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ABSTRACT

In this paper, we propose a novel method to detect robot-
directed (RD) speech that adopts the Multimodal Semantic Confi-
dence (MSC) measure. The MSC measure is used to decide whether
the speech can be interpreted as a feasible action under the current
physical situation in an object manipulation task. This measure
is calculated by integrating speech, image, and motion confidence
measures with weightings that are optimized by logistic regression.
Experimental results show that, compared with a baseline method
that uses speech confidence only, MSC achieved an absolute in-
crease of 5% for clean speech and 12% for noisy speech in terms of
average maximum F-measure.

Index Terms— robot-directed speech detection, multimodal se-
mantic confidence, human-robot interaction

1. INTRODUCTION

Robots are now being designed to be a part of the lives of ordinary
people in social and home environments. One of the key issues for
practical use is the development of user-friendly interfaces. Speech
recognition is one of our most effective communication tools for use
in a human-robot interface. In recent studies, many systems using
speech-based human-robot interfaces have been implemented, such
as [1]. For a speech-based interface, the functional capability of de-
tecting robot-directed (RD) speech is crucial. For example, user’s
utterances directed to another human listeners should not be recog-
nized as commands directed to a robot.

To resolve this issue, many methods have been implemented,
mainly based on two approaches: (1) using the characteristics of the
acoustic features of speech, and (2) using human physical behaviors
such as gaze tracking or body-orientation detection.

As examples of the first approach, methods based on acous-
tic features have been proposed for RD speech detection in [2],
and for computer-directed speech detection in [3]. In these works,
robot/computer-directed speech detection is performed based on an-
alyzing the differences in acoustic features between robot/computer-
directed speech and other speech. However, this kind of method
requires humans to adjust their speaking style or accent to fit the
robot/computer, which causes an additional burden to human users.

On the other hand, methods based on detecting human physical
behaviors have been proposed. In [4], RD speech are detected by the
proportion of the user’s gaze at the robot during her/his speech. In
[5], RD speech are detected by a multimodal attention system, which
detects the direction of a person’s attention based on a method for
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multimodal person tracking that uses face recognition, sound source
localization, and leg detection. However, this kind of method raises
two issues: (1) humans must adjust their behaviors to fit the robot
while trying to give an order, which causes an additional burden to
humans, and (2) humans may say something irrelevant to the robot
while their behaviors are fitting it.

In contrast, the goal of this work is to implement a no-burden
method. We defined the RD speech detection problem as a domain
classification problem between (1) the RD domain of RD speech and
(2) out-of-domains (OOD) of other speech. Different from recent
works, our method does not require humans to adjust their behaviors
to fit the robot; rather, it is based on deciding whether the speech
can be interpreted as a feasible action under the current physical sit-
uation for a robot in an object-manipulation task by calculating the
Multimodal Semantic Confidence (MSC) measure.

Conventional studies on domain classification have typically fo-
cused on using speech recognition confidences or topic classification
[7]. However, for a domain classification problem to be solved by a
robot, we believe that in addition to speech signals, non-speech in-
formation would also be helpful because robots communicate in the
real world not only with hearing but also with sight, touch, and so
on. Therefore, in our method, the MSC measure is calculated using
both speech inputs and physical situations. The features of this work
can be summarized as follows:

(1) The RD speech detection problem is defined as a domain
classification problem.

(2) Domain classification is based on the MSC measure, which
is calculated by using not only speech inputs but also physical situa-
tions.

The remainder of this paper is organized as follows: Section 2
gives the details of the object manipulation task. Section 3 describes
the proposed method. The experimental methodology and results are
presented in Section 4. Finally, Section 5 gives our conclusions.

2. OBJECT MANIPULATION TASK

The target task of this work is called an object manipulation task in
which the robot shown in Fig. 1 manipulates objects according to a
user’s utterances under current physical situation. Fig. 2 depicts a
camera image of the current physical situation under the command
utterance “Place big Kermit on the box.” In this example, the robot
is told to place object 3 (big Kermit) on object 2 (box). The solid
line shows the trajectory intended by the user. The trajectory can be
interpreted by the positional change of the relationship between the
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Fig. 1. Robot used in the object Fig. 2. Scene corresponding to

manipulation task. “Place big Kermit on the box.”
moved object (trajector) and the reference object (landmark). In the
case shown in Fig.2, the trajector and landmark are objects 3 and 2,
respectively.

