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Optimal State-Space Control of a 
Gas Turbine Engine 
An analog fuel control for a gas turbine engine was compared with several state-
space derived fuel controls. A single-spool, simple cycle gas turbine engine was 
modeled using ACSL (high level simulation language based on FORTRAN). The 
model included an analog fuel control representative of existing commercial fuel 
controls. The ACSL model was stripped of nonessential states to produce an eight-
state linear state-space model of the engine. The A, B, and C matrices, derived from 
rated operating conditions, were used to obtain feedback control gains by the fol
lowing methods: (1) state feedback; (2) LQR theory; (J) Bellman method; and 
(4) polygonal search. An off-load transient followed by an on-load transient was 
run for each of these fuel controls. The transient curves obtained were used to 
compare the state-space fuel controls with the analog fuel control. The state-space 
fuel controls did better than the analog control. 

1.0 Introduction and Model Description 
The development of a state-space fuel control on a single-

shaft, simple cycle gas turbine engine is the subject of this 
paper. A model of this simple engine with analog fuel control 
was available. The load transients of this model have been 
compared with actual load transients and found to be accurate. 
This verified model becomes a tool for developing multimode 
state-space controllers for more complicated engines. For ex
ample, a possible future high-efficiency engine for powering 
naval ships is an intercooled, regenerated (ICR) gas turbine 
engine [1], The control for this future engine will involve mon
itoring several outputs and will have three to five inputs. The 
number of inputs will vary with the mode of operation. A 
computer in the control loop will allow for many sophisticated 
modes and, also, allow for improvements in control strategy 
after initial development and even after installation. Fuel con
trols for future engines will be developed and verified with this 
simpler engine model as a tool. 

A simple cycle single-shaft gas turbine engine was modeled 
using ACSL (Advanced Continuous Simulation Language) [2]. 
Figure 1 shows the engine components and the three control 
volumes used for modeling the dynamic behavior. For each 
control volume a mass balance and an energy balance produced 
two first-order differential equations [3]. For example, the 
compressor control volume V3 equations are: 

Mass balance: 

DW3 = W A 2 - W A 3 - W B L (1.1) 

DW3 is change in mass in V3 per unit time 

WA2 is mass rate into V3 

where: 
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WA3 is mass rate out of V3 

WBL is all bleed flow rates from V3 

Energy balance: 

DT3 = ((WA2*(H3P - H3))/CV3 

+ T3*DW3*(GM3-1)/W3 (1.2) 

where: 

DT3 is the time derivative of exit temperature 

H3 is enthalpy at exit of V3 without considering the 

volume storage of V3 

H3P is enthalpy at exit considering storage 

CV3 is the heat capacity (const, vol.) at exit 

T3 is the temperature at the exit of V3 

GM3 is the ratio of the heat capacities at the exit 

W3 is the mass in the control volume V3 
There are three control volumes in this model. A mass balance 
and an energy balance on each one yields six first-order dif-
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ferential equations of the type shown above. A seventh dif
ferential equation is needed to define an energy balance on the 
rotating group. A torque imbalance (torque input from the 
turbine and torque output to the compressor and to the load) 
will produce an acceleration of the rotating group. 

In addition the model has sensor delays, actuator delays, 
and lead-lag elements in the fuel control. A total of 11 states 
are present in the unaltered model. For purposes of devising 
a state-space fuel control, the number of states is reduced to 
eight. These are the control volume states and the shaft speed 
for a total of seven states. Tt is convenient to add an eighth 
state, integral of speed, so that the error in speed can be driven 
to zero. A ninth state, derivative of speed, provides antici
patory control at the expense of being sensitive to noise. This 
ninth state was obtained from the eight-state model by taking 
the dot product of the first row of the A matrix with the state 
vector. Only the polygonal search method used a control gain 
on this ninth state. The states in the state-space model are: 

WGG shaft speed, rad/s 
WGGINT integral of WGG, rad 
T41 exit temperature from the turbine, R 
W41 mass in the turbine control volume, lb 
T4 inlet temperature to the turbine, R 
W4 mass in the burner control volume, lb 
T3 exit temperature from the compressor, R 

1 
2 
3 
4 
5 
6 
7 
8 W3 mass in the compressor control volume, lb 
9 DWGG shaft acceleration, rad/s2 

The state-space fuel control gains (up to nine in number) were 
gains on each of these nine states. 

