
Decision Making in Manufacturing and Services
Vol. 8 • 2014 • No. 1–2 • pp. 5–12

Maximization of an Asymmetric Utility Function
by the Least Squares

Kiyoshi Yoneda∗, Antonio Carlos Moretti∗∗

Abstract. This note points out that a utility maximization procedure proposed in an earlier
paper may be reduced to the least squares. The utility function is asymmetric in the sense
that for each cue its ideal value and the permissible range are assigned in such a way that
the ideal is not necessarily at the center of the range, like “a beer of 350 ml would be ideal,
but acceptable if within [100, 500]”. A practical consequence of the observation is that very
little programming will be needed to deploy the utility maximization since software for the
least squares is widely available.

Keywords: individual behavior, inverse problems, simultaneous equations, optimization

Mathematics Subject Classification: 90B50

JEL Classification: C44

Revised: March 17, 2014

1. INTRODUCTION

The key observation in this note is that the utility maximization proposed in Yoneda
and Celaschi (2013) is isomorphic to the least squares. To explain this, we begin with
a brief review of that paper.

1.1. THE UTILITY MAXIMIZATION

The aim has been to devise a tool for decision making such that anyone with a rudi-
mentary understanding of linear equations would be able to build a model as an inverse
problem and solve it by maximizing a utility function.

Consider the approximate linear equations φx ≈ y, where x is a vector of decision
variables, y the desired outcomes, and φ a matrix describing the linear causality
relationship. Here, dimx ¬ dim y is secured by including all approximate equations of
the form xj ≈ yj . For concreteness, we consider an example worked out in Section 5
of Yoneda and Celaschi (2013).

∗ Fukuoka University, Faculty of Economics, Jounan-ku, Fukuoka, 814-0180 Japan,
e-mail: yoneda@econ.fukuoka-u.ac.jp, corresponding author

∗∗ School of Applied Sciences State University of Campinas–SP, Brazil,
e-mail: antonio.moretti@fca.unicamp.br

DOI: http://dx.doi.org/10.7494/dmms.2014.8.1.5 5

6 K. Yoneda, A.C. Moretti

Example
A person wishes to eat peanuts and drink beer minding cost and energy gain.
The requirement specifications are:

Peanuts should ideally be 50 g,
hopefully between 30 and 100.

Beer should ideally be 350 ml,
hopefully between 100 and 500.

Cost should ideally be 32 cu,
hopefully between 0 and 5.

Energy should ideally be 200 kcal,
hopefully between 150 and 300.

and we know the formulas for cost and energy in terms of peanuts and beer.

The proposed solution method for this problem has been to maximize a utility
function with respect to the decision variables. The utility function U is defined as
a weighted sum of subutilities

x̂ := arg max U(x) U(x) :=
∑
i

wi u(xi) (1)

where u is two-piece quadratic and hence asymmetric in general, as will be detailed in
Section 2.

Now, for scalar x define the subutility function u(x) := u(x; y, a, b) with y ∈ [a, b]
satisfying the following requirements: u is continuously differentiable; u is quadratic in
[a, y] and also in [y, b]; u is linear for x < a and b < x; and u(y) = 1, (du(x)/dx)(y) = 0,
u(a) = u(b) = 0. Such u exists uniquely.

u(x; y, a, b) :=


(c− x)(c− 2y + x)

(c− y)2
x ∈ [a, b]

2(c− x)
c− y

x /∈ [a, b]

where c :=


a x ¬ y

b y < x

(2)

This subutility function has three intuitive parameters: y, the ideal value of x; a, the
lowest acceptable value of x; and b, the highest acceptable value of x. The method
differs from the weighted least squares in that u is generally asymmetric around y: not
necessarily y − a = b− y.

Example (continued)
The next expression summarizes the problem p:

Intercept + φx
w
≈ y [unit a b w]

0
0

1.5
0

+


1 0
0 1
.02 .01
5.92 .406

[x1x2
]
w
≈


50
350
1.5
200




g 30 100 .3
ml 100 500 .3
cu 0 5 .1

kcal 150 300 .3



Maximization of an Asymmetric Utility Function by the Least Squares 7

where:

g := grams ml := mililiters
cu := currency units kcal := kilocalories

which is equation (9) in Yoneda and Celaschi (2013), with the intercept left in
for clarity. This system of approximate equations was solved by minimizing
(1) with (2), yielding the solution:

x̂ =
[

34 [g]
150 [ml]

]
(3)

The optimization procedure permits gradient methods since u is continuously
differentiable. The tails of u have been chosen to be linear rather than quadratic in
order to prevent numerical overflow in resource-constrained computation devoid of the
floating point arithmetics.

