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Pollutants accumulated on road pavement during dry periods are washed off the surface

with runoff water during rainfall events, presenting a potentially hazardous non-point source

of pollution. Estimation of pollutant loads in these runoff waters is required for developing

mitigation and management strategies, yet the numerous factors involved and their complex

interconnected influences make straightforward assessment almost impossible. Data driven

models (DDMs) have lately been used in water and environmental research and have shown very

good prediction ability. The proposed methodology of a coupled MT-GA model provides an

effective, accurate and easily calibrated predictive model for EMC of highway runoff pollutants.

The models were trained and verified using a comprehensive data set of runoff events monitored

in various highways in California, USA. EMCs of Cr, Pb, Zn, TOC and TSS were modeled, using

different combinations of explanatory variables. The models’ prediction ability in terms of

correlation between predicted and actual values of both training and verification data was mostly

higher than previously reported values. PbTotal was modeled with an outcome of R2 of 0.95

on training data and 0.43 on verification data. The developed model for TOC achieved R2 values

of 0.91 and 0.49 on training and verification data respectively.

Key words | data driven model (DDM), event mean concentration (EMC), genetic algorithm (GA),

highway runoff, model tree (MT)

INTRODUCTION

Highway or road runoff under certain circumstances can be

a significant non-point source of pollutants. Vehicles, road

wear and road maintenance produce a range of toxic

contaminants such as heavy metals and polycyclic aromatic

hydrocarbons (PAHs). Under certain conditions, related to

the nature and characteristics of the highway, the rainfall-

runoff event and the receiving water body or ecosystem,

pollutants in highway runoff may exert acute or chronic

impact on the receiving environment. The ecological impact

of polluted runoff water on soil- and water-based ecosys-

tems and its threat to aquifers and surface water has been

elucidated, however, the processes affecting the buildup,

transformation and reduction of these pollutants on the

road surface during dry periods and their washoff, transport

and dispersion during stormwater runoff events is a much

more complex phenomenon and not yet well understood.

Physical, chemical and biological processes are involved

throughout this sequence of events. Though it has been the

subject of numerous research projects, there are still open

questions regarding the identity and mutual influences of

the many factors affecting pollutant concentrations in road

runoff. The lack of detailed physical, chemical and hydro-

logical understanding of all processes involved has lead us

to believe that methodology of Data Driven Modeling

(DDM) may be ideal for confronting the challenge of

predicting runoff pollutant concentrations. As so called

“Grey Box” models, modeling tools of this type require only

partial denotation of the underlying processes, while taking
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advantage of past events and available computing resources

to deduce the likely outcomes of future events. In this study

an attempt was made at isolating the major factors involved

in determining pollutant contents in highway runoff and

using these as explanatory variables for developing a data

driven model.

METHODS

The proposed approach combines two data-driven meth-

odologies, model trees (MT) and a genetic algorithm (GA)

in a coupled scheme of alternating execution. The GA

searches for optimal model coefficients which are then

incorporated by the MT into the tree-structured model.

Model tree (MT)

MTs are a generalization of Decision Trees (DT), which

are widely used in solving classification problems and

more specifically very common in data mining appli-

cations. Whereas DTs handle qualitative or discrete-value

attributes only, MTs deal with continuous values. An MT is

a data driven algorithm, built as a rule-based predictive

structure using a top–down induction approach. The tree

is fitted to a training data set by splitting the data into

homogeneous subsets based on the data attributes. The

tree is constructed so that the target variable of all training

cases is predicted by the tree leaves. Each leaf is a linear

regression model which incorporates the numerical

decision attributes and predicts continuous values for the

target variable. The tree is then pruned bottom–up and

transformed into a set of if–then rules, a process which

simplifies its structure and improves its ability to classify

new instances (Quinlan 1992). The predictive ability of the

MT is measured using a correlation coefficient for the

training and validation data sets.

Genetic algorithm (GA)

GAs are heuristic search procedures based on the mechan-

isms of genetics and Darwin’s natural selection principles,

combining an artificial survival of the fittest with genetic

operators abstracted from nature (Holland 1975). GAs differ

from other search techniques in that they search among a

population of points and use probabilistic rather than

deterministic transition rules. As a result, GAs search

more globally (Wang 1997; Haupt & Haupt 1998).