2.0 Analysis 
A good introduction to state-space methods and optimal 

control can be found in numerous texts, for example, Phillips 
and Harbor [4], A fundamental knowledge of state-space 
methods is assumed in the rest of this development. With the 
analog model resident in ACSL, it is possible through ACTION 
and PROCED statements to look at various load set points 
and obtain perturbation models of the form [4]: 

8x=A8x + B8u (2.1) 

where the A matrix is (nxn) and is the standard Jacobian 
array of the form 

~ML ML 

and 

B-

mdXi 

LML ML 

Ms. 

ML 
dx„ 

(2.2) 

Ms. 
du„. 

(2.3) 

and the dimension of B is (nxm). The x° and u° vectors 
represent the selected operating point nominal values where 

and 

x = x° + <5x 

u = u° + 5u 

(2.4) 

(2.5) 

The output matrix, C, is also available and matrix D is null 
for these models. Varying the load, several operating points 
were established. The A, B, and C arrays were identified at 

each of these operating points using the ASCL JACOB com
mand and routed directly into MATLAB [5], a high-level pro
gramming tool available for systems analysis. 

2.1 Scaling. The A matrices identified using this Jacobian 
procedure are, of course, very poorly conditioned arrays. Fol
lowing Brockus [6], for a set of state equations given in the 
form 

x^Ax+Ba (2.6) 

Let the normalizing constant (scale factor) for variable x, be 
denoted Xh and let the scaled variable z be related to the state 
variables by the linear transformation 

x = Tz in which x, = XjZ, (2.7) 

The T matrix so defined is diagonal with the scale factors 
constituting the diagonal elements. Its inverse is equally simple, 
being diagonal with the inverse scale factors on the diagonal. 
Thus the completed transform 

\ = T~'ATz+TiBu 

Z = A,Z + BM (2.8) 

is a very simple one in which it is apparent that the scaled A 
matrix is formed by dividing row / of the system matrix by 
scale factor /, and by multiplying columny of the system matrix 
by scale factor j . Therefore if 

then 

in which 

4̂ = [«y] 

As=[Rijatj] 

R,j - Xj/X; (2.9) 

Thus the actual ratios of scale factors are of predominant 
importance for scaling the system matrix, and the scaling prob
lem centers around the selection of that set of ratios. Assigning 
scaling factors as outlined by Brockus, we present a typical A 
and As (scaled) in Table 1. The conditioning of these two arrays 
is significantly different with As several orders of magnitude 
better than the original unsealed array A. The B matrix was 
also scaled to Bs with a " 1 " for the single input element, fuel 
flow, and a " 0 " for all others. 

2.2 State Feedback Control. 
feedback law of the form [7] 

u-

To implement a full-state 

T (2.10) 

where g is (nxl), the "place" command in MATLAB using 
Ackerman's formula was exercised. Fuel flow, u, is the single 
input for this system. 

Three operating points (100, 50, and 0 percent load) were 
examined in detail. Eigenvalues of the identified A matrices 
from ACSL each had one right half-plane pole. We arbitrarily 
elected to move the poles to stable points in the.? plane, solve 
for the #,-'s and then do a linear system simulation about the 
designated operating point. Further, to perturb the system the 
speed (XNH) was varied by 5 percent for each operating point. 
Table 2 contains a typical set of eigenvalues for As and As - BgT. 

Once the feedback gains have been obtained, a simulation 
over a 10 second interval using the load transient depicted in 
Fig. 2 was run in ACSL and the results are shown in Fig. 3. 
There are, of course, an infinite number of possibilities for 
the selection of the eigenvalues. 

2.3 Linear Quadratic Regulator (LQR) Control. The so
lution of the LQR control problem [7] amounts to calculating 
the optimal feedback gain matrix K such that the feedback 
law 

-Kx (2.11) 
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Table 2 Eigenvalues 

Ar A< ~ BgT
 s 

-1 
-1 
- 1 
- 1 

4 
- 7 
- 4 

0976e+04 
6660e+03 
1471e+03 
2181e+02 
8 9 4 1 6 - 0 1 
2998e+01 
0995e+01 

minimizes the cost function 

J= (xQx + ui 

subject to the constraint equation 

x = Ax + Bu 

-1.0976e+04 
-1.6660e+03 
-1.1471e+03 
-1.2181e+02 
-7.2998e+01 
-5.0000e-01 
-4.0995e+01 

Ru)dt (2.12) 

(2.13) 

Assuming the A and B arrays identified in ACSL for the 
different operating points are correct, then the main difficulty 
is selecting Q and R subject to the further constraints that Q 
be symmetric and positive semidefinite and the R be symmetric 
and positive definite. 

