
Effective Simulation for The Giga-scale Massively Parallel Supercomputer SR2201

 Kaoru Suzuki

Software Technology Development Center
Genral Purpose Computer Division, Hitachi, Ltd.

1 Horiyamashita, Hadano-shi, Kanagawa-ken, 259-13 Japan
e-mail: kasuzuki@kanagawa.hitachi.co.jp

Shunsuke Miyamoto

Strategic Products Development Center
Information Systems Division, Hitachi, Ltd.

292 Yoshida-cho, Totsuka-ku, Yokohama, 244 Japan
e-mail: s-miyamo@system.hitachi.co.jp

 Junji Nakagoshi

RISC Development Department
Genral Purpose Computer Division, Hitachi, Ltd.

1 Horiyamashita, Hadano-shi, Kanagawa-ken, 259-13 Japan
e-mail: jnakago@kanagawa.hitachi.co.jp

 Masato Kurosaki

Design Automation Development Department
Genral Purpose Computer Division, Hitachi, Ltd.

1 Horiyamashita, Hadano-shi, Kanagawa-ken, 259-13 Japan
e-mail: mkurosa@kanagawa.hitachi.co.jp

Abstract - A high performance parallel network simulation envi-

ronment was developed in the SR2201 project. The SR2201 is one

of the highest performance massively parallel supercomputers in

the world. The enhanced simulation algorithm achieved a 2.4 times

increase in simulation speed compared with conventional simula-

tion methodology. A 98% detection rate for all design errors be-

fore physical design contributed to the shortening of development

time.

I. Introduction

Design verification strategy is one of the most important

issues in making the high quality design possible, especially in

mega-gate systems. There are three significant strategic issues

that affect the quality of the design of a target system.

These issues are:

(1) The usage of different kind of logic simulators

(2) Design abstraction models

(3) Well qualified test data

Among these, the selection of a logic simulator is the key

factor in assuring a high quality of design. High speed and large

scale microprocessor design projects usually involve many kinds

of logic simulation and emulation systems, with different lev-

els of design description [1] - [2].

The usage of several simulators in a verification process has

led to performance deterioration and memory capacity short-

ages in current simulator implementation. If a simulator has

good performance and memory capacity, design result is veri-

fied simply using one level abstraction of the design descrip-

tion. However, recent innovation of process technology demands

greater logic simulator performance and capacity, especially in

high-end microprocessor design, which handles at least one

million transistors. The design process of supercomputers and

mainframe computers involves the same problem. One solu-

tion is to introduce a special purpose logic simulation machine

to achieve high performance simulation. We have developed

the Vectorized Processing System for Logic Verification (VEL-

VET) using our supercomputer with newly developed vector

simulation instructions[3]. The VELVET system usually pro-

cesses a supercomputer design of several tens of mega-gates

using a clock event suppression algorithm and a simulation

control language with an interface for using real test-and-main-

tenance programs. In many former projects, only main storage

and cache RAMs were implemented with high level simulation

control language. Now, designers are able to verify their inten-

tions without any design abstraction; in other words, there is no

reduction in detailed design information.

Test data for design verification is another significant issue.

The white box test supported by designers is very efficient for

design quality assurance. Usage of test and maintenance pro-

grams with randomly generated instructions in the design veri-

fication stage also helps to improve verification quality.

In the SR2201 project, the designers suggested a giga-gate

scale of integration in one system, instead of several tens of

mega-gates. The challenge of huge-scale integration simula-

tion has been met by using a simulation model with a high level

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by CiteSeerX

https://core.ac.uk/display/357375987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of abstraction. Therefore, the objective of the design verifica-

tion team here in the SR2201 project is to develop a high speed

system simulator to achieve a high quality of design in the giga-

gate system, using a minimum and proper simulation abstrac-

tion model.

In the following section, an overview is given of the simula-

tion target, SR2201. In section 3, our simulation system and

simulation models are characterized. Figures which show the

resulting verification are included in section 4. We state our

conclusion in section 5.

