently, the problem asked to fit three circles into a given
triangle such that the sum of their areas is maximum. Malfatti erroneously believed that the solution was
provided by three inscribed circles that are tangent to each other and tangent to the sides of the triangle.
An instance of this problem is shown in Figure 1. Since then, this second problem, which Malfatti
believed to maximize the area, has become understood to be Malfatti’s Problem in the literature. There
are several known solutions of Malfatti’s problem. The interested reader is referred to [2,16,17] for a
history of the problem and an explanation of various solutions and generalizations.

1
 Soochow University, Taipei, Taiwan, R.O.C.. Email: chiang@scu.edu.tw; Tel/Fax: +886-2-2311-1531 ext. 3801

2
 Purdue University, West Lafayette, IN 47907, USA. E-mail: cmh@cs.purdue.edu; Tel: 1-765-494-6185

3
 Purdue University, West Lafayette, IN 47907, USA. E-mail: rosen@purdue.edu

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357376177?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Malfatti’s Problem

Our interest in Malfatti’s problem comes via a generalization, popularized in the geometric constraint
solving community by Lamure and Michelucci in [14]. In this generalization, we seek to fit six circles
into a given triangle such that the circles are tangent to each other and to the sides of the triangle. An
example of this generalization is shown in Figure 2. Lamure and Michelucci cited this generalization as a
prime example of a constraint problem whose algebraic solution is difficult and is best solved by
homotopy continuation, an advanced and expensive numerical method; see also [7].

Figure 2: The Generalized Malfatti Problem

In this paper, we revisit these two problems and solve them efficiently – without the need for
homotopy continuation – but not without an iteration either. Section 2 reviews some definitions and
concepts, Section 3 deals with the classical case of fitting three circles. Two direct solutions are given,
one using the GPU to solve equation systems, the other using classical formulae. We develop an inverse
approach as well and introduce an angle-clamping method that allows us to change two angles of the
triangle while keeping the third one fixed. Section 4 considers the six-circle generalization. Here, we
derive a direct solution for isosceles triangles, requiring no iteration first. Then, we develop an inverse
method that solves the six-circle problem efficiently. Section 5 discusses the implementation of the
various methods and the speeds that we have measured. Section 6 concludes with some thoughts on the
problems and on GPU-based approaches to solving them.

2. Definitions
We name vertices, sides and angles of triangles in the traditional manner, with angle at vertex A,

side a opposite vertex A, and so on. All tangencies between two circles are understood to be exterior, that
is, neither circle contains the other.

The bisector, or medial axis, of a circle and a line is a parabola. If the circle with radius r is centered
at (0,r) and the line is the x-axis, then the bisector equation is 4 . The bisector of two circles is a
hyperbolic arc. Recalling the definition that a hyperbola is the locus of points whose distance from the
foci differs by a constant, we note that the hyperbolic arc has the circle centers as foci and the distance
difference from the foci is the radius difference. So, if the radii are equal, the bisector is a straight line.

We recall that the angle over a secant of a circle is constant. If the secant is a diameter, then the angle

is /2. A circle that is tangent to two sides of a triangle, on the inside, is centered on the (interior) angle
bisector of those sides. The incircle is the inscribed circle tangent to all sides and centered that the
incenter, the intersection of the angle bisectors. Formulae for the incenter and incircle radius are found in
the standard textbooks on plane geometry.

3. The Classical Malfatti Problem

3.1. Three Circles

We are given a triangle (A,B,C) and are to fit three circles such that each circle touches two sides of
the triangle and the three circles touch each other. An example is shown in Figure 3.

Figure 3: Fitting three circles into a triangle. Side lengths are a = √85, b = √65, c = 10.

The computed radii are r1 = 1.6227, r2 = 1.7591, r3 = 1.5070.

The 3-circle Malfatti problem translated into algebra yields three quadratic equations, so we expect
eight solutions in all. The variables are the square roots uk of the three radii. A second solution is shown
in Figure 4 and gives insight into the geometry of the other solutions. Here, the circle 1, with a negative
u1, is tangent to the sides b and c, as required, but its center lies outside the triangle. Circle 3 is tangent to
sides b and a, but it intersects the side c. We conclude that the solution(s) of interest require positive uk .