1.2. WHY LEAST SQUARES?

This paper points out that there is an isomorphism between the utility maximization
problem described above and the least squares. The isomorphism is a bijection such that
preserves the optimal solution. Its practical consequence is that very little programming
will be necessary to deploy the utility maximization provided that the least squares
software is readily available. The least squares programs are in fact available in
various computer languages and packages, including those for hardwares with low
computational capabilities such as embedded systems.

A common strategy in solving a problem p is to reduce it to an easier problem q.
When q is solved, its answer r is translated back into the solution s of p. “Easier” here
means that an effective tool to produce an answer is at hand.

Let:

p := problem formulated as utility maximization
q := problem formulated as loss minimization
r := solution of the loss minimization
s := solution of the utility maximization

Many computer programs exist to solve the least squares problem q which mini-
mizes the weighted quadratic loss function

ẑ := arg min L(z) L(z) :=
∑
i

wi `(zi) (4)

where ` is quadratic and hence symmetric. This method yields a solution r. The least
squares method is among the best-researched topic in numerical computation.

8 K. Yoneda, A.C. Moretti

We wish to find a pair of transformations (τ, υ) such that makes this diagram
commute:

p

τ

��

Umax // s

q
Lmin

// r

υ

OO (5)

In the language of category theory Turi (2001) this amounts to defining an adjoint
pair of functors between two categories, which in our case is merely an isomorphism
υ = τ−1, so that this diagram commutes as well:

p
Umax // s

τ

��
q

υ

OO

Lmin
// r

The remainder of this note is organized as follows. The conversion (τ, τ−1) is
presented in Section 2. Section 3 considers the usefulness of this approach. Section 4
concludes the note by pointing out a direction for the future research.

2. OBSERVATION

The proposed subutility function has been (2). Its main part is for x ∈ [a, b], which is
a two-piece quadratic, and the parts for x /∈ [a, b] are just the linear extensions of the
former. In the remainder of this section we consider only the domain [a, b] until we
recapture]−∞,∞[at the end of the section.

Now, consider the standardization:

τ : x 7→ z :=
|x− y|

c(x)− y
where c(x) :=

{
a x < y

b y < x
(6)

so that [a y b] 7→ [−1 0 1]. This is a two-piece linear function. The usual quadratic
loss function is:

`(z) := z2

Then, the subutility function is:

1− `(z) = 1− z2 = 1−
(

x− y
c(x)− y

)2
=
{c(x)− x}{c(x)− 2y + x}

{c(x)− y}2

= u(x) x ∈ [a, b]

Maximization of an Asymmetric Utility Function by the Least Squares 9

This means that the maximization of subutility function u(x) is equivalent to the
minimization of the loss function `(z) = z2, and that the value of x may be recovered
by the destandardization:

τ−1 : z 7→ x = y + {d(z)− y}|z| where d(z) :=

{
a z < 0
b 0 < z

(7)

This is also a two-piece linear function. Now, it is obvious that the pair (τ, τ−1) makes
the diagram (5) commute for values x ∈ [a, b] ⇔ z ∈ [−1, 1].

To summarize, for x ∈ [a, b]:

p

τ

��

x � u

2-piece quadratic
//

_

��

u(x)

q

τ−1

OO

z(x) � `

quadratic
// `(z(x))

_

OO

Note that it is typically the case that some elements of x are linear transformations of
other elements of x. In this case, (τ, τ−1) is piecewise linear: see φ in the example. If
on the other hand, the transformation is monotonic but not necessarily linear, so is
(τ, τ−1) with nondifferentiable points. In Section 3 we give further consideration to
this point.

For 1− `(z) to match u(x) in]−∞,∞[rather than only in [a, b] define:

`(z) :=


−2z − 1 z ∈]−∞,−1]
z2 z ∈ [−1, 1]
2z − 1 z ∈ [1,∞[

Under this definition, `(z) = 2 |z| for large |z|, so that overflow is predictable, making
computation easier for processors without floating point arithmetics.

Example (continued)
We try the reduction method. By τ the peanuts and beer problem transforms
to q:

ϕ(z)
w
≈ 0

z1
z2
z3
z4

 w
≈


0
0
0
0

 w =


.3
.3
.1
.3


with:

d1(z1) :=

{
30 z1 < 0
100 0 < z1

d2(z2) :=

{
100 z2 < 0
500 0 < z2

10 K. Yoneda, A.C. Moretti

x1 = 50 + {d1(z1)− 50} |z1| x2 = 350 + {d2(z2)− 350} |z2|
x3 = 1.5 + .2x1 + .01x2 x4 = 5.92x1 + .406x2

c3(x3) :=

{
0 x3 < 1.5
5 1.5 < x3

c4(x4) :=

{
150 x4 < 200
300 200 < x4

z3 =
|x3|

c3(x3)
z4 =

|x4 − 200|
c4(x4)− 200

Minimizing (4) yields the optimum solution r

ẑ =
[
−0.783
−0.800

]
which by τ−1 translates back to s, (3).