An initial random population of genomes within the

search space is generated. Each genome represents a

possible solution to the search/optimization problem and

is represented by a string of values (genes), one per each

search variable. Survival of the fittest is accomplished by

evaluating each genome’s fitness through an appropriate

objective function and a biased random selection procedure

of individuals for “reproduction”, where higher rated

genomes are more likely to be selected. Generation of a

new population is achieved by means of crossover (partial

exchange of information between pairs of strings) and

mutation (random change in a random location within a

string). The fittest individuals are transferred unchanged to

the next generation, an approach known as ‘elitism’. Every

new generation of genomes is expected to be more closely

concentrated in the vicinity of the optimal solution. The

process is repeated until a convergence criterion is met or a

pre-set maximum number of generations reached. GA input

parameters include: population size, number of generations,

range limits of each gene, crossover and mutation rates and

a fitness function for genome evaluation.

Source of data

The models in this study were trained and verified using a

comprehensive data set of 68 runoff events monitored in 92

highway sites in California, USA between 1998 and 2004.

Data was obtained from the Caltrans stormwater quality

database (Caltrans 2004).

THE PROPOSED MT-GA MODEL

Figure 1 presents the structure of the proposed model. The

GA module uses the MT’s correlation coefficient (R2) as its

objective function and so optimization is guided by the

accuracy of prediction achieved by the MT model, using

each specific set of coefficients. In every generation the GA

module calls the MT module for each of the genomes in the

current population. The MT module constructs a model
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using the coefficients coded by the genome and passes back

to the GA module this model’s R2 for the training data. This

value serves as the genome’s fitness value. As the GA

population advances towards the objective function opti-

mum, the corresponding MT constructed with the tuned

coefficients becomes more accurate in predicting the target

value of the training data. As explained below, the MT

decision variables are five site and storm characteristics and

its target value is a given pollutant’s event mean concen-

tration (EMC). A similar approach has been proposed for

flow and water quality predictions in watersheds and

applied for daily loads of nutrients with very good results

(Preis & Ostfeld 2008).

The coupled MT-GA model was coded in C#. The

software incorporates the commercial Cubist M5 model

tree protocol (Rulequest-Research 2007) as the core of the

MT module. A graphical user interface (GUI), which

enables the user to conveniently enter necessary modeling

parameters, was also developed within the framework of

this study.

Variables and coefficients

Target variables

EMC of five pollutants commonly found in highway

stormwater runoff, representing three pollutant categories,

were chosen as target variables for testing and demonstrat-

ing the proposed modeling approach: PbTotal, CrTotal and

ZnTotal (total ¼ particulate þ dissolved fractions), TOC

and TSS. TSS was selected for its significant positive

correlation with many harmful pollutants found in highway

runoff, making it an important goal for modeling, as it may

serve as an indicator for other pollutants.

Decision variables

Selection of appropriate model inputs is extremely import-

ant in any prediction model. Often in DDM applications all

input variables that might possibly have an influence on the

model outputs are included and the DDM is left to

determine which inputs are significant. However, present-

ing a large number of inputs and relying on the DDM to

determine the critical model inputs, often results in the

inclusion of insignificant model inputs (Solomatine 2003).

In this study, based on available literature and on

characterization and statistical investigation of the acquired

data set, five variables were selected as potential inputs for

the DDM, namely: annual average daily traffic (AADT)

[103 vehicles/d], antecedent dry period (ADP) [d], event

rainfall [mm], maximum 5-minute rain intensity [mm/h]

and antecedent event rainfall [mm]. Of these five explana-

tory variables, all possible sub-group combinations were

examined, to find the best minimal combination for each of

the target variables.

Model coefficients

Unlike the standard use of DDMs, in the proposed

modeling approach some of the available physical knowl-

edge of the modeled phenomena was integrated into the

model through mathematical expressions. Each decision

variable was used in a specifically ascribed mathematical

formula which is thought to roughly approximate its effect

on pollutant EMCs (Table 1). In this study, unlike most

applications of MT methodology, non-linear formulas were

introduced to the modeling process which resulted in non-

linear sub-models at the leaf nodes. The eight coefficients of

these formulas were optimized by the GA in search of a set

of values that will result in the best possible model.