II. Outline of Massively Parallel Processor

System SR2201

Performance evaluation through benchmarking proved

SR2201 to be the fastest massively parallel machine in the world.

This section outlines the complexity of this machine.

The system consists of three subsystems: a processor ele-

ment subsystem, a network subsystem (among the processor

elements) and an input/output subsystem. The heart of the

SR2201 is the processor element subsystem, denoted in Figure

1(a) by black spheres. It includes an originally developed CMOS

RISC microprocessor, two level 2 caches which each hold 512K

bytes of instructions or data, a network interface adapter to trans-

fer data to and from the network subsystem, a storage control-

ler, which controls high-speed data access to local storage of

up to 1GB, and an input/output controller. These elements, with

the exception of the input/output controller are clustered on one

ceramic module, with eight processor-element modules on one

package. The RISC processor runs on a 150 MHz clock, and

achieves 0.3 GFLOPS peak performance. It contains multiple

16K byte primary caches for storing instructions and data, and

has a pseudo vector processing facility[4]. Maximum capacity

of the system is 2,048 processor elements. Figure 1(b) shows

block diagram of one processor element.

 The second major subsystem is a network subsystem of

the two-dimensional or three-dimensional crossbar type. Three-

dimensional crossbar networks are used for large- scale sys-

tems to meet the needs of elaborate scientific applications. The

performance of data transmission among processor elements is

300M bytes per second[5]. Figure 1(a) shows a schematic dia-

gram of a three-dimensional crossbar network among proces-

sor elements.

The third subsystem is an input/output subsystem. It inter-

faces to disk array systems, Fast SCSI, tape drives and net-

works which are Ethernet, HIPPI, ATM, and FDDI network.

The subsystem also includes internal hard disc drives and tape

drives.

The operating system of SR2201 is HI-UX/MPP, which is

based on the Mach 3.0 micro-kernel. For user convenience,

parallel FORTRAN, optimized FORTRAN 90, optimized C and

C++ are all supported. The parallel software development en-

vironment consists of Parallelware, a performance monitor and

a symbolic debugger. Common applications for scientific com-

puting are supported by parallel computing feature.

The system holds up to 2,048 processor elements. The scale

of one processor element is more than one million gates. The

total scale of the system, then, is more than two giga gates.

There is no logic simulator available today that can simulate

this huge system using gate-level description. Therefore, de-

signers require the new verification system to validate the

SR2201 design in a manner representative of the complete de-

sign.

 (a) Network subsystem@ @(b) Processor Element

 Fig. 1 Structure of SR2201

X-Crossbar Switch

Z
-
C
r
o
ss
b
a
r

Sw
i
tc
h

Y-Crossbar Switch

CPU M odule

1 Processor Element Node

I/O Bus

Local Storag
M ax. 1GB
64Mb DRAM

M BM
I/O Control

M icroprocesso
300MFLOPS
0.3 ˚mCM OS
150MHz

Storage
Control

5
1
2
K
B

S
R
A
M

5
1
2
K
B

S
R
A
M

L2 I-Cache

Network
Control

NIA SC

L2 D-Cache

III. Parallel Network Simulation

In the development of conventional large-scale general pur-

pose computers, we have achieved greater than 99% detect-

ability of design errors before the start of physical design, us-

ing designer’s checking through system level simulation using

VELVET[6]. In addition to the conventional verification meth-

odologies passed to SR2201 from experience in previous mod-

els, a new verification method, "critical cluster simulation", is

introduced to fully utilize actual test-and-maintenance programs

in system simulation. It is necessary to use test-and-mainte-

nance programs to assure quality assurance and precise debug-

ging of design information.

The new critical cluster simulation approach to design veri-

fication of huge systems uses a test program which generates

network transmission sequences randomly. The critical cluster

is based on the regular structure of the massively parallel sys-

tem. It consists of several processor elements, related logic cir-

cuits and the network among them.