3. DISCUSSION

3.1. IMPORTANCE WEIGHTS

A clear benefit in standardization τ comes from the psychology of weight assign-
ment Hastie et al. (2001):

If one type of information (e.g., test scores) is conveyed by numbers that
range from 200 to 800 and another type (e.g., grades) is conveyed by numbers
that range from 1 to 4, the human brain will be fooled into greater judgment ad-
justments based on the “larger quantities” on the first scale. The implication is
that, when intuitive judgments are made, it’s good practice to standardize the cue
information scales.

When the cues are presented in distinct measurement units, it is more difficult to
compare their relative importances than when they are all presented in a unit-free scale
in]−1, 1[. Therefore, it is recommendable to assign the weights w upon standardization.
Although this objective may be achieved simply by standardization rather than by
solving the entire problem by conversion, the latter possibility provides a theoretical
justification of the standardization procedure.

3.2. DESCRIPTION AND OPTIMIZATION

Suppose the causality relationship φ is linear. Then, since z is a two-piece linear
function of x, it is possible to write q as a linear rather than nonlinear least squares
problem by introducing dummy variables. This procedure could be written in the form
of a program, but the task is not simple on top of increasing the problem size. Hence,
it seems labor-saving to use a nonlinear least squares software nls to solve q.

Maximization of an Asymmetric Utility Function by the Least Squares 11

Suppose further that nls is implemented in two parts, desq for description of
nonlinear least squares problem and opt for loss function minimization. If opt is
written in a generic way so that it can optimize not only quadratic loss functions but
just about any reasonable function, which is often the case with large packages, then
U can be maximized directly using opt.

p

τ

��

desp // U
opt // s

q

nls

::
desq // L

opt // r

τ−1

OO

In this case it makes sense to reduce p to q only if the labor to program both (τ, τ−1)
and desq is less than that to program the p descriptor desp, a condition which seems
hard to hold.

Summarizing, the problem conversion approach is useful for setting the weights w,

while actually solving p→ s via p τ−→ q → r
τ−1−→ s is useful only when

nls : q → r

is available in such a way that opt is difficult to deploy apart from nls.
Is this a common situation? It seems so. For instance, Python1 has a module called

lmfit2, which plays the role of desq above, assuming the nonlinear least squares for the
optimization opt = leastsq. What desq = lmfit does is facilitate model modification
experiments, such as fixing some of the variables or modifying dependencies among
them. With lmfit, exploration of possible models becomes easier.

The task for opt is delegated to a function called scipy.optimize.leastsq
which connects to the Levenberg-Marquardt algorithm3 in MINPACK-14.

p

τ

��

// s

q
desq

lmfit
// L nls

leastsq
// r

τ−1

OO

4. CONCLUSION

The advantage of decomposing the utility maximization into the problem description
and the least squares seems clear. Unfortunately, the description framework provided
by desq = lmfit is inconvenient for our purpose, for the following reason. Since lmfit

1 http://www.python.org
2 http://cars9.uchicago.edu/software/python/lmfit/
3 http://en.wikipedia.org/wiki/Levenberg-Marquardt_algorithm
4 http://en.wikipedia.org/wiki/MINPACK

12 K. Yoneda, A.C. Moretti

has been built for fitting a model formula to a set of data as the name suggests,
it assumes that every data point has the same structure, whereas in our case, each
cue has a different structure. The same can be said with other problem description
programs desq for statistics such as the formula provided in R (R Core Team (2013)).

If the Levenberg-Marquardt algorithm for the least squares is deemed more
reliable and perhaps more efficient than generic unconstrained optimization algo-
rithms, then one should use the former whenever available. An obvious research
direction, then, would be to develop a problem description software desq suitable for
utility maximization in which each cue comes with an individual formula, rather than
for fitting the same formula to a large data set.

REFERENCES

Hastie, R., Dawes, R.M., 2009. Rational Choice in an Uncertain World: The Psychology of
Judgement and Decision Making, 2nd Edition. Sage Publications, Inc.

R Core Team, 2013. R: A Language and Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria.
URL http://www.R-project.org/

Turi, D., 2001. Category Theory Lecture Notes. University of Edinburgh.
URL http://www.dcs.ed.ac.uk/home/dt/CT/categories.pdf

Yoneda, K., Celaschi, W., 2013. A utility function to solve approximate linear equations for
decision making. Decision Making in Manufacturing and Services, 7(1–2), pp. 5–18.
URL http://www.dmms.agh.edu.pl/Volume_7/DMMS_2013_Yoneda_Celaschi.pdf