Figure 1 | Schematic diagram of the proposed methodology.
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The linear equation for the effect of daily traffic (AADT)

on runoff concentrations represents the accumulation of

vehicle-originated substances on the highway surface. The

impact of ADP is represented as a cumulative process with a

saturation curve, emanating from the paved surface’s

carrying capacity, beyond which processes of removal (by

air currents, chemical or biological decomposition, volatil-

ization, etc.) restrain further accumulation of substances on

the surface. The effect of rainfall is illustrated by a curve

presenting an initial climb followed by a gradual descent.

This function represents the increasing loads of pollutants

washed from the road with the initially growing force of

runoff flow, known as the First Flush phenomenon

(Bertrand-Krajewski et al. 1998; Han et al. 2006) and then

a decrease, as less matter is left of the road surface to be

washed off, while growing quantities of stormwater have a

diluting effect on the overall concentrations. The effect of

maximum rainfall intensity is portrayed by a positive power

function, as the increasing shear force produced by rain-

drops on the pavement may release substances with

stronger adhesion, or those located deeper in the asphalt

crevasses. Antecedent rainfall is thought to have an inverse

proportion to the current storm’s EMC, since a previous

heavier rainfall leaves smaller loads of pollutants on the

surface, to be washed off by the current storm. This effect is

represented here by a negative power function.

Model training and verification

Every possible combination of 1 to 5 attributes was

examined for predicting the EMC of each of the five

pollutants. For each combination of variables a simple MT

was first constructed. Every model which incorporates two

or more model coefficients was then optimized, using the

proposed MT-GA approach, resulting in 29 models per

target variable. Model training was carried out in two

phases: in the first phase the MT-GA application was run

with a population of 10 genomes and 50 generations. In the

second phase those models which showed a good potential

for further improvement were run with 20 genomes per

population and 500 generations, again starting from a

random initial population.

A set of 850–1,100 data entries was available for each

target variable, the statistics of which are presented in

Table 2. Each data set was randomly divided into two

subsets: 70% used for model training and 30% for verifica-

tion. Evaluation of the MT-GA model is based on the fitness

(R2
T, training R2) of the model. R2

T expresses the correlation

between predicted and observed target variable values in

the training data. Altogether 145 models were created; each

one was tested using its relevant set of verification data. The

correlation between predicted and actual verification data

(R2
v, verification R 2) was used as a measure of the model’s

predictive performance.

RESULTS AND DISCUSSION

Models

The five best models, one for each pollutant, vary in length,

in the set of explanatory variables and in accuracy of

prediction. Table 3 presents, as an example, the sequence

of classification rules constituting the model for ZnTotal.

This model is the most compact of the five; others consist

Table 1 | MT-GA attributes and coefficients (genes)

Attribute Equation Description Gene

AADT a1·AADT Linear a1

ADP a2·[1 2 exp(2a3·ADP)] Saturation curve (Driscoll et al. 1990) a2

a3

Rainfall a4·
Rainfall

a5
·exp 12

Rainfall

a5

� �
Early maximum then fading a4

a5

Max. rain intensity Max Intensitya6 Power (Yuan et al. 2001; Francey et al. 2004) a6

Ant. rainfall a7·AntRain2a8 Power a7

a8
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of 6–15 rules. Since the MT-GA output is designated for

MT-GA automated predictions, variable names in the

models’ rules represent the mathematical expressions used

to encode them (Table 1). Whereas the expressions for

computing pollutant EMCs in the model rules appear to be

linear, they are actually often non-linear, once variable

names are substituted with their corresponding mathemat-

ical expressions.

The resulting MT-GA models are unlike those pre-

viously reported, such as MLR or process-based equations,

in that they ascribe a few different equations to each

pollutant target. And yet, similarly to previously reported

models, for pollutant loading (Irish et al. 1998; Kim et al.