Figure 4: A solution in which u1 is negative and the other variables are positive. Circle 1 is tangent to the (extended) sides b

and c. The intersection of circle 3 with side c of the triangle is not an error, since the equations only require tangency with sides
a and b. Similarly, circle 1 intersects side a.

The derivation of the three quadratic equations describing the eight solutions is best understood from
Figure 5; see also [17]. The circles with radius r1 and r2 touch side c and touch each other. The length of
side c is the sum , which can be expressed as cot 2⁄ 2√ cot 2⁄ . We

substitute , where k = 1, 2, 3, and obtain the equation system

cot
2

2 cot
2

cot
2

2 cot
2

cot
2

2 cot
2

Figure 5: Length equation for side c. The circle centers lie on the (red) angle bisectors.

Since all angles in a proper triangle are less than 180o, the half angles cannot exceed 90o and therefore
the coefficients of the quadratic terms are all positive. The type of the conic depends on the discriminant
of the quadratic terms which is, for the third equation, 4 4 cot /2 cot /2 . The half angles
have to be large for the cotangent to be small, but the sum of the two half angles is less than 90o in a
proper triangle. Since cot cot 1 if /2, the conic is an ellipse.

We approach solving the system geometrically and render three elliptic cylinders in 3D, so obtaining
the solutions using the graphics hardware. Because of the form of the equations, the three cylinder axes
intersect perpendicularly in the u1 u2 u3−space. The conic base curves are easily parameterized and

extruded. Only the intersection in the positive octant is of interest. The three surfaces are rendered on a
raster of size 1000 by 1000, using the depth buffer to extract the intersection in the positive octant. See
also [12,6].

3.2. Algebra Vs. Geometry
The equation system for the classical Malfatti problem is well-structured. Each equation describes an

elliptic cylinder in a principal direction, rotated by a certain angle owing to the 2 -term. The main
advantage of the sampling approach using the GPU is that surfaces that are moderately complicated to
tessellate can be intersected quickly because of the highly parallel nature of the problem and the large
number of processors in the GPU. So, when the algebraic nature of the system is complex, the GPU
approach can work very well, because it reduces the complexity of solving the system algebraically and
ideally avoids sorting out which roots are of relevance to the problem; see also the problems in [5,6].
However, there are many papers on the Malfatti problem and the solution we seek can be described very
simply [16]. That paper gives the original formulae of Malfatti for computing the radii of the three circles.
The formulae are very well suited to computation and are simpler than solving the algebraic system given
before.

Let I be the incenter of the triangle and r the incircle radius. With rk the radius of the kth Malfatti
circle and d(I,A) the distance between the incenter I to vertex A, and /2, we have [16]:

2
 , , ,

2
, , ,

2
, , ,

The circle centers lie on the angle bisectors and can be computed using distance proportionality:

, ,

Here O1 denotes the center of the circle C1. Thus, so determining the Malfatti circles is easy. Note that
this construction bypasses the algebra of the quadratic equations. As [16] points out, the radius formulae
are due to Malfatti.

3.3. Inverse Construction
We investigate the inverse construction in which a triangle is fit to three given circles. Call the

containing triangle in the Malfatti problem the outer triangle and the triangle spanned by the three centers
of the inscribed circles the central triangle. Let the corners of the central triangle be Ck, k=1, 2, 3, in the
usual enumeration, and let the rk be the corresponding radii. The side lengths of the central triangle are

Equivalently, we have:

2
2
2

Thus, the central triangle uniquely determines three circles that are pairwise tangent from the outside.
Given the central triangle, we can construct the outer tangents, so defining the containing triangle. The

angle between the common exterior tangent and the center line is given by

sin

Figure 6: Angle between tangent and center line.

φ is positive when r2 > r1. See Figure 6.

To construct the exterior tangent from the radii partitioning the sides of the central triangle, erect the

segments with lengths r1 and r2 at the angle 90−, tilting away from the larger radius vertex. The
endpoints of those segments then define the outer triangle sides, Figure 7. The details are routine.

Figure 7: Constructing the triangle from the central triangle.

The implementation of the inverse three-circle construction is simple. The central triangle can be

manipulated interactively and the problem solution, including rendering, requires less than 5 sec.