Since only one input (fuel flow) is in the model, R may be 
any positive number. Once again, the choices and possibilities 
are endless. So for the purpose of getting started Q was chosen 
to be the (nxn) identity array and R was chosen to be " 1 " 
for the first case. The gains K were found using MATLAB at 
all three operating points and a simulation using one of these 
results was done over the standard load transient shown in 
Fig. 2. The results, shown in Fig. 4, show the LQR determined 
controller to compare favorably with the commercial analog 
controller. 

2.4 Bellman Solution for Optimization. Given a homo
geneous state equation 

x=Ax (2.14) 

with quadratic cost function of the form 

Rxdt (2.15) 

then the Bellman solution uses the Lyapunov function 

R=ATF+FA (2.16) 
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with F a symmetric matrix. Find F to minimize the cost function 

J=-xT(0)Fx(0) (2.17) 

Our linearized control system with control law u= -kxis just 
the form for the Bellman optimization. The gains K are per
turbed to minimize the cost function (Eq. (2.17)). Simulation 
results for this optimization scheme are given in Fig. 5. Figure 
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Fig. 5 Comparison of Bellman feedback controller with analog con
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6 is an improvement over the results shown in Fig. 5 and 
required presetting some of the eigenvalues. 

2.5 Polygonal Search. One method of obtaining fuel con
trol feedback gains is through a search optimization technique 
as follows: 

1 The parameters in the search are the feedback gains. 
2 The cost function is the integral of the speed error over 

some arbitrary load transient. 
3 The "optimal" gains are obtained by repeated runs of the 

simulation over the arbitrary load transient. 

A flexible polygonal search [8] works well in this case. The 
parameters (up to nine in number) create a search polygon in 
nine space that becomes oblong in the direction of cost function 
improvement as the search progresses. Figure 2 shows the 
somewhat extravagant 30 second load transient that was used 
for this method. A lot of computer time is required for this 
method so batch run were made overnight. The various sets 
of feedback gains and the resultant eigenvalues are shown in 
Table 3. Figure 7 is a comparison of the fuel control using 
gains obtained by the polygonal search versus the analog fuel 
control where it is noted that the state feedback gains control 
extremely well. Part of this is because the delay in speed sensing 
was removed for this initial search. When the sensing delay 
was put back into the model the transient curve shown in Fig. 
8 was obtained. It still does much better than the analog con
trol, but a lead circuit (anticipatory) can be applied to the 
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Fig. 6 Comparison of Bellman feedback controller with analog con
troller (with presetting) 
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Fig. 7 Comparison of polygonal search feedback controller with analog 
controller (no speed sensing delay) 

speed sensing and reduce the effect of the sensing delay. Figure 
9 shows the transient with this lead circuit present. An inter
esting result is shown in Fig. 10. The feedback gains for this 
control are also presented in Table 3 where it can be noted 
that only three states were used in the control. The polygonal 
search was thus only a search in three space. The extremely 
tight control is probably not realizable in practice because of 
the very high gain on the derivative of speed, which as noted 
before, is too subject to noise to be practical. 

3.0 Summary and Conclusions 
Several different schemes for arriving at controllers for a 

gas turbine engine have been investigated. An analog model 
programmed in ACSL was used to develop a linearized state-
space representation for use in MATLAB. The different ap
proaches for obtaining feedback gains and the results from 
each set of gains are presented. The approaches are: state 
feedback, LQR, Bellman, and polygonal search. 

The state-space approach to developing controllers is a viable 
one for simulations of this size and larger. In particular, multi-
input, multimode fuel controllers are readily adaptable to this 
approach. 

No comparison hasbeen attempted to analyze which of these 
state-space approaches is the "best" other than a graphical 
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Table 3 Feedback gains and eigenvalues 

Feedback Gains: 

Fig 3 Fig 4 Fig 5 Fig 6 Fig 7 Fig 8 Fig 9 FiglO 
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Fig. 8 Comparison of polygonal search feedback controller with analog 
controller (with speed sensing delay) 
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Fig. 9 Comparison of polygonal search feedback controller with analog 
controller (with lead filter) 

comparison of the controller in action. Much research of the 
seemingly endless variations in these methods needs to be con
ducted. 
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