In a conventional projects, whole-system simulation is used

to find hard-to-detect errors. However, whole SR2201 simula-

tion is beyond the capacity of our simulator. Instead two through

twelve processor elements are used to define one critical clus-

ter with behavioral microprocessor model and other gate level

description. Though the division process is enormous with the

new approach, further simulator performance enhancement and

efforts to realize high-speed interface signal exchange simula-

tion among processor elements are required.

The objective of parallel network simulation is to find hard-to-

detect errors, such as errors which result from processor ele-

ment interaction. The most effective approach for detecting

these errors is to execute a test program which generates net-

work transmission sequences randomly in a large processor el-

ement network. Therefore, a parallel network simulation envi-

ronment should have the ability to run the test program with

large network system integration and high performance.

 Figure 2 illustrates an event-driven system, which is basi-

cally the result of simple expansion of our traditional two-level

simulation system to a parallel type. We expanded the system

in such a manner that, when an instruction to start communica-

tion is executed, the architecture simulator switches to the logic

simulator and that, when the communication is complete or

enters a wait state, the logic simulator switches back to the ar-

chitecture simulator. However, this event-driven system poses

the following problems:

(1) As many processor elements as required in a network con-

figuration need to be installed in the logic simulator, so a large-

scale logic circuit cannot be simulated because of the limita-

tions on the memory capacity of the logic simulator.

(2) The logic size in the logic simulator tends to increase, re-

sulting in an extreme decline in simulation performance.

Logic Simulator Architecture Simulator

Initialize Process

Error Check Process

Test Program

Pseudo
Memory

Full Logic

FProcess dispatch
FData Copy

Test Instructions

Pseudo
Registers

NIA SC

Processor Element - 1 Processor Element - n

NIA SC

X
B

Pseudo
Memory

Pseudo
Memory

CPU

CPU

Fig. 2 Parallel Network Simulation (Event Driven)

 In order to resolve these problems, our new method no longer

simulates processor elements in the logic simulator but instead

it simulates them in the architecture simulator. To accomplish

this, we designed a batch scheduling system where large-scale

parallel simulations can be conducted through a state transition

that occurs in a network event[7].

 Figure 3 illustrates the batch scheduling parallel network simu-

lation scheme. It consists of an architecture simulator and logic

descriptions of network/storage controllers. The architecture

simulator simulates multiple microprocessors simultaneously.

The number of microprocessors depends on the simulation tar-

get network configuration. Intensive chip simulation will verify

the correctness of the design in advance. Therefore, in the par-

allel network simulation, microprocessors act only as request/

response queue handlers and program interpreters.

The simulation execution algorithm in the parallel proces-

sors’ evaluation sequences is critical in accurate, high speed-

simulation. Figure 5 illustrates the dispatching algorithm of

the simulation execution sequence. The parallel network simu-

lation environment adopts cycle synchronization in a micro-

processor execution sequence, basically. The simulation

progresses from left to right in the figure. Each box denotes the

execution timing of a specified part of the simulation models.

Cyclic synchronization means that the architecture simulator

transfers control of each microprocessor model after one in-

struction execution. After the complete microprocessor model

execution, network and storage control models are simulated

for one cycle using signal values from the architecture simula-

tion results. On the next clock cycle, instruction execution be-

gan after evaluation of the gate level logic.

The initialization and error check phases need no synchro-

nization. These phases are executed on the architecture simula-

tor side, and only the network test phase requires rigid syn-

chronization in order to preserve simulation validity, though

simple synchronization mechanism increases the overhead of

simulation time. The sequence of the simulation execution in-

fluences the consistency of memory coherence.

Initialization Process

PE - 1

Simulation Cycle

PE - 2

PE - n

SC+NW

Architecture
Simulator

Logic
Simulator

Network Test Process Error Check Process
1 i i+1 j j+1

Simulation Process

Fig. 5 Simulation Execution Sequence

A. Memory Consistency

Memory modeling is another key issue in improving simu-

lation speed. Figure 6 illustrates a pseudo-memory access

method, from the logic simulator to the architecture simulator.