3.4. Angle Locking
Recall that a solution for a similar triangle can be scaled trivially to the required size. If we fix one of

the angles in the triangle, say , and wish to vary the other two angles, then C must be constrained to
move on the perimeter of the circum circle while fixing the side AB. We use the direct solution of
Subsection 3.2 here. See also Figure 8. We will show later how to use this observation for the six-circle
problem.

Figure 8: Angle remains unchanged while moving C on the perimeter of the red arc above line AB.

Vertices A and B do not move.

4. Six Circles
The direct six-circle problem has a complex system of algebraic equations in six unknowns. Rather

than tackle it head-on, we will develop an inverse construction. However, the isosceles case reduces to a
system with only three unknowns that is tractable and can be implemented using the GPU. In this section,
we enumerate the six circles as shown in Figure 9.

Figure 9: Naming conventions.

4.1. Six-Circle Isosceles Case, Direct Solution
Here, we exploit the symmetry of the triangle and leverage the solution of the three-circle problem.

We proceed as follows:

1. Given the triangle (A,B,C), solve the (3-circle) Malfatti problem. By symmetry, circles C1
and C2 have the same radius.

2. Scale the triangle such that the circles C1 and C2 have radius 1 and choose the coordinate
system such that the circles are placed with their centers at (−1,0) and (+1,0), respectively.
Rename C1 to C13 and C2 to C23.

3. Solve for the three remaining circles, C1 and C12, extending the sides a and b of the triangle as
needed.

4. Scale the resulting triangle to the size of the original triangle.

Let the angles of the triangle be and and note that C1 and C2 are congruent and symmetrically
placed.

Figure 10: Isosceles case – construction of the lower three circles.

Two equations for the circle C12 express that the circle center is on the y-axis, at (0,−m), and that it is
tangent to circle C13, and to a line parallel to the x-axis at distance m+r12 below:

1 1

The equations for C1 have to account for the fact that the sides are not parallel to the y-axis, so that
the length of the scaled triangle side c is unknown. The quantity n is the distance between the contact
points of C1 and C13 on (the extended) side b. Thus, the line parallel to the x-axis and tangent to C1 from
below is

cot
2

cos
2

sin
2

The length of the new side c is unknown. It is determined by

2
sin

2
tan

2
cos

2
1

and the tangency between C1 and C12 is stipulated by

cot
2

2
2

The final equation system is then

1 1

 2

 cot
2

cos
2

sin
2

cot
2

2 1 cos
2

cot
2

sin
2

We eliminate n and obtain 3 equations in the variables , √ , √ :

2 0

cot
α
2

cos
γ
2

2 cos
γ
2

 sin
γ
2

0

cot
2

1 sin
2

2 2 sin
2

1 cos
2

0

The first and third equations denote cylinders and are easy to facet. The second surface is more complex
and can be tessellated by building piecewise linear approximations to the section conics m=const and
connecting successive layers. We have not implemented this case.

4.2. Six-Circle Inverse Constructions
We noted before that the inverse construction of the three-circle problem is trivial. In the six-circle case
this is no longer true, but the simplicity of interactively constructing six circles tangent to each other in
the required pattern simplifies our task considerably. We work with the central net, the triangle net

spanned by the centers of the six circle; see Figure 11. The net is composed of three triangles, 1, 2, 3,
and the circle centers C1, C2, and C3 are its outer vertices. Because of the linear relationship between side
lengths and radii, the net can be easily manipulated interactively and the circles rendered.

Figure 11: Central net; Ck and Cik denote both circles and their centers.

We consider the operation of dragging the vertices Ck. Moving Ck alters the lengths ak and bk so the
radii associated with the three vertices must be recomputed from the triangle sides. Two of the new radii

are then used to adjust the other two triangles j, j≠k, thereby maintaining tangency of the circles with
each other. An example is shown in Figure 12. Note that the outer circles need not have a common
tangent. In addition, we allow adjusting the radii individually as an interaction mode. By trial and error
the radii could be so adjusted to achieve a triangle enclosure.

Figure 12: Inverse construction, unconstrained.

In these unconstrained operations, interactive manipulation does not determine an enclosing triangle
directly. To accomplish that, when dragging vertex Ck, we will adjust the three circles that are only
indirectly affected and are shown in blue in Figure 12. The idea is to vary the radii of those circles, while
holding the red circles fixed, so that the angles between the corresponding external tangents become zero.