3. MSC-BASED RD SPEECH DETECTION METHOD

An overview of our method is shown in Fig. 3. First, using the
information on current scene O and behavioral context g, speech
understanding is performed to interpret the meaning of speech s as
a possible action. Second, to evaluate the feasibility of the action,
three confidence measures are calculated: Cg for speech, C for
the static images of the objects, and Cy; for the trajectory of mo-
tion. Then the weighted sum of these confidence measures with a
bias is inputted to a sigmoid function. The bias and the weightings,
{00, 61, 02,03}, are optimized by logistic regression. Here, the MSC
is defined as the output of the sigmoid function, and represents the
probability that s is RD speech.

3.1. Speech Understanding

We previously proposed a machine learning method called LCore
that enables robots to acquire the capability of linguistic communi-
cation from scratch through verbal and nonverbal interaction with
users [6]. In this study, we employ the speech understanding method
used in LCore.

In the process of the speech understanding, we assume that s can
be interpreted with conceptual structure z = [(Motion: ww ), (Tra-
jector: wr), (Landmark: wrg )], where was, wr, and wy, represent
the phrases describing motion, a trajector, and a landmark, respec-
tively. (Or z = [(Motion: war), (Trajector: wr)] for an action that
does not need a landmark). The order of the components in z rep-
resents the word sequence of s. For example, in Fig. 2, the user’s
utterance, “Place big Kermit on the box™ is interpreted as [(Motion:
“Place”), (Trajector: “big Kermit”), (Landmark: “box”)].

Given speech s, current scene O, which includes the visual fea-
tures and positions of all objects in it, and behavioral context g,
speech understanding selects the optimal action a based on the con-
ceptual structure z by a multimodal integrated user model that is
trained by the interaction between the user and the robot. In this
paper, a is defined as a = (¢, &), where ¢t and £ denote a trajector
and a trajectory of motion, respectively. A user model integrates the
five belief modules — (1) speech, (2) motion, (3) vision, (4) motion-
object relationship, and (5) behavioral context — and is called shared
belief. Each of the five belief modules in the shared belief is defined
as follows:

Speech Bg: This module is represented as the log probability
of s conditioned by z, under lexicon L and grammar G.. It is writ-
ten as log P(s|z; L) P(z; G ), where L includes pairs of a word and
a concept, each of which represents the static image of the object
and the motion as well as particles. GG, is represented by the statisti-
cal language model for possible robot commands. In this paper, the
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Fig. 3. MSC measure calculated by the outputs of speech under-
standing.

word is represented by HMMs using mel-scale cepstrum coefficients
and their delta parameters (25-dimensional).

Concept of static image of object Br: This module, which
is represented as the log likelihood of Gaussian distributions in a
multi-dimensional visual feature space (size, color (L™, a™, b*), and
shape), is written as log P(o¢,¢|wr; L) and log P(or,¢|wr; L),
where o,y and oy, 5 denote the features of trajector o; and landmark
oy in scene O.

Concept of motion Bjs: This module is represented as the
log likelihood of HMM using a sequence of vertical and horizontal
coordinates of the trajectory &, given motion word was . It is written
as P(&|ot,p, 01,p, war; L), where o4, and o, denote the positions
of trajector ¢ and landmark [, respectively.

Motion-object relationship Br: This module represents the
belief that in the motion corresponding to motion word was, fea-
tures o,y and oy, 5 of objects ¢ and [ are typical for a trajector and a
landmark, respectively. This belief is represented by a multivariate
Gaussian distribution, P(oy, ¢, 01, ¢|wnr; R), where R is its parame-
ter set.

Behavioral context B : This module represents the belief that
the current speech refers to object o, given behavioral context g. It
is written as B (o, q; H), where q includes information on which
objects were a trajector and a landmark in the previous action and on
which object the user is now holding. H is its parameter set.