Pseudo-memory is implemented only in the architecture simu-

lator. The logic simulator and the architecture simulator access

pseudo-memory directly in each execution process. Only upon

Fig. 3 Parallel Network Simulation (Batch Scheduling)

Logic Simulator Architecture Simulator

Initialize Process

Error Check Process

Test Program

Pseudo
Memory

Network + SC Logic

FProcess dispatch
FData Access

Test Instructions

Pseudo
Registers

NIA SC

Processor Element - 1 Processor Element - n

NIA SC

X
B

Logic Simulator Architecture Simulator

Initialize Process

Error Check Process

Test Program

Pseudo
Memory

Network + SC Logic

FProcess dispatch
FData Copy

Test Instructions

Pseudo
Registers

NIA SC

Processor Element - 1 Processor Element - n

NIA SC

X
B

Pseudo
Memory

Pseudo
Memory

However, the following problems still remain unsolved in this

system:

(1) A state transition takes place every time a network event

occurs. Optimizing the amount of data being copied still en-

tails high overhead.

(2) The amount of time consumed by the behavioral model in

monitoring network events is excessive.

(3) A time lag occurs between the behavior simulated by an

architecture simulator and that simulated by the logic simula-

tor, so the simulated results differ from the actual logic results

in timing

We therefore designed a cyclic synchronization system as

shown in Fig. 4 to realize high-speed, large-scale parallel net-

work simulation. With this system, we solved the problem in

timing control by executing the logic simulator and architec-

ture simulator in a cyclic manner and eliminated the overhead

in data copying by forcing the logic simulator to reference the

pseudo-memory of the architecture simulator.

Fig. 4 Parallel Network Simulation (Cyclic Synchronization)

network communication requests does the architecture simula-

tor access pseudo-memory, via storage control logic on the logic

simulator. Only the minimum number of memory requests are

executed on the logic simulator, so logic simulator performance

is improved because most memory requests are handled on the

architecture simulator in one simulation cycle.

Logic Sim ulator Architecture Sim ulator

Test Program

Pseudo
M emory

Network + SC Logic Test Instructions

Pseudo
Registers

NIA SC

Processor Element

XB

ST(Comunication Trigger

ST(Normal Access)

DM A
Access

Fig. 6 Pseudo-Memory Access method

However, this technique raises a difficult problem in the or-

dering of memory requests. Figure 7 shows the timing chart for

a typical memory operation. In this case, a test program on the

architecture simulator cannot refer to correct status informa-

tion if interrupted.

If a partial write operation with flag data is finished in the

i+1 cycle, the test program in the architecture simulator can

read the flag data, but if the flag data write is delayed for 2

more cycles due to the SC being busy, the test program cannot

read the flag data. In such cases, then, the interruption report

from the logic simulator to the architecture simulator has to be

delayed for 2 simulation cycles. We adopted a request sched-

uler written in simulation control language, which defers an

interruption report to the architecture simulator during an SC

busy.

Logic
Simulator

Architecture
Simulator

Flag
Address
Flag
Data

Int.
Data

Order Write Write Int. Int.

Flag
Read

SC
Busy

Simulation Cycle i i+1 i+2 i+3 i+4 i+5 i+6i-1

Fig. 7 Execution Sequence of Memory Operation

B. Performance Enhancement

Performance enhancement, i.e. improvement of the percent-

age of simulation time devoted to simulation and reduction of

the percentage of time spent on overhead tasks (copying data,

checking network events, running the architecture simulator,

and initializing and ending the simulation) has heretofore been

achieved by batch scheduling. Now, a new method, cyclic syn-

chronization, has achieved significant improvement over the

previous method.

The conventional method: batch scheduling

 Where this system is not employed, all logic units composed

of parallel processors must be mounted on the logic simulator,

so the logic simulator’s performance will decline significantly.