Note that, by fixing the red circles, we have fixed the angle . The other two angles of the enclosing
triangle depend on the outcome of the radius adjustments.

A brute-force iteration to obtain the enclosing triangle would be to sample the three blue radii and
measure the angle discrepancies. For the three circles touching side c of the outer triangle the problem is
illustrated by Figure 13. Note that the distances u and v are given by √ and √ .
Moreover, for the tangents to match, the distance between U and V must be , √ √ .
Thus, for an interactive operation we can maintain an enclosure by sampling the blue radii to pixel
accuracy and testing whether the tangents match. The condition can be put in terms of angles:

2 arctan 2 arctan

Figure 13: Common tangent condition.

where is the angle between the two lines connecting the circle centers. Alternatively, we could measure
the distance , and require it to be equal to √ √ .

We reduce the search space utilizing the bisector between circle and tangent. In the following,
assume that k=3, and consider adjusting the radii. By fixing the three red circles we fix two sides of the
enclosing triangle we seek. If the circle C1 is to be tangent to the red circle C13 and to the side b of the
enclosing triangle, then its center must lie on the bisector, a parabola. The parametric representation of
the parabola, see Figure 14, is given by

4

, | | | | 1

Figure 14: Bisector of circle, radius r, and its tangent.

We proceed as follows:

1. Assume that vertex C3 is being dragged.
2. Vary the radius r12. For each value of r12, determine the radii r1 and r2 as follows.
3. Using the parametric representation of the bisector of C13 and the tangent to C3, pick a center

C’=C1 and check whether the lengths of sides c1 and b1 of the central net are consistent with the
radius r1. If not, decrease t if and increase t if .
Determine r2 in like manner.

4. Continue until the tangents to C12 match: if 2 arctan ⁄ 2 arctan ⁄ , then

decrease r12, and if is smaller, increase r12.

This iteration achieves excellent performance. Angle locking has also been implemented for C1 and C2.

4.3. Angle Locking
We wish to solve the six-circle Malfatti problem using the inverse construction. To do so, we need an

interaction mode in which one of the angles can be locked to a prescribed value. We proceed as follows:

1. Interact in the constrained mode until the angle has the prescribed value. This can be done

beginning with an equilateral configuration and moving vertex C3 up or down until has the
required value.

2. Lock the angle value and reposition C3, thereby changing the angles and to the values
prescribed in the original problem.

3. Scale the resulting configuration to the dimensions of the given triangle.

Note that this process is easily automated.

The angle lock is accomplished by adjusting the radii r13, r23, and r3 as if dealing with the three-circle
configuration. The angle-locking routine of Subsection 3.4 is used for this purpose on the top three
circles. At any position of C3 we adjust the remaining radii, r1, r12, r2, using the iteration of Subsection
4.2 to obtain a triangle enclosure as already described. See also Figure 15.

Figure 15: Angle locking for the top three circles. In this example = 57o.

As illustrated, we construct the tangent to C13 and C23, shown in blue. The intersection with the
tangent to C13 and C3, and with the tangent to C23 and C3 defines two of the vertices of the triangle in
which to solve the three-circle problem. The tangent to C13 and C23 defines a secant of the circum circle of
the triangle, as shown. Vertex C3 is then clamped to this circle. Vertex C3 is repositioned on the arc.
Using the direct solution of the three-circle problem, we determine the three radii r3, r13, r23, from which
the top triangle in the central net is constructed. Then, the inverse method for the six-circle configuration
is used to complete the larger triangle.

When moving C3, say, the angle variation of the six-circle enclosure, that is, of the angles and , is
greater than it would be if we could clamp the base line c of the six-circle enclosure. To keep the length
of side c of the larger triangle fixed, a scaling step has to be added. The details are routine.

5. Implementation and Results
The performance measurements quoted here were obtained on a PC running Windows Vista (32-bit)

with the following configuration: Intel Xeon X5460 CPU at 3.16GHz, 4GB main memory, and an nVidia
GeForce GTX 285 graphics card driving a display with 2560x1600 pixels. The program was
implemented in C++ and was run in release mode alongside routine applications such as Outlook and
Word. The performance is summarized in the table using frames-per-second (fps) as performance
measure. Measurements are taken by averaging the actual fps over the period of about 1 second.