Given weighting parameter set I'= {71..,, 75}, the degree of
correspondence between speech s and action a is represented by
shared belief function ¥ written as

¥(s,a,0,q,L,Gr,R,H,T') =
malx<'y1 log P(s|z; L)P(z; Gr) [Bs]

+v2 <logP(ot,f|wT;L) + log P(ol,f\wL;L)> [Br]

+73 lOgP(ﬂOlJHOt,;Dva;L) [Ba]
+7alog P(ot.5, 01, ¢lwar; R) [Br]
(D

where conceptual structure z and landmark [ are selected to maxi-
mize the value of W. As the meaning of speech s under scene O,
corresponding action a is determined by maximizing W:

a= (1,§) = argmax ¥(s,a,0,q,L,G,, R, H,T).  (2)



Finally, action & = (i, 13 ), selected landmark I, and conceptual struc-
ture 2 are outputted. Then the MSC measure is calculated based on
these outputs.

3.2. MSC Measure

Next, we describe the proposed MSC measure. MSC measure C'yr g
is a measure of the feasibility for action a under the current scene
and represents an RD speech probability. For input speech s, current
scene O and behavior context g, QMS is calculated based on the
outputs of speech understanding (a, [, 2) and is written as

1
CMS(S7OVq) = 1 +6—(00+9105+92C[+9301u) 3)

= P(domam = RDlsa Oa q)7

where C'g, C'r, and C)y are the confidence measures of the speech,
the object images, and the trajectory of motion. @= {0o, 01, 62, 03}
is applied to these confidence scores.

3.2.1. Speech Confidence Measure

The confidence measure of speech Cs is calculated by using the
likelihood of an acoustic model, which is conventionally used as a
confidence measure for speech recognition [8]. It is calculated as

P(s|z; A)

Z: A = 1
Cs(s: 54, Cr) = Ly 108 ety Plwi )’

“)

where n(s) denotes the analysis frame length of the input speech,
P(s]2; A) denotes the likelihood of word sequence Z for input
speech s by a phoneme acoustic model A, y denotes a phoneme
sequence, and L(G)) denotes a set of possible phoneme sequences
accepted by phoneme network G,. For speech that matches robot
command grammar G,, Cs has a greater value than speech that
does not match G-.

The basic concept of this method is that it treats the likelihood
of the most typical (maximum-likelihood) phoneme sequences for
the input speech as a baseline. Based on this idea, the confidence
measures of image and motion are defined as follows.

3.2.2. Image Confidence Measure

As a baseline of the image confidence measure, the likelihood of the
most typical visual features for selected objects are those that maxi-
mize Gaussians of the objects. For visual features (o7 ; and o f) of

{ and I, which are represented by wr and wr, respectively, the im-
age confidence measure is calculated by the summed log-likelihood
ratios of likelihood and baseline. It is written as

Ci(o3 4,05 p0r,Wr; L) =
P(o; s|wr; L)P(o; ;|wr; L) 5

max,, P(oy|wr)max,, P(oflwr)’

log

where P(o; ¢|[wr; L) and P(0; ¢|r; L) denote the likelihood of
07 ¢ and 0; ;, max,, P(oy|r) and maz,, P(of|wr) denote the
maximum likelihood for object image models that are treated as
baselines, and oy denotes the visual features in object image models.

3.2.3. Motion Confidence Measure
As a baseline of the motion confidence measure, the likelihood of
the most typical trajectory for motion word @, given positions o; ,

and o;  of trajector { and landmark , can be obtained by treating the
trajector position as a variable. Then the motion confidence measure
is calculated as

P(€lo; 0, Wnr; L)

maxe,o, P(&lop; 07, War; L)’

(6)

Cnr(€,bar; L) = log

where P(£ |07, 07, Wnr; L) denotes the likelihood for trajectory

€ and maxe,o, P(£]0p, 07 ,,wnr; L) denotes the likelihood of the
maximum likelihood trajectory £ of motion word was; when the
trajector position is variable, o, denotes this variable.