The use of this system has made it possible to minimize such a

decline in the logic simulator performance. Contrary to our

first expectations, however, the result is that a total of 58% of

the entire simulation time is still seen as overhead. This figure

is the sum of 50% for data copying in the event of state transi-

tions between the architecture simulator and the logic simula-

tor every time a network event occurs, and 8% for behavioral

model operation for monitoring network events.

The improved method: cyclic synchronization

Cyclic synchronization increases the speed of simulation 2.4

times over the conventional method (batch scheduling). It elimi-

nates 58% of the simulation time applied to overhead tasks in

batch scheduling, by adopting the previously discussed cyclic

synchronization, and enabling direct memory access from the

logic simulator to the architecture simulator.

IV. Results

High performance and effective parallel network simulation

environment has been achieved. Figure 8 compares the simula-

tion execution time for the cyclic synchronization method vs.

the batch scheduling method with eight processor models.

1.50.5 1 2
[Tim e]

Batch Scheduling
M ethod

Cyclic Synchronization
M ethod

Logic Sim ulator

Event Checker

Data Copying

Architecture Sim ulator

Init. & Ending Procedure

0 2.5

supercomputer have been established. To avoid the huge ca-

pacity problem, we adopted the "critical cluster" simulation,

which includes gate-level network related LSI descriptions and

up to 12 behavioral microprocessor simulation models. Cycle

rotation and other simulation scheduling enhancement, based

on the execution time analysis of the critical cluster simulation

attains more than twice the speed of a conventional simulator.

Results show 98% detectability of all the design errors in the

SR2201 design before physical design, and contributed to short-

ening the development time of the huge machine.

VI. References

[1] James Monaco et.al., "Functional Verification Methodol-

ogy for the PowerPC 604," Proceedings of the 33rd Design

Automation Conference, pp.319-324 (June 1996).

[2] C. Montemayor et. al., "Multiprocessor Design Verification

for the PowerPC 620 Microprocessor," Proceedings of Interna-

tional Conference on Computer Design ’95, pp.188-195 (Oct.

1995).

[3] Masayuki Miyoshi et.al., "An Extensive Logic Simulation

Method of Very Large Scale Computer Design, " Proceedings

of the 23rd Design Automation Conference, pp.360-365 (June

1986).

[4] Kotaro Shimamura et.al., "A Superscaler RISC Processor

with Pseudo Vector Processing Feature, " Proceedings of Inter-

national Conference on Computer Design ’95, pp.102-109 (Oct.

1995).

[5] Kisaburo Nakazawa et.al., "The Architecture of Massively

Parallel Processor CP-PACK," Journal of IPSJ, pp.18-27 (Jan.

1996).

[6] Kaoru Suzuki et.al., " System Level Verification of Large

Scale Computers," Proceedings of the International Conference

on Computer Design ’92, pp.149-152 (Oct. 1992).

[7] Kaoru Suzuki et.al., "Logic Verification Technique for the

Parallel Processor System," Proceedings of the 49th Informa-

tion Processing Society Conference, pp.129-130 (Sept. 1994).

Fig. 9 Error Detection Analysis

Most of the design errors are detected at the machine debug-

ging stage are delay errors. The influence of high temperature

and electric noise to most CMOS LSIs was not estimated accu-

rately.

V. Conclusion

Verification of the giga-scale SR2201 massively parallel pro-

cessor requires a new methodology and performance enhance-

ment of the simulation environment. A system level verifica-

tion methodology for the giga-scale massively parallel

Unit
Simulation 50%

Real Machine
Debugging 2%

Design
Review 37%

Delay Check
Simulation 5%

Others 2%

System Level
Simulation 4%

Fig. 8 Results of Parallel Network Simulation

Applying the parallel network simulator and verification

methodologies to the SR2201 project, high quality design is

achieved at the verification phase. Four percent of hard-to-de-

tect errors are detected using the parallel network simulation,

and 98% of all design errors are detected before physical de-

sign.

Figure 9 shows the result of the error detection rate at each

verification stage.

	CD-ROM Home Page
	ASP-DAC98
	Front Matter
	Table of Contents
	Session Index
	Author Index