Classical Malfatti – Three Circles

 GPU method direct Section 3.1 225-230 fps

 CPU only direct Section 3.2 2300-2400 fps

 Angle lock direct Section 3.4 1150-1250 fps

Generalized Malfatti – Six Circles

 Isosceles case direct Section 4.1 200+ fps (est.)

 Inverse constrained inverse Section 4.2 2300-2400 fps

 Angle lock hybrid Section 4.3 1150-1250 fps

Summary of performance

The program has two windows. One window displays the triangle and the circles and allows the user
to interact with these objects using the mouse. For the direct methods, the user may move the vertices of
the enclosing triangle, and for the inverse method the user may move the vertices (O1, O2, O3) of the

central triangles. The second window renders the elliptic cylinders of Section 3.1 in the three-circle case.
In the six-circle case, the second window displays controls allowing mode switching and displaying angle
values. All performance measurements assume that the second window is minimized. If it is not,
performance may drop.

For the three-circle problem, the classical Malfatti problem, using the GPU-rendered surfaces to solve
the equations, we achieve a speed of 225-230 frames per second (fps). This means that, starting with the
coordinates of the (enclosing) triangle vertices, the surface creation by tessellation, the extraction of the
intersections, and the final display of the circles inside the triangle can all be done in less than five milli-
seconds (ms) using a raster of size 1000x1000 for rendering the surfaces and finding their intersection.
The interaction window is of comparable size. Performance increases an order of magnitude when using
the classical formulae as discussed in Section 3.2, to 2300-2400 fps. Again, the second window is
minimized in this case. Angle-locked manipulation also uses the formulae and achieves a frame rate of
1150-1250 fps when only the interaction window is open.

The six-circle problem does not involve the GPU and renders no surfaces. It uses the formulae of the
three-circle case. We have not implemented the direct solution of the isosceles case. Estimating
conservatively, we would expect a performance of 200 fps or better. We reason this estimate as follows:
Two of the intersecting surfaces are cylinders and can be tessellated in time equivalent to the three circle
case. The third surface is a quadric and its tessellation will require many more facets in order to achieve
appropriate accuracy. In [6], we tessellated surfaces including conic sections rotated about a skew axis
and achieved a frame rate of 180-200 fps when such surfaces were involved. Since the quadric surface is
less complex, we believe that 200 fps is a conservative estimate for the time needed to do the GPU
computation of the isosceles case.

The inverse (constrained) six-circle problem maintains the triangle enclosure iteratively and is very
fast. The adjustment to the blue radii (circles C3, C23 and C2 when moving vertex A), is done by binary
search and the frame rates achieved are comparable to the three-circle CPU method, indicating that the
iteration is almost free. The speeds achieved for angle-locked manipulation, in the six-circle case, range
between 1150 and 1250 fps. This speed is comparable to the three-circle case, again confirming that the
time needed for the subsequent iteration adjusting the blue circle radii is negligible.

6. Discussion
We began our investigation with the intention to further explore the utility of GPU implementations

in constraint solving, the subject of [5,6]. There, GPU implementations have simplified enormously the
previously known algebraic methods for variable-radius circle constructions, both in sequential as well as
in simultaneous settings. Key to that success has been the simplicity with which the graph of the
Euclidean distance function of various shape elements can be constructed. More complicated, the
problems of [6] require configuration space surfaces that have considerable algebraic complexity, yet
their geometry permits simple algorithms for faceting them.

Our conclusion is that the utility of the GPU approach depends in large measure on the number and
structure of the equations. Roughly speaking, the ideal case is characterized by three equations that
define surfaces that are easy to tessellate and to render. Conic cylinders derived for the classical Malfatti

problem are especially simple to facet since the tessellation is essentially two-dimensional. Another
requirement, for an attractive GPU-based solution, is that the solutions of interest, represented by the
intersection of the surfaces, are exposed from above or below, thus allowing their identification using the
depth buffer hardware setting. This is indeed the case for the method of Subsection 3.1, since only the
positive octant needs to be rendered. Moreover, considering the high-degree univariate polynomial
proposed in [17], whose roots would be needed to solve the equations articulated there algebraically, we
would strongly advocate the GPU approach over algebraic root finding. However, the geometric
solutions in the literature, such as Malfatti’s original formulae given in [16], have such simplicity that a
GPU approach for the classical Malfatti problem is rather cumbersome. So, the classical, three-circle
problem is not a good argument for a GPU-based implementation.