3.2.4. Optimization of Weightings

We now consider the problem of estimating weighting @ of Cy/s
in Eq. 3. The ith training sample is given as the pair of C's;g =
Cus(s*, 0% q*) and teaching signal d*, {(C%;s,d")|i = 1,..., N},
where d' is 0 or 1, which represents OOD speech or RD speech,
respectively, and N is the total number of training samples. A lo-
gistic regression model [9] is used for optimizing ®. The likelihood
function is written as

N ) _ ;
P(d|®) = [[(Cis)* (1 — Cirs)™ %, ©)

i=1

where d= (d, ..., d"). @ is optimized by the maximum-likelihood
estimation of Eq. 7 using Fisher’s scoring algorithm [10].

4. EXPERIMENTAL EVALUATION

4.1. Data Collection and Experiment Setting

Our experiment was conducted under both clean and noisy condi-
tions by using a set of pairs of speech and scene. We prepared a
clean speech corpus by taking the following steps. First, we gathered
2560 speech samples from 16 participants (8 males and 8 females)
in a soundproof room with a SANKEN-CSS5 directional microphone
without noise. All of these participants were native Japanese speak-
ers, and each of them sat on a bench one meter from the microphone
and produced speech in Japaneses'. Then we paired each speech
with a scene, which was captured by the stereo vision camera. Fig-
ure 2 shows an example shot of a scene file. Each scene included
three objects in average. Finally, each pair was manually labeled
as either RD or OOD. For the noisy speech corpus, we mixed each
speech sample in the clean speech corpus with dining hall noise at a
level from 50 to 52 dBA and then performed noise suppression [11].

The evaluation under the clean speech corpus was performed
by leave-one-out cross-validation: 15 participants’ data was used as
a training set, and the remaining 1 participant’s data was used as
a test set and repeated 16 times. During cross-validation, ® was
optimized, and the averages were: éo = 5.9, 91 = 0.00011, éz =
0.053, and A3 = 0.74. Then, the evaluation under the noisy speech
corpus was performed using these averages without cross-validation.

The robot lexicon L used in our experiment included 56 words,
including 38 nouns and adjectives, 11 verbs representing 7 motions,
and 7 particles. For each speech-scene pair, speech understanding

!n this paper, the speech was translated into English.
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Fig. 4. Precision-recall curve for clean speech corpus.

was first performed, and then the MSC measure was calculated.
ATRASR [12] was used for speech recognition during the speech
understanding. By using ATRASR, accuracies of 83% and 67% in
phoneme recognition were obtained for the clean speech corpus and
the noisy corpus, respectively.

For comparison, we used a baseline that performs RD speech
detection based on the speech confidence measure.

4.2. Results

Figures 4 and 5 show the precision-recall curves for clean and noisy
speech corpora. The MSC measure and baseline performances are
shown by “MSC” and “Baseline.” The two lines clearly show that the
MSC measure outperforms the baseline for RD speech detection, for
both clean and noisy speech corpora. Moreover, the performances
using the partial MSC measure are shown by “Speech-Image” (using
the confidence measure of speech and image) and “Speech-Motion”
(using the confidence measure of speech and motion). These lines
show that both image and motion confidences contributed to im-
provement in performance. The average maximum F-measures of
MSC and baseline were 99% and 94% for clean speech corpus, re-
spectively, and 95% and 83% for noisy speech corpus, respectively.
The performance improvement of MSC compared to baseline is 5%
for clean speech corpus and 12% for noisy speech corpus. Then
we performed the paired t-test and found that there were statistical
differences (p < 0.01) between MSC and baseline for both clean
and noisy speech corpora. Notice that MSC obtains a high perfor-
mance of 95% even for noisy speech corpus, while the baseline ob-
tains 83%. This means that MSC is particularly effective under noisy
conditions.

Finally, to make an RD speech decision by MSC, a threshold
could be set to 0.79, which maximized the average F-measure for
the clean speech corpus. This means that a speech with a high RD
speech probability of more than 79% will be treated as being in the
RD domain and the robot will execute an action according to this
speech.

5. CONCLUSION

We proposed a novel RD speech detection method based on the MSC
measure from speech, the static image of objects, and the motion.
Consequently, we showed that the method achieved higher perfor-
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Fig. 5. Precision-recall curve for noisy speech corpus.

mance compared with a baseline under both clean and noisy condi-
tions.

In future work, we will evaluate our system with a domain se-
lection task and integrate it with methods based on human physical
behavior for various applications.
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