2005a) or EMCs (Kayhanian et al. 2007), each sub-model in

an MT-GA leaf node takes the general form of a multi-term

summation equation, consisting of the significant factors

affecting the target variable. For example, rule number 1 in

the model for ZnTotal (Table 3), after substitution, takes the

form:

If AADT–K#50:8=a1 Then

ZnTotal¼ 4:7þ2:9·a1·AADT–Kþ171·a7·AntEventRain2a8

þ88·a2·½12expð12a3·ADPÞ�

Model attributes

Each of the five target variables was best modeled by a

different set of explanatory variables. Table 4 presents a

summary of model attributes and performance of the

developed models. For each category two models are

presented: the one with best performance on the training

data and the one with best performance on the verification

data. The number of attributes used in these models varies

between 2 and 5, proving that it is not always advisable to

Table 2 | Summary statistics of all data sets used in the modeling process

Data type Count Minimum Maximum Median Mean STD

Cr [mg/L] Training 571 0.5 86 5.8 8.3 8.78

Verification 244 0.5 98 5.7 8.1 10.30

Pb [mg/L] Training 608 0.0 2,600 11.0 54 187

Verification 261 0.0 1,400 11.3 57 154

Zn [mg/L] Training 608 1.0 2,100 130 196 238

Verification 261 2.5 1,665 120 188 217

TOC [mg/L] Training 734 0.5 550 13.2 19.8 31.7

Verification 315 2.0 151 15.0 20.9 21.1

TSS [mg/L] Training 773 0.5 2,400 63 108 169

Verification 332 0.5 2,988 63 110 198

Table 3 | Classification rules of the model for ZnTotal

Rule 1 If AADT-K , ¼ 50.81

Then ZnTotal ¼ 4.6881 þ 2.92 AADT-K þ 171 Ant Event Rain þ 88 ADP

Rule 2 If AADT-K . 93.15 and Max Intensity . 2.8374

Then ZnTotal ¼ 420.89 2 50 Max Intensity þ 141 ADP

Rule 3 If AADT-K . 50.81

Then ZnTotal ¼ 175.03 þ 282 ADP 2 25 Max Intensity

Rule 4 If AADT-K . 93.15 and Max Intensity , ¼ 2.8374 and Ant Event Rain . 0.1092

Then ZnTotal ¼ 2365.48 þ 4.1 AADT-K þ 1166 ADP 2 155 Max Intensity

Rule 5 If AADT-K . 93.15 and Max Intensity , ¼ 2.8374 and Ant Event Rain , ¼ 0.1092

Then ZnTotal ¼ 92.60 þ 5865 Ant Event Rain þ 95 ADP
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have the DDM work with all optional input variables.

Though R2
Tof the full 5-variable models was always among

the highest for each target variable, R2
v was often consider-

ably lower than that of certain other models using fewer

variables. This implies possible over-fitting when using

redundant attributes. For example, the 5-attribute model for

TOC displays R2
T of 0.93, which is the highest among all

TOC models (closely followed by 0.92 for a 4-attribute

model), but its R2
v is a mere 0.22, which is much lower than

the 0.49 maximum, achieved by another 4-attribute model.

In the case of PbTotal the 5-attribute model achieved

identical prediction accuracy for both training and verifica-

tion data (0.95 and 0.43 respectively) as the 4-attribute one

in which the attribute maximum rain intensity was left out.

The five-variable model consists of 12 rules, while the four-

variable model contains 15 rules. Maximum rain intensity is

used in the five-variable model as a variable in the equations

at the leaf nodes, in only 6% of the cases. This minor

contribution of additional data obviously makes it possible

to make predictions of the same quality using a more

compact tree structure.

Annual average daily traffic is clearly indicated as the

most influencing factor on the EMCs of the pollutants

modeled. Not a single model in Table 4 disregards it.

Moreover, looking through the full result tables of the

training process (not presented in the scope of this paper for

lack of space), it becomes obvious that whenever AADT is

left out of a model its performance is significantly

compromised. The second most common attribute within

the best models is event rainfall, participating in nine of the

ten models.

Table 5 compares attribute combinations of the models

in this study with those used in models from three

previously reported studies, all using multiple linear

regression analysis (comparable data for TOC was unavail-

able). Many common traits are apparent for selected

explanatory variables in all four studies. Generally, the

sets of variables chosen in this study are closer to those

presented by Kayhanian et al. (2003, 2007) than to those

presented by Irish et al. (1995). Though this difference may

be coincidental, it should be noted that Kayhanian et al.

used data collected from the same geographical area as that

used in the current study (California), while Irish et al.

modeled highway runoff data collected in a different

geographic and climatic location (Austin, Texas). Traffic-

related variables were identified as the most significant

factors in modeling highway runoff quality according to the

current and additional three studies. These, in different

forms, were found to be significant influencing factors in all

but one model (that for TSS by Irish et al. 1995). It is

noteworthy that some reports have concluded that there is

no definitive relationship between AADT and pollutant

concentrations (Driscoll et al. 1990) and others suggested

that such a relationship exists only for certain contaminants

and in high AADT sites (Kayhanian et al. 2003).