The six-circle generalization is another matter. Only for the isosceles case do we have a GPU-ready
system of equations at this time. The general case has not yielded a comparable system so far. The value
of our solution with the inverse method is that, in principle, the concept of a two stage solution in which

1) three circles are determined using the classical problem and
2) the configuration is completed by determining the remaining radii separately,

should permit an equation system for the second step that lends itself to a GPU-based implementation.
Short of having found such a system, we chose an iteration instead to complete the solution. Even with
GPU-ready equations, ours would still remain an inverse solution since the circles determine the triangle,
not the other way around.

The angle-locking computation justifies our claim to have a complete solution of the six-circle
problem. As the chosen corner is moved on the clamped arc, the other two angles of the enclosing
triangle can be read out in real time, and since they monotonically depend on the direction of motion, we
can easily find the solution of the generalized problem after scaling. All this can be done very fast with
our implementation.

Acknowledgements
This work has been supported in part by NSC Grants NSC 97-2212-E-031-002, NSC-98-2918-I-031-

004, by NSF Grant CPATH CCF-0722210, by DOE award DE-FG52-06NA26290, and by a gift from
Intel Corp.

References
1. W. Bouma, I. Fudos, C. Hoffmann, J. Cai, R. Paige. “A Geometric Constraint Solver,” CAD 27,

1995, 487-501.
2. O. Bottema, “The Malfatti Problem,” Forum Geometricorum 1, 43-50, 2000.
3. C.-S. Chiang and Robert Joan-Arinyo, “Revisiting Variable Radius Circles in Constructive

Geometric Constraint Solving”, Computer-Aided Geometric Design 21, pages 371-399, 2004/04.
4. C.-S. Chiang and C. Hoffmann, “Apollonius meets Pythagoras,” Technical Report.
5. C.-S. Chiang, C. Hoffmann and Paul Rosen, “Hardware Assist for Constrained Circle Constructions

I: Sequential Problems,” submitted.
6. C.-S. Chiang, C. Hoffmann, and P. Rosen, “Hardware Assist for Constrained Circle Constructions II:

Cluster Merging Problems,” submitted.

7. C. B. Durand. Symbolic and numerical techniques for constraint solving. PhD thesis, Computer
Science Department, Purdue University, 1998

8. I. Fudos and C. M. Hoffmann. A graph-constructive approach to solving systems of geometric
constraints. ACM Transactions on Graphics, 16(2):179–216, 1997.

9. X.-S. Gao, Q. Lin, and G.-F. Zhang. A c-tree decomposition algorithm for 2d and 3d geometric
constraint solving,. Computer-Aided Design, 38(1):1–13, 2005.

10. C. Hoffmann, A. Lomonosov, and M. Sitharam. Decomposition plans for geometric constraint
systems, Part I: Performance measures for CAD. Journal of Symbolic Computation, 31(4):367–408,
2001.

11. C. Hoffmann, A. Lomonosov, and M. Sitharam. Decomposition plans for geometric constraint
systems, Part II: New algorithms. Journal of Symbolic Computation, 31(4):409–427, Apr. 2001.

12. K. Hoff III, T. Culver, J. Keyser, M. Lin, D. Manocha. “Fast Computation of Generalized Voronoi
Diagrams Using Graphics Hardware,” Siggraph ’99, Los Angeles, CA, 277-286.

13. C. Jermann, G. Trombettoni, B. Neveu, and P. Mathis. Decomposition of geometric constraints
systems: A survey. International Journal of Computational Geometry and Applications, 23(7):1–35,
2006.

14. H. Lamure and D. Michelucci. “Solving geometric constraints by homotopy.” Proc. Symp. on Solid
Modeling and Applications, ACM Press 1995: 263-269.

15. J. Owen. Algebraic solution for geometry from dimensional constraints. In SMA’91: Proceedings of
the first ACM symposium on Solid modeling Foundations and CAD/CAM applications, 397–407,
New York 1991. ACM, ACM Press.

16. M. Stefanović. “Triangel centers associated with the Malfatti circles.” Forum Geometricorum 3, 83-
93, 2003.

17. Wolfram MathWorld. “Malfatti Circles,” http://mathworld.wolfram.com/MalfattiCircles.html