Attributes relating to rainfall volume are the second

most commonly used type of attributes, participating in 11

of the total 14 models in Table 5. Disagreement between

Table 4 | Model attributes and performance for the best models in each target category

R2 Type of R2p AADT ADP Rainfall Max. rain intensity Antecedent rainfall No. of variables

CrTotal 0.77 T B B B B B 5

0.56 V B B 2

PbTotal 0.95 T B B B A† A† 4

0.43 V B B B B 4

ZnTotal 0.84 T B B B B 4

0.49 V B B B B 4

TOC 0.93 T B B B B B 5

0.49 V B B B 3

TSS 0.82 T B B B B 4

0.32 V B B B 3

p
T, training; V, verification.

†
Either maximum rain intensity or antecedent rainfall as fourth variable gives the same R2

T .
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the current study and all other three studies exists for

rainfall volume in the ZnTotal model (present in all but the

currently presented model) and for ADP in the TSS model

(used in all other three models, but left out of the one

presented here).

Model training

The process of training was very instructive, as it gradually

revealed unexpected general trends regarding the ability of

the various combinations of attributes to explain the

variability of the different pollutant concentrations. Differ-

ent training runs displayed distinctive courses of progress.

Figure 2 shows a random selection of thirteen first phase

training runs. The best fitness (i.e. the MT’s R2
T) in each

generation is plotted along the course of the 50 generations.

Some graphs are continuously climbing, such as model

number 13223, representing a model for ZnTotal with

attributes ADP and event rainfall. Some start out with a

good rate of improvement but converge to their maximum

quite quickly, such as 14225 (TOC explained by ADP and

antecedent rainfall). Other models displayed no improve-

ment in fitness whatsoever, as did number 12215 (CrTotal

explained by AADT and antecedent rainfall), which

remained steady at a fitness of 0.46 throughout the training

process.

Models showing a potential of further improvement (i.e.

those which displayed any increase in fitness within the

50 generations of the first phase runs) were trained again in

phase 2, with a larger genome population and a much

longer GA evolution of 500 generations. In phase 2 the

majority of models converged to their optimum solution

within the first 300 generations. A few continued improving

as far as generation number 485, but these were all models

Table 5 | Comparison of participating attributes in various models

Variable Model Traffic ADP Rainfall Intensity Previous storm Others

CrTotal Current study AADT Rainfall

Kayhanian et al. (2003) AADT ADP Rainfall SCR

PbTotal Current study AADT ADP Rainfall PRAINFALL

Kayhanian et al. (2007) AADT SCR

Kayhanian et al. (2003) AADT ADP SCR

DA

Irish et al. (1998) VDS Intensity PINT Flow

ZnTotal Current study AADT ADP Max. PRAINFALL

Intensity

Kayhanian et al. (2007) AADT ADP Rainfall SCR

Kayhanian et al. (2003) AADT ADP Rainfall Max. SCR

Intensity DA

Irish et al. (1998) ATC PFLOW DUR

PDUR Flow

PINT

TSS Current study AADT Rainfall Max.

Intensity

Kayhanian et al. (2007) AADT ADP Rainfall SCR

Kayhanian et al. (2003) AADT ADP Rainfall Max. SCR

Intensity DA

Irish et al. (1998) ADP Flow Intensity PINT

DA, drainage area; DUR, storm duration; Flow, total volume of runoff per unit area of watershed; Intensity, flow divided by duration; PDUR, duration of previous storm event; PFLOW, total

volume of runoff per unit area of watershed during the previous storm event; PINT, PFLOW divided by PDUR (L/m2/min); PRAINFALL, Previous storm rainfall; SCR, Seasonal cumulative

rainfall; VDS, Single-lane vehicle count during storm event.
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with a fitness value considerably inferior to the best model

in their pollutant category and were therefore not pursued

further.

Highest R2
T values of the chosen models for all target

variables are satisfactory, ranging from 0.77 to 0.95. These

values were found to be significantly higher than the R2
T of

most other models reported in the literature for Cr, Pb and

Zn and among the highest for TOC and TSS (Table 6).

Model evaluation

Each model, once trained and optimized by MT-GA, was

evaluated using a set of verification data (not used for model

training). Verification data sets consisted 242–330 cases

(Table 2). Coefficient of correlation between predicted and

actual values of the verification data (R2
v) was used for

evaluating each model’s predictions of previously unseen

cases. It should be noted that no comparable values were

found in the literature, as most studies report only

correlation of predictions on data used for model cali-

bration (R2
T presented in Table 6).

Adjusted R2
v values range between 0.32 (for TSS) and

0.56 (for CrTotal), generally displaying some underestimation

of extreme high EMCs. The results show that there is no

consistent correlation between training and verification R2

values, i.e. a model’s high R2
T does not necessarily indicate a

high R2
v. This is demonstrated in Figure 3, which shows

correlation coefficients between modeled and actual values

for two selected models per target pollutant, one for highest

R2
T and another for highest R2

v. This lack of consistency

between a model’s relative performance on training and test

data sets is disappointing, since the assumption that a

model’s accuracy of predictions on its training data indicates

its future performance on unseen cases is at the basis of this

methodology and of the concept of data driven modeling at

large. R2
T should be a good indication of R2

v, which represents

the use of the model as a prediction tool for future events.

Better correlation between R2
T and R2

v may be achieved by

applying a different method of partitioning of the data into

training and verification sets, which would result in different

model rules. In this study data partitioning was performed

arbitrarily, yet dividing the available data by seasons or by

monitoring sites may be more informative for the models’

training process. Amplifying the relative weight of extreme

high cases may reduce the difference between training and

verification scores. It is also reasonable to assume that a

larger set of training data would be more representative of

the general regularities characteristic of the modeled

phenomena and result in a more indicative evaluation of

future predictions. Another possible reason for this poor

correlation could be existence of other explanatory variables

affecting the EMC not considered by the model.

Figure 2 | Fitness improvement curves for a sample of first phase model training runs.

Table 6 | R2
T of models developed in this study and other models from the literature

Current

study

Kayhanian

et al. (2007)

Kim et al.

(2005b)

Kayhanian

et al. (2003)

Irish et al.

(1995)

CrTotal 0.77 0.21

PbTotal 0.95 0.36 0.35 0.68

ZnTotal 0.84 0.51 0.45 0.92

TOC 0.93 0.14 0.98

TSS 0.82 0.25 0.84 0.19 0.93
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CONCLUSIONS

The innovative approach of a coupled MT-GA modeling

technique was implemented. Unlike most previous studies,

in the current study the MT included some non-linear

equations. Models for five highway runoff pollutants

(CrTotal, PbTotal, ZnTotal, TOC and TSS) were trained and

tested using an extensive data set from the Caltrans

stormwater monitoring database. The coupled model was

found to be a convenient and effective methodology for

highway runoff quality predictions.

Five key factors known to affect runoff pollutant

concentrations were selected as optional modeling attri-

butes. All combinations of 1 to 5 explanatory variables of

the five variables selected were tested for modeling each

constituent’s EMC. Each constituent was found to be best

modeled by a different set of attributes. Of the five candidate

variables, the most frequently used attribute is AADT,

implying that this is the most influencing factor on runoff

EMCs. The second most common variable in the developed

models is event rainfall, left out of only one of the ten best

models.

Correlations between predicted and actual EMCs for

the models’ training data were very good, ranging from 0.77

to 0.95, and better in most cases than those achieved by

multiple linear regression models reported in the literature.

Correlation coefficients for predicted and actual EMCs of

the verification data set were significantly lower than those

of the training data, ranging between 0.32 and 0.56. This

suggests that there may be other explanatory variables

affecting the EMC not considered by the model. Another

possibility is that dividing the available data non-randomly

(by seasons or by monitoring sites) could result in a better

correlation between training and test performance. Com-

parison of our models’ accuracy of prediction on unseen

input data was prevented since comparable model verifica-

tion data is unavailable in the literature.
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